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We examine the buoyancy-driven rise of a bubble in a Newtonian or a viscoplastic
fluid assuming axial symmetry and steady flow. Bubble pressure and rise velocity
are determined, respectively, by requiring that its volume remains constant and its
centre of mass remains fixed at the centre of the coordinate system. The continuous
constitutive model suggested by Papanastasiou is used to describe the viscoplastic
behaviour of the material. The flow equations are solved numerically using the mixed
finite-element/Galerkin method. The nodal points of the computational mesh are
determined by solving a set of elliptic differential equations to follow the often large
deformations of the bubble surface. The accuracy of solutions is ascertained by mesh
refinement and predictions are in very good agreement with previous experimental
and theoretical results for Newtonian fluids. We determine the bubble shape and
velocity and the shape of the yield surfaces for a wide range of material properties,
expressed in terms of the Bingham Bn= τ ∗

y /ρ∗g∗R∗
b , Bond Bo = ρ∗g∗R∗2

b /γ ∗ and

Archimedes Ar = ρ∗2g∗R∗3
b /µ∗2

o numbers, where ρ∗ is the density, µ∗
o the viscosity,

γ ∗ the surface tension and τ ∗
y the yield stress of the material, g∗ the gravitational

acceleration and R∗
b the radius of a spherical bubble of the same volume. If the fluid

is viscoplastic, the material will not be deforming outside a finite region around the
bubble and, under certain conditions, it will not be deforming either behind it or
around its equatorial plane in contact with the bubble. As Bn increases, the yield
surfaces at the bubble equatorial plane and away from the bubble merge and the
bubble becomes entrapped. When Bo is small and the bubble cannot deform from the
spherical shape the critical Bn is 0.143, i.e. it is a factor of 3/2 higher than the critical
Bn for the entrapment of a solid sphere in a Bingham fluid, in direct correspondence
with the 3/2 higher terminal velocity of a bubble over that of a sphere under the
same buoyancy force in Stokes flow. As Bo increases allowing the bubble to squeeze
through the material more easily, the critical Bingham number increases as well, but
eventually it reaches an asymptotic value. Ar affects the critical Bn value much less.

1. Introduction
The motion of bubbles in viscous liquids has attracted the interest of many

researchers because of its numerous practical applications and scientific challenges.
Over many years people have examined the flow and deformation of a single
or multiple bubbles theoretically, experimentally and numerically in various flow
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fields; see, for example, the reviews by Harper (1972), Clift, Grace & Weber (1978),
and Magnaudet & Eames (2000). However, a large number of materials such as
suspensions, emulsions, slurries, foams, fermentation broths and polymer solutions
deviate from the Newtonian law. These materials are called viscoplastic and their
viscosity depends on the local level of stress. The first constitutive law used to
describe their behaviour was proposed by Bingham (1922):

τ ∗ =

(
µ∗

o +
τ ∗
y

γ̇ ∗

)
γ̇ ∗ for τ ∗ > τ ∗

y , (1.1a)

γ̇ ∗ = 0 for τ ∗ � τ ∗
y , (1.1b)

where γ̇ ∗ ≡ ∇v∗ + ∇v∗T is the rate of strain tensor and τ ∗, and γ̇ ∗ are the second
invariants of the respective tensors, defined as

τ ∗ =
[

1
2
τ ∗ : τ ∗]1/2

, γ̇ ∗ =
[

1
2
γ̇ ∗ : γ̇ ∗]1/2

, (1.2)

and µ∗
o and τ ∗

y are the plastic viscosity and the yield stress, respectively. The superscript
∗ indicates that the corresponding variable is dimensional. As (1.1) indicate, when the
second invariant of the stress exceeds τ ∗

y , the material flows with a non-Newtonian
viscosity, µ∗

o + τ ∗
y /γ̇ ∗, whereas when it does not exceed it, the material behaves as

a solid. The motion of a bubble through a viscoplastic material exhibits new and
interesting aspects, which cannot be directly deduced from the corresponding laws
for Newtonian liquids. For example, bubbles may become entrapped indefinitely in a
viscoplastic material when their buoyancy is sufficiently small compared to τ ∗

y , owing
to their inability to break the weak physical bonds in the material. However, bubbles
may attain shapes that are non-unique, which further complicates the study of their
entrapment in a viscoplastic fluid. This behaviour directly affects the quality of a
product. For example, aerated chocolate has a taste different from solid chocolate
and cosmetic and food products have different appeal and cost depending on the
amount of air in them. Also, it affects the efficiency of a physical, chemical or
biochemical process. For example, it is more difficult for gases to diffuse from/to an
entrapped bubble, slowing down fermentation processes, whereas inside an oil well a
gas kick in drilling mud may occur, rise upwards and lead to blowout at the surface
(Johnson & White, 1990; Terasaka & Tsuge, 2001; Dubash & Frigaard, 2004, 2006).

Because of the added complexity of a viscoplastic constitutive law and difficulties in
observing through such typically opaque materials, the motion of bubbles in them has
been studied much less than in Newtonian fluids. A first notable exception is the work
of Astarita & Apuzzo (1965) who reported bubble shapes and velocities in viscoplastic
(Carbopol solutions) and slightly or highly elastic liquids. They observed that curves
of bubble velocity vs. bubble volume for viscoplastic liquids had an abrupt change
in slope at a critical value of bubble volume that depended on the concentration of
Carbopol in the solution, i.e. the yield stress of the material. The solution concentration
also affected the very slow bubble velocities at small bubble volumes and the rate of
their increase with bubble volume. The bubble shapes in Carbopol solutions exhibited
the usual deformations found in Newtonian fluids, passing from spherical to oblate
ellipsoid and finally to spherical caps as their volume increased. Dubash & Frigaard
(2007) verified experimentally the observations of Astarita & Apuzzo (1965) on the
existence of a critical bubble radius required to set it in motion, but the bubble
shapes they observed in different Carbopol solutions inside a vertical pipe were
different and resembled an inverted teardrop. Another notable observation was that
surface tension significantly affects the bubble stopping conditions. Earlier, the same



Bubble rise and deformation in Newtonian and viscoplastic fluids 125

authors estimated the conditions under which bubbles should remain static using
variational principles (Dubash & Frigaard 2004). The bounds they obtained based
on either strain minimization or stress maximization for any type of viscoplastic fluid
were characterized as conservative, in the sense that they provide a sufficient but not
necessary condition. However, they concluded that in general “if a big bubble does
not move nor will a small one”. The mobilization of bubbles in a yield-stress fluid by
setting them into pulsation was the subject of Stein & Buggish’s (2000) research, who
presented analytical solutions and experimental data to support them. Apparently
larger bubbles rose faster than smaller ones at similar pressure amplitudes. Finally,
Terasaka & Tsuge (2001) presented shapes developed by a bubble forming at a nozzle
in a yield-stress fluid and provided an approximate model for bubble growth. On the
other hand, Dimakopoulos & Tsamopoulos (2003a, 2006) simulated the formation
and expansion of a long ‘open’ bubble during the displacement of viscoplastic liquids
by pressurised air from straight, suddenly constricing and expanding cylindrical tubes
for a wide range of Bingham (i.e. the dimensionless yield stress) and Reynolds
numbers, providing details about the topology of the unyielded regions and their
effect on the shape of the long bubble.

The corresponding problem of a solid sphere translating in a Bingham fluid has
been studied more extensively. Beris et al. (1985) verified earlier estimations, based
on variational inequalities, of the dependence of the drag force on the sphere in
an unbounded medium as on the yield stress. They solved the governing equations
with (1.1) as a constitutive model under creeping flow conditions using an algebraic
mapping of the yield surfaces to fixed spherical ones and finite elements. They found
that the sphere falls within an envelope of fluid, the shape and location of which
depends on the yield stress and that unyielded material arises around the stagnation
points of flow at the poles of the sphere. Finally, they obtained the critical yield-stress
value beyond which the sphere is immobilized by combining asymptotic scalings
derived from the plastic boundary-layer theory with numerical calculations. Similar
results have been reported by Liu, Muller & Denn (2002). Blackery & Mitsoulis (1997)
extended this study, including the effect of the tube diameter to the sphere diameter
ratio when the sphere is moving inside a cylindrical tube, using Papanastasiou’s (1987)
viscoplastic model. This model holds in both the yielded and unyielded material
regions:

τ ∗ =

[
µ∗

o + τ ∗
y

1 − e−nγ̇ ∗

γ̇ ∗

]
γ̇ ∗, (1.3)

where the stress growth exponent, n, must assume large enough values, depending
on the particular flow, in order that the original Bingham model is approached;
see Dimakopoulos & Tsamopoulos (2003a, 2006) and Burgos, Alexandrou & Entov
(1999).

Out of the very extensive literature on bubble motion in viscous liquids, we will
mention here only papers that are more relevant to the present work or will be
used to compare our predictions to established experimental and theoretical data
and demonstrate ways in which the viscoplastic fluids deviate from Newtonian ones.
Early on, Haberman & Morton (1954) measured bubble rise velocities as a function
of bubble size for various liquids and introduced a new dimensionless number for
the description of their results, the Morton number, Mo, which depended on the
liquid properties only. Hnat & Buckmaster (1976) experimentally determined the
physical conditions under which either spherical caps arise or bubbles develop very
thin, long and rounded ‘skirts’ from their sides. Bhaga & Weber (1981) carried
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out extensive experiments to determine the physical conditions under which bubbles
assume spherical, oblate ellipsoidal, deformed ellipsoidal, spherical cap or skirted
shapes, steady or unsteady. They presented these conditions in a map of bubble shapes
with the Reynolds vs. Eötvos numbers as parameters. In their photographs of bubble
motion in aqueous sugar solutions, they quite clearly visualized the streamlines around
and in the wake of these bubbles. Aware of the importance of surface impurities while
carrying out experiments with water, Duineveld (1995) used ‘hyper clean’ water and
very accurately determined the velocity and the shape of bubbles, with an equivalent
radius of 0.33–1.00 mm or Reynolds numbers in the range 100 � Re � 700. Finally,
Maxworthy et al. (1996) extended such experiments using clean mixtures of triple-
distilled water and pure, reagent grade, glycerine. Hence, they covered a wider range
of the relevant parameters and provided plots of the drag coefficient Cd and the
bubble terminal velocity versus the diameter of an equal spherical bubble.

The early theoretical studies assumed that the bubble remained spherical in an
infinite medium and predicted its drag coefficient under creeping flow conditions
(Rybczyński 1911; Hadamard 1911). The corresponding analysis for large but finite
Reynolds numbers was first attempted by Levich (1949) who argued that the velocity
field around the spherical bubble differed only slightly from the inviscid solution. He
evaluated the drag force from energy dissipation based on the irrotational solution,
to find that the drag coefficient based on the bubble diameter is Cd = 48/Re. Later
Moore (1963) performed a very elegant boundary layer analysis to determine the
structure of the flow around the bubble and the wake behind it and calculated
the next-order correction to this formula. Small bubble deformations in creeping
flow were examined by Taylor & Acrivos (1964), who studied the importance of
surface tension. Deformation at high Reynolds numbers was examined by Moore
(1965), who assumed that the bubble had an oblate spheroidal shape and derived the
boundary layer solution for it. Since then, the high-Reynolds-number flow around
oblate ellipsoidal bubbles has been examined to investigate among other things the
range of Reynolds numbers in which recirculation arises behind the bubble (Blanco &
Magnaudet 1995).

Solution of the general problem, depending solely on fluid properties and bubble
size and dropping any a priori assumption about bubble shape or range of the
Reynolds number, demands the use of advanced numerical methods, because of the
large and complicated bubble deformations and flow structure around them. This
became possible in the middle 1980s. First, Miksis, Vanden-Broeck & Keller (1982)
assumed potential flow, included only viscous forces in the normal force balance
and calculated shapes of rising bubbles using boundary elements, but inherently
flow separation could not be predicted. Then Ryskin & Leal (1984) used finite
differences and an orthogonal two-dimensional transformation, to solve the Navier–
Stokes equations and obtained bubble shapes for Reynolds numbers up to 200 and
Weber numbers up to 18. They also predicted accurately the flow recirculation behind
the bubble and suggested that the mechanism of eddy formation behind the bubble
is the competition between the rate of vorticity production on the free surface and
the rate of vorticity convection downstream. Subsequently, Christov & Volkov (1985)
used finite differences with a quite restrictive one-dimensional mapping to obtain such
solutions in a narrower parameter range. Numerical methods that do not solve for
the bubble shape simultaneously with the flow field, but calculate it a posteriori by
defining an appropriate function, such as volume tracking and level set, have also
been used. Their disadvantage of decreased accuracy can be counterbalanced by their
ability to predict more complicated bubble shapes and bubble breakup. Some notable
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examples are the papers by Unverdi & Trygvasson (1992), Bonometti & Magnaudet
(2006, 2007) and Hua & Lou (2007).

We will solve this free-boundary problem, assuming axial symmetry and steady
state, with the very accurate and versatile numerical algorithm that we developed
recently for such problems (Dimakopoulos & Tsamopoulos 2003b). It is based on a
quasi-elliptic set of equations for generating a discretization mesh that conforms to the
entire fluid domain outside the bubble. Key ideas for the success of the transformation
are limiting the orthogonality requirements on the mesh and employing an improved
node distribution function along the deforming boundary through a penalty method.
A non-orthogonal mesh is allowed since we will solve the entire equation set by finite
elements. The retained orthogonal term eliminates the discontinuous slopes of the
coordinate lines that are normal to the free surface. These usually arise owing to the
harmonic transformation around highly deforming surfaces. This procedure produces
meshes of higher density where necessary: stagnation points of flow, equatorial
plane and wake behind the bubble. We have applied this method to a number
of free- or moving-boundary steady or transient problems, such as displacement
of a Newtonian or viscoelastic fluid from a tube (Dimakopoulos & Tsamopoulos
2003c, 2004), transient squeezing of a viscoplastic material between parallel disks
(Karapetsas & Tsamopoulos 2006) and deformation of several bubbles during filament
stretching (Foteinopoulou et al. 2006).

In § 2 we present the governing equations and boundary conditions of this problem.
In § 3 we give some basic ideas of our body-fitted coordinate transformation and
the key features to implement the finite-element algorithm for solving this problem.
We present our results in terms of bubble shapes, yield surfaces, flow structure and
conditions for bubble entrapment depending on fluid parameters and bubble size in
§ 4. Conclusions are drawn in § 5.

2. Problem formulation
We consider the flow of a bubble of volume V ∗

b rising at a constant velocity
U ∗

b through a viscoplastic fluid, with a constant yield stress τ ∗
y , and upon yielding

a constant dynamic viscosity µ∗
o. We assume axial symmetry and that the fluid is

incompressible with constant density ρ∗ and a constant interfacial tension with the
gas in the bubble γ ∗, whereas the viscosity and density of the gas in the bubble
are assumed to be zero. Figure 1 illustrates the flow geometry examined herein. The
motion of the bubble is driven by gravity which is aligned with the z-axis. We select
a reference frame moving with the bubble and locate the origin of the spherical
coordinate system at the centre of mass of the bubble. Hence, the bubble becomes
stationary and the surrounding fluid moves downwards with velocity U ∗

f = −U ∗
b .

Henceforth, we will denote by U ∗ the magnitude of these velocities.
We scale all lengths with the equivalent radius, R∗

b , of a spherical bubble with the
same volume, V ∗

b , as the bubble under study: R∗
b = (3V ∗

b /4π)1/3. We scale velocities
by balancing buoyancy and viscous forces, i.e. with ρ∗g∗R∗2

b /µ∗
o, where g∗ is the

gravitational acceleration, because: (i) we would like to follow as closely as possible
typical experimental procedures which are carried out using the same fluid while
varying the bubble size, while the steady rise velocity is measured a posteriori and
(ii) we would like to determine conditions under which the bubble velocity can
approach zero resulting in an entrapped bubble. Then the bubble velocity will be
calculated as part of the solution, not imposed beforehand, and will be followed
by determination of the values of the dynamic parameters, such as the Reynolds
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Figure 1. Schematic of the flow geometry and coordinate system.

number, Re= 2R∗
bρ

∗U ∗/µ∗
o and the Weber number, We= 2R∗

bρ
∗U ∗2/γ ∗. Pressure and

stresses are scaled with ρ∗g∗R∗
b . Thus, the dimensionless groups that arise are the

Archimedes number, Ar = ρ∗2g∗R∗3
b /µ∗2

o , which is related to the Galileo number; the
Bond number, Bo = ρ∗g∗R∗2

b /γ ∗, often called the Eötvos number and the Bingham
number, Bn = τ ∗

y /ρ∗g∗R∗
b , which is the dimensionless yield stress.

The flow is governed by the momentum and mass conservation equations, which in
dimensionless form are

Ar v · ∇v − ∇ · σ + ez = 0, (2.1)

∇ · v = 0, (2.2)

where σ is the total stress tensor,

σ = −P I + τ , (2.3)

v and P are the axisymmetric velocity vector and the pressure respectively, while ∇
denotes the gradient operator. To complete the description, a constitutive equation
that describes the rheology of the fluid is required. In the present study we employ
the continuous constitutive equation proposed by Papanastasiou (1987) which was
mentioned in the introduction and in dimensionless form is

τ =

[
1 + Bn

1 − e−Nγ̇

γ̇

]
γ̇ , (2.4)

where N is the dimensionless stress growth exponent given by N = nρ∗g∗R∗
b/µ

∗
o. In the

simulations to be presented in this paper and after careful evaluation, we have chosen
the value of N up to 5 × 104 in order to neither affect the yield surface by overly
decreasing N nor produce numerical instabilities or stiff equations by increasing it.

Along the free surface of the bubble, the velocity field should satisfy a local force
balance between capillary forces, viscous stresses in the liquid and pressure inside the
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bubble:

n · σ = −Pbn +
2H

Bo
n, (2.5)

where Pb is the pressure inside the bubble, n is the outward unit normal to the free
surface and 2H is its mean curvature which is defined as

2H = −∇s · n, ∇s = (I − nn) · ∇. (2.6)

We cannot define simultaneously both the volume of the bubble and its pressure.
Thus, the latter is calculated as part of the solution by imposing that the dimensionless
bubble volume remains constant irrespective of bubble deformation and velocity:∫ π

0

R3
f sin θ dθ = 2, (2.7)

where Rf (θ) is the radial position of the bubble interface.
On the axis of symmetry (θ =0 and θ = π) we apply the usual symmetry conditions:

vθ = 0, (2.8)

∂vr

∂θ
= 0. (2.9)

Very far from the bubble, theoretically at infinite distance, the fluid moves in
the gravity direction with respect to the stationary bubble and with a uniform
dimensionless velocity, U :

vθ = −U sin θ, (2.10)

vr = U cos θ. (2.11)

In our numerical implementation of this condition we will truncate the region around
the bubble by a spherical surface at a distance r =R∞. The value of R∞ will be
determined so that it does not affect the solution. As we will see, this is more crucial
for a Newtonian fluid than a viscoplastic one, where the material behaves as a solid
at a finite distance from the bubble. The magnitude of the far-field velocity, U , is
unknown, but is determined as part of the solution by requiring that the bubble
centre of mass remains at the origin of the spherical coordinate system:∫ π

0

R4
f sin θ cos θ dθ =0. (2.12)

The model is completed by setting the datum pressure of the fluid far from the bubble
at the equatorial plane (r =R∞, θ = π/2) equal to zero.

3. Numerical implementation
In order to solve numerically the above set of equations we have chosen the mixed

finite element method to discretize the velocity and pressure fields, combined with an
elliptic grid generation scheme for the discretization of the deformed physical domain.

3.1. Elliptic grid generation

The grid generation scheme that has been employed consists of a system of
quasi-elliptic partial differential equations, capable of generating a boundary-fitted
discretization of the deforming domain occupied by the liquid; see Dimakopoulos &
Tsamopoulos (2003b). There it was shown that this scheme is superior to previous
ones, since it takes into consideration all the intrinsic features of the developing
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surface and the deforming control volume. Here we will only present our adaptation
of its essential features to the current problem. The interested reader may refer
to Dimakopoulos & Tsamopoulos (2003b) for further details on all the important
issues of the method. With this scheme the physical domain (r, θ) is mapped onto
a computational one (ξ, η). A fixed computational mesh is generated in the latter
domain while, through the mapping, the corresponding mesh in the physical domain
follows its deformations. As computational domain we choose here the volume that
would be occupied by the liquid if the bubble remained spherical. This mapping
is based on the solution of the following system of quasi-elliptic partial differential
equations:

∇ ·
{(

ε1

√
r2
η + r2θ2

η

r2
ξ + r2θ2

ξ

+ (1 − ε1)

)
∇η

}
=0, (3.1)

∇ · ∇ξ =0, (3.2)

where the subscripts denote differentiation with respect to the variable and ε1 is
a parameter that controls the smoothness of the mapping relative to the degree
of orthogonality of the mesh lines. This is adjusted by trial and error; here it is
set to 0.1. In order to solve the above system of differential equations, appropriate
boundary conditions must be imposed. On the fixed boundaries, we impose the
equations that define their position, and the remaining degrees of freedom are used
for optimally distributing the nodes along these boundaries with the assistance of the
penalty method. In addition, along the bubble interface we impose the no-penetration
condition:

n · v = 0, (3.3)

together with a condition that imposes the desired distribution of nodes along the
free surface.

The computational domain is discretized using triangular elements by appropriately
splitting into two triangular elements each rectangular element generated by our mesh
generation method. This splitting is preferred, because triangles conform better to
large deformations of the physical domain and can sustain larger distortions than the
rectangular ones. In order to illustrate the quality of the mesh produced following
our method we present in figure 2a a blowup of the physical domain close to the
bubble, along with the entire mesh around the bubble in figure 2b. For clarity in this
figure, we show the nearly rectangular elements before splitting them into triangular
ones in a case with only 80 radial and 90 azimuthal elements. As we can see, the mesh
becomes smoothly denser where this is most needed, around the bubble surface and
near its equatorial plane and its poles, because unyielded regions or flow recirculation
are expected to arise there. In order to compute accurately the large deformations of
the physical domain, even under the axial symmetry assumption, we used, in most
cases, the type of mesh shown in figure 2b, but with 120 elements on the ξ -direction
(radial) and 100 elements on the η-direction (azimuthal), resulting in 24 000 triangular
elements and 205 985 unknowns including the two coordinates of each grid point. An
alternative mesh that was employed in order to use the highest value of the stress
growth exponent (5 × 104), without running into numerical problems, is shown in
figure 2c. Here we started with 70 radial and 50 azimuthal equidistant elements far
away from the bubble, but for 2 � ξ � 3 we split each rectangle into four rectangles
using a strip of rectangle elements around the bubble that were split to three transition
triangular elements to connect the two regions. In this way we quadruple the elements
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(a) (b) (c)

Figure 2. Typical mesh, always conforming to the bubble boundary, for Bn = 0.1, Ar= 500,
Bo = 50. For clarity we show rectangular elements only and (a) a region near the bubble and
(b) the entire physical domain which in this case extends to R∞ =10. (c) Alternative mesh for
the highest value of the stress growth component, showing triangular elements.

in both ξ - and η-directions. We perform another similar refinement through element
splitting in the region 1 � ξ � 2. In this way we achieved a much finer mesh near
the bubble where it is most needed as we will see shortly, while we actually reduced
the computational time and computer memory requirements. For example, at the
bubble surface this approach results in 200 elements in the azimuthal direction, while
the total number of unknowns has now decreased to 185 223, although the mesh
is denser near and all around the bubble and in both directions. With both mesh
generation methods, we ensured that there were at least two mesh nodes in any thin
boundary layer that could arise at the bubble surface at large Reynolds numbers, as
discussed by Blanco & Magnaudet (1995).

3.2. Mixed finite element method

We approximate the velocity vector as well as the position vector with 6-node
Lagrangian basis functions, φi , and the pressure with 3-node Lagrangian basis
functions, ψi . We employ the finite element/Galerkin method, which after applying
the divergence theorem results in the following weak forms of the momentum and
mass balances:∫

Ω

[Ar v · ∇vφi + ∇φi · σ + φiez] dΩ −
∫

Γ

[n · σ ]φi dΓ = 0, (3.4)∫
Ω

ψi∇ · v dΩ = 0, (3.5)

where dΩ and dΓ are the differential volume and surface area respectively. The
surface integral that appears in the momentum equation is split into four parts, each
one corresponding to a boundary of the physical domain, and the relevant boundary



132 J. Tsamopoulos, Y. Dimakopoulos, N. Chatzidai, G. Karapetsas and M. Pavlidis

condition is applied. In order to avoid dealing with the second-order derivatives that
arise in the boundary integral of the interface, through the definition of the mean
curvature, H , we use the following equivalent form:

2H n =
dt
ds

− n
R2

, (3.6)

where the first term describes the change of the tangential vector along the free surface,

t , and R2 is the second principal radius of curvature, R2 = r
√

r2θ2
η + r2

η/(rθη − rη cot θ ).

The weak form of the mesh generation equations is derived similarly by applying the
divergence theorem:∫

Ω

(
ε1

√
r2
η + r2θ2

η

r2
ξ + r2θ2

ξ

+ (1 − ε1)

)
∇η · ∇φi dΩ + L

∫
Γ

∂φi

∂η

√
r2
η + r2θ2

η dη = 0, (3.7)

∫
Ω

∇ξ · ∇φi dΩ = 0, (3.8)

where the penalty parameter, L, is in the range 103–105 and the line integral is along
the free surface.

The resulting set of algebraic equations is solved simultaneously for all variables
using the Newton–Raphson method. The Jacobian matrix that results after each
Newton iteration is stored in Compressed Sparse Row (CSR) format and the linearized
system is solved by Gaussian elimination using PARDISO, a robust, direct, sparse-
matrix solver, Schenk & Gärtner (2004, 2006). The iterations of the Newton–Raphson
method are terminated using a tolerance for the absolute error of the residual vector,
which is set at 10−9. The code was written in Fortran 90 and was run on a workstation
with dual-core Xeon CPU at 2.8 GHz in the laboratory of Computational Fluid
Dynamics, Patras. Each calculation typically required 2–5 hours to complete.

3.3. Yield surface determination

There are two criteria that have been employed by several researchers in the past for
determining the location of the yield surface: the first as the location where γ̇ ∗ =0,
and the second as the location where τ ∗ = τ ∗

y . Although these criteria are equivalent
according to the Bingham model, they are not equivalent when the Papanastasiou
model is used. In fact, only the second criterion may be used, i.e. that the material
flows when the second invariant of the extra stress tensor exceeds the yield stress.
This criterion in its dimensionless form becomes

yielded material: τ > Bn, (3.9)

unyielded material: τ � Bn. (3.10)

Near the yield surface, i.e. for small γ̇ , this is equivalent to

γ̇ ≈ Bn

1 + NBn
→ 1

N
,

for large N values, which should substitute the first criterion as shown by
Dimakopoulos & Tsamopoulos (2003a).

Consequently, in order to determine the yield surface, the second invariant of the
stress tensor must be calculated and this includes the computation of the velocity
gradient tensor. As mentioned earlier however, the velocity field is discretized using
Lagrangian basis functions, which means that the velocity gradient tensor is not
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ρ∗(kg m−3) η∗
o(N s m−2) σ ∗(N m−1) Mo

a 1000 10−3 0.0727 2.722 × 10−11

b 1153.8 9.45 × 10−3 0.06782 2.174 × 10−7

c 1208.5 0.0601 0.0655 3.769 × 10−4

Table 1. Physical properties of experimental data by Maxworthy et al. (1996).

continuous on the element sides and, hence, direct computation at the nodes of
the stress tensor is not possible. The most appropriate way to do this is to find a
continuous approximation of the extra stress tensor by using the Galerkin projection
method, that is ∫

Ω

φi (T − τ ) dΩ = 0, (3.11)

where T denotes the continuous approximation of the extra stress tensor τ . Having
calculated the nodal values of the extra stress tensor, the position of the yield surface
can be easily determined. A similar procedure is followed to obtain contour lines
of γ̇ .

4. Results and discussion
First we will demonstrate that our numerical algorithm predicts accurately bubble

shapes and velocities and flow field structure of earlier studies. Such detailed studies
exist only for Newtonian fluids. In the process, we will show that our algorithm can
extend the parameter values for which converged and accurate solutions have been
obtained even for Newtonian fluids. Then, we will present results for bubble rise
velocity, deformation and entrapment in a viscoplastic fluid depending on the fluid
parameters and bubble volume. All our results are based on the assumptions of axial
symmetry and steady state. Clearly, obtaining such a solution does not assure that it
is stable; this would require a separate stability analysis. Conversely, not obtaining
such a solution does not imply that a non-axisymmetric or time-dependent solution
does not exist, for the same parameter values.

4.1. Comparison with previous experimental and numerical results for Newtonian fluids

First, we compare our results with the experimental observations by Duineveld (1995)
who measured bubble rise velocities as a function of bubble size in ‘hyper clean’
water and by Maxworthy et al. (1996) who conducted the same experiments using
mixtures of distilled water with glycerin to produce more viscous liquids. The physical
properties of these liquids are shown in table 1. The Morton number, which is given
also in table 1, depends only on physical properties of each liquid and is defined as:

Mo =
g∗µ∗4

o

ρ∗γ ∗3
=

Bo3

Ar2
. (4.1)

Figure 3 compares our predictions for the rise velocity as a function of bubble
diameter with three sets of experimental data, each one related to three values of Mo,
which cover what are typically called fluids with ‘very low’ Mo values of order 10−11

up to fluids with ‘high’ Mo values of order 10−4. In figure 3, d is the diameter in mm
of a corresponding spherical bubble of the same volume and U ∗ is the magnitude
of the dimensional rise velocity of the bubble in mm s−1. For the two higher values
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Figure 3. Comparison of our predictions for the dimensional bubble rise velocity vs. bubble
diameter in a Newtonian liquid for three selected values of Mo with experiments reported by
Duineveld (1995), Maxworthy et al. (1996) and theory by Moore (1965).

of Mo, which correspond to more viscous fluids, we observe very good agreement
between our predictions and the data of Maxworthy et al. (1996). For the lowest value,
Mo= 2.722 × 10−11, attained using pure water, we have excellent agreement between
our predictions and the experimental data of Duineveld (1995). Even Moore’s (1965)
analytical predictions, based on the assumptions that the bubble retains an oblate
spheroidal shape and that non-separated flow takes place that can be calculated using
boundary layer analysis, are in excellent agreement, except for the largest bubbles
where bubble shapes deviate from the assumed symmetric shape and flow separation
becomes possible. On the other hand, bubble velocities measured by Maxworthy
et al. (1996) are consistently lower, especially for the smaller bubbles. This has been
attributed by Maxworthy et al. (1996) to a very small amount of impurities that is still
present in their fluids, which is known to affect the smaller bubbles more substantially.
For all values of Mo we observe that, as the size of the bubble increases from its
smallest value, its rise velocity increases, owing to the increased buoyancy. The less
viscous the liquid, the higher the rise velocity is, as the resistance to flow decreases.
Moreover, the rate of increase of U ∗ is larger for the fluid with the smallest Mo. In the
same fluid with Mo =2.7 × 10−11, a maximum velocity is achieved at a certain bubble
size, beyond which the velocity decreases and, then, it increases again. The interplay
of the forces on the bubble for different sections of this curve has been analysed by
Maxworthy et al. (1996). The maximum in the bubble velocity vs. bubble diameter
corresponds to the minimum in a drag coefficient vs. Reynolds number curve that
has been reported for these and other low-Mo fluids in the literature. The shape of
this curve becomes for large Mo, exactly as we predict in figure 3. For the lower
bubble diameters for all three curves the bubbles are nearly spherical. As the bubble
diameter increases, they first become oblate spheroidal and then asymmetric having
a flatter front side in the two curves with lower Mo or a flatter rear side for the curve
with the highest Mo.

In figure 4 we compare the predictions of our simulations to the experimental
observations of Duineveld (1995) for the Weber number dependence of the bubble



Bubble rise and deformation in Newtonian and viscoplastic fluids 135

3.5

3.0

2.5

2.0

We

1.5

1.0

0.5

1.0 1.2 1.4 1.6
χ

Duineveld (1995)

Moore (1965)

Present work

1.8 2.0 2.2
0

Figure 4. Comparison of our predictions for We vs. bubble aspect ratio, χ , in pure water
with results by Duinevelt (1995) and Moore (1965).

deformation expressed by the ratio between the longer and smaller axes of the bubble,
χ . In both the experiments and our study, We can be obtained after computing the
magnitude of the bubble rise velocity, U , since it is related to it and the dimensionless
numbers we have defined by the expression

We=
2R∗

bρ
∗U ∗2

γ ∗ = 2Ar BoU 2. (4.2)

Clearly, numerical and experimental results are in excellent agreement. In the same
figure, we include Moore’s predictions, which require a consistently larger bubble
deformation for a given We (i.e. bubble rise velocity) owing to their inability to
predict flow separation.

To further validate our new algorithm we compared the predicted drag coefficient
for a steadily rising bubble with that calculated by Ryskin & Leal (1984, referred to
herein as RL) for different values of Re and We. The Reynolds number and the drag
coefficient are defined as

Re =
2R∗

bρ
∗U ∗

µ∗
o

= 2Ar U, (4.3)

Cd =
2F ∗

ρ∗U ∗2πR∗2
b

=
2F

πAr U 2
, (4.4)

where F is the dimensionless drag force, defined in terms of τ and the dynamic
pressure, Pdyn:

F = 2π

∫ π

0

n · (−PdynI + τ ) · ezR
2
f sin θ dθ, (4.5)

where Pdyn includes the gravitational potential. Having calculated the magnitude of
the bubble velocity, U , we readily determine the values of Cd , Re and We. However,
it is not obvious how to obtain the same parameter values for Re and We as those
reported by RL. To this end, we had to rely on trial and error, choosing values
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Re We Cd (Present work) Cd (Ryskin & Leal)

1 0.003 17.43 17.35
10 0.02 2.39 2.38
20 15 3.53 3.57

100 2.1 0.53 0.54
101 0.14 0.37 0.39

Table 2. Comparison of the drag coefficient calculated herein to that calculated in RL.

Bo\Ar 0.01 0.1 1 5 10 20 40 50

1 10−6 10−3 1 125 103 8 × 103 6.4 × 104 1.25 × 105

5 4 × 10−8 4 × 10−5 0.04 1 40 320 2.56 × 103 5 × 103

50 4 × 10−10 4 × 10−6 4 × 10−4 2 × 10−3 0.4 3.2 25.6 50
500 4 × 10−12 4 × 10−9 4 × 10−6 5 × 10−4 4 × 10−3 0.032 0.256 0.5

5000 4 × 10−14 4 × 10−11 4 × 10−8 5 × 10−6 4 × 10−5 3.2 × 10−4 2.56 × 10−3 5 × 10−3

Table 3. Morton number for the values of Archimedes and Bond numbers shown in figures 5
and 10.

Ar 0.01

(0.617, 0.002) (0.616, 0.019) (0.608, 0.185) (0.591, 0.874) (0.586, 1.719) (0.584, 3.412) (0.584, 6.814) (0.584, 8.517)

(2.725, 0.007) (2.712, 0.074) (2.598, 0.675) (2.387, 2.848) (2.332, 5.437) (2.312, 10.69) (2.308, 21.30)

(19.04, 0.036) (18.57, 0.345) (15.62, 2.441) (12.26, 7.519) (11.65, 13.56) (11.48, 26.34)

(133.9, 0.179) (133.9, 1.298) (64.49, 4.691)

(984.4, 0.969) (541.6, 2.933) (260.9, 6.806) (172.6, 29.81) (160.4, 51.43) (160.2, 102.2) (160.3, 128.6)

(45.06, 10.15) (42.95, 18.44) (42.74, 36.53)

(11.46, 52.51)

(2.316, 26.50)
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Figure 5. Map of bubble shapes in a Newtonian fluid as a function of the Bond and
Archimedes numbers. Underneath each figure we give the corresponding Reynolds and Weber
numbers (Re, We).

of Ar and Bo, to prepare table 2, which demonstrates that the drag coefficients we
calculated are in very good agreement with those of RL and, in this range of Re, they
decrease with it.

To set the stage for the presentation of bubble shapes in viscoplastic fluids, it is
useful to examine first the effect of fluid properties and bubble size on the shape of
the bubble when it is steadily rising in a Newtonian fluid. In figure 5 we show a map
of bubble shapes as a function of Bo and Ar. The corresponding Mo is given in table 3
and remains the same in the similar shape maps of bubbles in Bingham fluids, to be
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presented in § 4.2. For easy reference and comparison to previous studies, underneath
each shape we give the corresponding Re and We. We have obtained steady solutions
for 4 × 10−14 � Mo � 1.25 × 105 which is a much wider range of Mo than has been
available up to now, and for Bo as high as 50. Results for Ar = 0 and any Bo are not
shown, because according to (4.2) and (4.3), this leads to Re= We= 0 and, of course,
to a perfectly spherical bubble in a Newtonian fluid; see also RL. However, as Ar and
Bo increase, the importance of gravitational and inertia forces increases and affects
the shape of the bubble. For Ar � 500, on increasing Bo, the shape of the gas bubble
changes from spherical to oblate-spheroid and to more complicated ‘oblate’ shapes
with an indentation and/or flattening of their rear side. For Bo � 20, it seems that for
the same Ar the overall shapes do not change much, except that they become more
pointed at their rim. It is known that for even higher values of Bo, skirted bubbles
develop, which demand a much finer discretization. For Ar = 5000, on increasing
Bo, the bubble first flattens at its top side, then for 3.7 � Bo � 8.8 steady solutions
could not be obtained with this procedure. The shape we managed to compute for
Bo = 10 is obtained by parameter continuation in Ar, not by increasing Bo. It required
special attention to be captured accurately. In particular, we had to remove the outer
boundary very far away from the bubble in order not to affect the flow in any
way, R∞ = 100, and we had to increase the radial elements to 180, while keeping the
azimuthal elements at 100 with the mesh shown in figure 2(b). This steady shape
is qualitatively different from all others reported heretofore, exhibiting an upward
indentation of the bubble outer edge and flatter rear side, resembling a hat. As we
start to increase Bo, the bubble becomes a spherical cap again. Comparing our bubble
shapes for various Re and We when such shapes are also available in RL we find very
good agreement. We should mention that we managed to compute steady bubble
shapes for larger Re and We than in RL. For example, Ar= 5000 and Bo = 0.01
correspond to Re= 984 and We= 0.97, while Ar = 50 and Bo= 20 correspond to
Re = 43 and We= 36.5. We had no difficulty in reaching even higher values of Ar,
but it is known that, beyond critical values of Re and We, time-dependent solutions
prevail.

We have captured accurately not only the bubble shapes, but also the details of
the flow around them and the recirculation behind them, as shown in figure 6, which
compares the experimental observations in Hnat & Buckmaster (1796, referred to
herein as HB), left-hand side of each plot, to our predictions, right-hand side, for
three cases given in that reference. In all three cases of spherical-cap shapes, these
shapes and the streamline pattern including flow separation and wake formation
compare extremely well. This flow separation from a smooth fluid/fluid interface has
now been reported in numerous theoretical and numerical studies, e.g. RL and HB.
The indentation in the rear of the bubble is not visible in the photograph by HB,
but can be visualized by the dotted line we have drawn from the bubble tip towards
the axis of symmetry in our results. A larger indentation in the rear of the bubble
appears in figure 7, which compares our predictions to the experimental observations
by Bhaga & Weber (1981, referred to herein as BW), who unfortunately did not show
streamlines. Again the agreement is extremely good. The excellent agreement holds
for 5 × 10−3 � Mo � 103 and Re up to ∼100, which is the entire range reported by BW.
This is shown in figure 8 where we compare some of the geometric characteristics of
the flow concerning bubble and wake shapes to our predictions. These characteristics
were introduced and measured by BW and are defined in figure 8(a). In figure 8(b),
we clearly see that increasing Re increases the bubble width and in figure 8(c) that it
decreses the bubble height for the entire range of Morton numbers shown. Moreover,
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(a) (b) (c)

Figure 6. Comparison of bubble shapes and flow streamlines observed by HB (left half)
with our predictions (right half): (a) Re = 19.62, We = 15.64, (b) Re = 32.69, We = 31.72 and
(c) Re =50.18, We = 58.04.

(a)

(b)

Figure 7. Comparison of bubble shapes observed by BW on the left with our predictions on
the right: (a) Re = 2.44, We = 16.11 and (b) Re = 3.78, We = 21.69.

increasing Re increases both the width (figure 8d) and length (figure 8e) of the wake
and moves its centre behind the bubble further away from the bubble (figure 8f ).

4.2. Bubble shapes in Bingham fluids

First, we will present some of the convergence tests we have performed to verify
that our results have converged with the exponent N of the Papanastasiou model.
We have also undertaken the usual convergence tests with just mesh refinement,
but we will not report them here for conciseness. The issue of convergence of
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Figure 8. Geometric characteristics of the bubble and the vortex behind it as observed
in the experiments by BW (open symbols) and predicted by our code (filled symbols) as
a function of Re: (a) definitions of bubble characteristics, (b) dimensionless width of the
bubble, (c) dimensionless height of the bubble, (d) dimensionless width of the vortex, ww ,
(e) dimensionless height of the vortex, hw , and (f ) dimensionless location of the stagnation ring
of the vortex, hs . (BW: �, Mo =711; �, Mo = 55.5; �, Mo = 4.17; �, Mo = 1.03; �, Mo = 0.108;
�, Mo = 5.48 × 10−3. Present work: �, Mo = 2.5 × 10−3 − 5 × 10−3; �, Mo = 3.2 × 10−2; �,
Mo = 0.4; 	, Mo = 1, 3.2; 
, Mo =25.6, 40; �, Mo = 125, 320, � Mo = 103 − 1.25 × 105).
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Variable vr vθ τrr τrθ τθθ P

Case B1 −0.685 −0.689 −0.648 −0.635 −0.598 −0.502
(1.3 × 10−5) (1.5 × 10−5) (5.2 × 10−5) (3.6 × 10−5) (3.0 × 10−5) (2.3 × 10−5)

Case B2 −0.867 −0.870 −0.721 −0.751 −0.584 −0.701
(7.4 × 10−6) (8.2 × 10−6) (3.9 × 10−5) (3.0 × 10−5) (1.9 × 10−5) (1.1 × 10−4)

Table 4. Least squares fit of the exponents, β , in the expression ‖dev‖ = A‖N‖β , where ‘dev’
stands for the deviation of the indicated variable of each of the solutions with N = 100, 500,
1000 and 5000 from the solution with N = 10000. Below each value and in parentheses we
give the norm of the ‘dev’ between the two larger values of N , 5000 and 10000. In case B1,
the parameter values are Ar = 1, Bo =20, Bn = 0.14 and the mesh has 100 radial and 120
azimuthal nodes, whereas in case B2 Ar =1, Bo = 5, Bn = 0.1 and the mesh has 90 radial and
80 azimuthal nodes. In both cases the mesh is of the type shown in figure 2(a, b).

results with N is often raised, when Papanastasiou’s or any other of the so-called
regularization models are used. All these models depend on some regularization
parameter to avoid the discontinuity introduced by the original Bingham model. To
verify convergence, Beris et al. (1985, referred to herein as BTAB), having modified the
discontinuous Bingham model by introducing the regularization parameter suggested
by Bercovier & Engelman (1980) and Glowinski, Lions & Trémoliéres (1981),
carried out such a convergence study and verified that their results approached
an asymptotic value as this regularization parameter reached very large values.
Moreover, Smyrnaios & Tsamopoulos (2001) studied the squeeze flow of a Bingham
plastic between two parallel disks using either the same regularization parameter as
BTAB or Papanastasiou’s exponential model. They demonstrated that not did only
did each model converge as the each regularization parameter took very large values,
but that they converged to the same result. In all cases very sensitive variables for
convergence are the rate of strain tensor and the location of the yield surface. On the
other hand, Frigaard & Nouar (2005) examined the convergence of regularized models
to those of the corresponding exact (discontinuous) model. For the Papanastasiou
model they showed that the H1 norm of the velocity vector converged with increasing
N like N−0.5, whereas no explicit form was derived for the convergence of the norm
of the stress tensor. Nevertheless, it was determined that convergence deteriorated as
the second invariant of the stress approached the yield stress, i.e. critical conditions
for the entire yielded material. We have carried out repeated tests to verify that the
results in this study are independent of the exponent N . One such study is shown in
table 4, for two sets of parameters for which we predict that the bubble is about to
become entrapped in the material, i.e. near critical conditions, where the velocities
have decreased considerably. We calculated the Euclidean norm of the deviation
of a solution with N = 100, 500, 1000 and 5000 from the solution with N =10 000
for the velocity and the stress components and the pressure. Here we have used a
mesh of the type in figure 2(a, b). We can clearly see that the computations converge
with increasing N , faster for the velocities than the stresses or the pressure, with
an exponent that is always larger in absolute value than 0.5 and that the difference
between values computed with N = 5000 and those computed with N =10 000 is fairly
small. Consequently, we can generally consider that our results have converged with
N when we take N = 10 000 and that the a posteriori calculated yield surfaces are
reasonably accurate.
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Figure 9. Dependence of the bubble shape and the yielded (white) and unyielded (grey)
domains on Bn for N = 104 and (a) Ar= 1, Bo = 50, (b) Ar = 50, Bo = 10, for Bn = 0.01, 0.05,
0.14, and 0.19; R∞ = 10 in all cases except for the first one in (b) where R∞ = 15.

Next we will discuss the effect of increasing the Bingham number on bubble shapes
and yield surfaces. Figure 9 shows the dependence of the bubble shape and the
yielded (white) and unyielded regions (grey) on Bn for two quite distinct cases of Ar
and Bo. The dimensionless distance of the outer boundary from the bubble centre
is always R∞ =10, except for the first case in figure 9(b) where R∞ =15, in order to
include the outer yield surface in each case. In the first set of bubbles (Figure 9a),
where the gravitational forces balance viscous forces (Ar = 1) and capillarity is rather
weak (Bo = 50) we see that inside the indentation that exists at the rear of the
bubble, even for a Newtonian fluid, the stresses fall below the yield stress and a
very small region of unyielded material is formed for Bn = 0.01. Of course, stresses
monotonically decrease away from the bubble and unyielded material exists there
also. The yield surface is nearly symmetric around the bubble, but slightly closer
to it around the poles. A similar shape of the yield surface was obtained for the
creeping flow of a sphere in a Bingham fluid in BTAB. At higher Bn, Bn = 0.05, the
material around the bubble ‘freezes’ closer to the bubble surface and the yield surface
retains the previously described shape. The bubble elongates a little, and the size of
the rear indentation decreases and does not provide enough space for slow enough
flow there. Hence the unyielded region at the rear of the bubble disappears. At even
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higher Bn (Bn = 0.14), the bubble elongates further and unyielded material arises in
contact with it around its equatorial plane. BTAB have shown that unyielded material
arises around the poles of a solid sphere in a region that increases with Bn. On the
contrary in a bubble, the zero-shear-stress condition applied on its entire surface
forces it to move with the surrounding liquid. Moreover, bubble deformability makes
it elongated-developing a small region around its equatorial plane that is parallel
to the z-axis with a locally uniform azimuthal velocity. Around this portion of the
bubble surface velocity variations decrease and the material can become unyielded.
As Bn increases further, Bn =0.19, the area of the unyielded material at the equatorial
plane increases and the unyielded material away from the bubble comes closer to it.
Eventually these two unyielded areas will merge, the velocity all around the bubble
will drastically decrease and the bubble will be entrapped in the material. We will
discuss this further in § 4.4.

In the second case (figure 9b) where the gravitational forces are more important
compared to viscous forces (Ar =50) and capillarity is not as weak (Bo = 10), we
observe some distinct changes at small Bn, Bn =0.01 and Bn= 0.05, but nearly the
same bubble shapes at the larger Bn. At Bn = 0.01, the bubble has an oblate ellipsoidal
shape with a flatter rear side, not very different from its Newtonian counterpart, but
completely different from that in case (a). Unyielded material exists at the rear surface
of the bubble as in (a), but more importantly the rising bubble generates a vortex
behind it and enhances the rate of strain there so that unyielded material appears
further away from the bubble at its rear than at its front side. Thus, the unyielded
surface around the bubble does not have a fore–aft symmetry any longer. At Bn = 0.05
the shape of the bubble is still different from that in case (a), being flatter underneath,
and the unyielded region around the bubble tends to become symmetric. At even
higher Bn, both the shape of the bubble and the unyielded areas are much like those
in case (a).

In figure 10 we show how the map of bubble shapes, given in figure 5, evolves as
Bn increases. The corresponding Morton numbers are given in table 3 and the Re and
We values underneath each bubble shape. The bubble rise velocity decreases with the
Bingham number and that is reflected in the decreasing Reynolds and Weber numbers.
We show the unyielded material in grey. For Bn � 0.1 we show only the unyielded
material, when it arises, on the bubble surface, because unyielded regions around the
bubble are too far away to be included in this figure. For larger Bn we also show the
unyielded material around the bubble. Even a small Bn introduces qualitative changes
in certain bubble shapes. For example, when Ar = 0, Bn= 0.01 (figure 10a) and Bo
is high enough, the bubble is no longer spherical because a small indentation at its
rear side has been formed, while when Bn =0.05 (figure 10b) and Bo � 5, the shape
is again not spherical, but slightly elongated and at its rear side flatter or with a
small indentation. Papanastasiou’s (and every other) viscoplastic model is nonlinear.
This, for finite Bond numbers, i.e. deformable bubbles, the characteristic Newtonian
property at Ar → 0 of fore-aft symmetry in the bubble shapes and the flow field
is broken. The break-up of the flow fore–aft symmetry in inelastic non-Newtonian
fluids has been also experimentally observed in the case of the flow around a settling
sphere even at small Reynolds numbers (Gueslin et al. 2006). Moreover, the measured
rate of strain near the bubble and at the equatorial plane has very small values and
consequently the effective viscosity of the material is high there. On the contrary, near
the poles the measured rate of strain is higher and the effective viscosity is smaller. As
a result, the bubble tends to deform preferentially in the direction of its poles, taking
an elongated shape. The elongation of the bubble becomes more prominent as the
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Figure 10. For legend see page 145.

yield stress over the capillary forces increase and the bubble has to squeeze through
the material. In certain cases in which Newtonian fluid recirculates very slowly at the
rear of the bubble, the stress in a viscoplastic fluid is small, with ‖τ‖ � τy , and so the
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Figure 10. For legend see facing page.

material in this region is unyielded. One such case is shown in figure 10(a), but such
cases populate the entire corner of the shape map with large Bond and Archimedes
numbers as Bn increases to 0.05 (figure 10b) and the effective viscosity increases. Here
the unyielded area behind the bubble increases and the bubble deformation from
spherical decreases compared to that for a Newtonian fluid. A shape with flatter
front side does not arise in the map of bubble shapes with Bn = 0.05, in which every
location is occupied by a converged solution.

Dubash & Frigaard (2007) have studied experimentally the motion of air bubbles
rising under gravity in a column filled with Carbopol solutions. The yield stress of
the material they used was τ ∗

y = 2.2–2.3 Pa and its other properties and bubble sizes
were such that Bn =0.0104 − 0.022, Ar = 0.466 − 4.31 and Bo =15 − 66. This range
of parameter values is covered in figure 10(a, b). Unlike our predictions, the bubble
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Figure 10. Map of bubble shapes in a Bingham fluid as a function of the Bond and
Archimedes numbers. Underneath each figure we give the corresponding Reynolds and Weber
numbers (Re, We): (a) Bn = 0.01, (b) Bn = 0.05, (c) Bn = 0.1, (d) Bn =0.14 and (e) Bn = 0.19.
Unyielded material is shown black, and always when it arises in contact with the bubble, but
away from the bubble only when it is close enough, Bn � 0.14.

shapes they observed resembled an inverted teardrop. We tried to reproduce these
shapes numerically, first using the Papanastasiou model and then using the Herschel–
Bulkley model which is more appropriate for the Carbopol solutions used in these
experiments, by assuming either shapes closer to the experimental ones as initial
bubble shapes to start the Newton–Raphson iterations or higher Bn. Our iterations
never converged to such shapes, but to the shapes given in figure 10(a, b). We could
attribute the inverted teardrop shape to a number of reasons: (i) Carbopol solutions
have a small elasticity which may be important at the rear of the bubble where slower
flow takes place and closer to the axis of symmetry the flow is elongational. It is well-
known that bubbles assume inverted teardrop shapes in viscoelastic fluids: Astarista
& Apuzzo (1965), Pilz & Benn (2007), Malaga & Rallison (2007). (ii) Another reason
could be that Carbopol is thixotropic, which could introduce phenomena that cannot
be predicted by viscoplastic models, Gueslin et al. (2006). (iii) A third reason could be
that, in the experiments by Dubash & Frigaard (2007), the bubbles were rising in a
tube with diameter not much larger than a typical bubble diameter. In such a narrow
tube the fluid must flow downwards closer to the bubble surface giving it a prolate
shape. If this deformation is large enough for a liquid drop in creeping flow, Koh &
Leal (1989) have shown that the drop shape becomes time-dependent, forming a tail
that may constantly elongate and even break. They have also shown that the larger
the initial deformation, the smaller the capillary number required for this instability
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to arise and that this occurs for a wide range of viscosity ratios between the drop and
the host liquid. Presumably this could also take place in a rising bubble and, when
the host liquid is viscoplastic, the tail can be ‘frozen’, so that a stationary shape is
obtained. Moreover, Terasaka & Tsuge (2001) have observed that the bubble assumes
inverted teardrop shapes when it is formed at a nozzle and this shape is ‘frozen’
owing to the material’s yield stress. Finally, we should mention that experiments with
different Carbopol solutions have also been reported by Astarita & Apuzzo (1965)
who observed shapes of unconfined bubbles similar to the ones we predict, whereas
they observed teardrop shapes in other fluids which were clearly viscoelastic.

As Bn increases to Bn = 0.1 (figure 10c), the shape of the bubble has changed in
all cases for Bo � 0.1, for reasons that we have mentioned already. For small Bond
numbers the bubble remains almost spherical, as surface tension is very important.
For Bo � 5 gravitational forces become dominant over surface tension, the effective
viscosity around the equatorial plane is higher than that at the poles and the bubble
starts to take a bullet-like shape. The bubble retains a flatter rear side than the front
side and an indentation for large Bond and Archimedes numbers. As the rate of
strain is low enough around the equatorial plane, unyielded material exists there. The
sizes of the two unyielded regions, the one far from the bubble and the other around
the equatorial plane, increase as Bn increases to 0.14 (figure 10d). For Bo < 5 where
the bubble is nearly spherical the two unyielded regions are considerably larger than
for Bo � 5. At Bn greater than 0.14 and depending on the value of the Bond number,
the two regions will start merging, and then the bubble is immobilized and all the
material becomes unyielded. For this reason, in figure 10(e), where Bn = 0.19, we show
cases with Bo � 10 only, so that, although Bn approaches its critical value, the more
deformable bubble can take a nearly symmetric prolate shape or a bullet-like shape
while rising in the material, irrespective of the values of the other parameters. An
envelope of yielded material still completely surrounds the bubble and flow continue
to take place. For Bo < 10 the flow has stopped and the bubble has been immobilized.

Figure 11 quantifies the bubble shapes by showing their aspect ratio χ ≡ h/w,
where h and w are defined in figure 8(a), as a function of Bo for the entire range of
Ar we studied and Bn = 0.01, 0.1, 0.14. At the smallest Bn and for Ar= 1, the aspect
ratio remains very close to unity as Bo increases, since for such materials the bubble
remains almost spherical. For larger Ar, the aspect ratio decreases from unity, more so
at a larger Ar, until it reaches a plateau, as the bubble assumes an oblate spheroidal
shape. In the line with-largest Archimedes number, Ar =5000, and for 4.5 � Bo � 9
there is a discontinuity in the curve of the aspect ratio because stationary bubble
shapes could not be calculated there but the bubble shapes changed abruptly there,
see figure 10(a). For Bn= 0.1 and as Bo increases, the aspect ratio decreases below
1 for Ar � 500 and increases above 1 for Ar � 50 as the bubble assumes a prolate
spheroidal shape. For the highest Bn, changes in Ar have a small effect on the aspect
ratio as long as Bo � 1. Beyond this Bo value the aspect ratio increases and, above a
particular value of Bo which is in the range 10 � Bo � 20, it decreases, more so for
the larger Ar, trends which are opposite to those for Bn = 0.01. Summarizing, bubbles
with small Bn will be either spherical or oblate, but with large Bn they will be either
spherical or prolate.

Figure 12 gives the definitions of the width and the height of the unyielded region
at the rear side of the bubble and shows that they increase monotonically with the
Bond number, the width more so. Such regions arise mainly when Bn= 0.05 and they
increase with Ar, which generally produces spherical cap shapes, and with Bo, which
increases bubble deformability. Given a Bo value, larger inertia produces a flatter
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behind the bubble vs. Bo, for various Ar values and Bn = 0.05. In an inset we show the
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bubble shape which provides a larger shield behind it for unyielded material to exist
there. As soon as unyielded material is formed, its size first increases abruptly with
Bo, but then both its height and width reach an asymptote which usually do not
exceed the radius of the equivalent spherical bubble.

4.3. Flow field in Bingham fluids

Figure 13 illustrates the flow field around the bubble in a viscoplastic fluid. Capillary
forces are rather weak, Bo = 30, while the gravitational forces balance the viscous
forces, Ar = 1. We show contour plots of radial velocity, on the left half, and azimuthal
velocity on the right half of each figure, for low Bn = 0.01 (figure 13a) and for high
Bn= 0.19 (figure 13c). The total number of equidistant contour lines in this and all
other similar plots is 20, unless otherwise mentioned. The outer boundary has been
chosen at such a distance that it does not affect the results in any way. For these two
cases we have used R∞ = 10, but for clarity in the figures we present a square of side
length 10 only. The radial velocity takes its lowest and negative values at the upper
side far from the bubble, as the fluid flows downwards, and its highest and positive
values at the far lower side of the bubble, while it is zero at the equatorial plane.
As mentioned earlier, a boundary condition sets the radial and azimuthal velocities
far from the bubble to vary like cos(θ) and sin(θ), respectively. Our computations
show that this dependence remains throughout the unyielded material but not in the
yielded material and especially as the bubble surface is approached and Bn increases
(see § 4.4), indicating that the far-field unyielded material behaves as a solid. The
values of the radial velocity are quite large for small Bn, Bn =0.01 (left side of
figure 13a) where the fluid still behaves similarly to a Newtonian one. As a reminder,
the dimensionless far-field (r → ∞) velocity of a spherical bubble in a Newtonian
fluid for Re= 0 is U = 1/3. However, we can see in figure 13(a) that even for this small
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Figure 13. (a, c) Contour plots of the radial, left side, and azimuthal, right side, velocity,
and (b, d) contour plots of the pressure field, left side, and second invariant of the rate of
strain tensor, right side, for Ar= 1, Bo = 30, R∞ = 10, N =104 and (a, b) Bn = 0.01 and (c, d)
Bn = 0.19. The range of the respective variable is divided into 20 equal intervals.

Bn the far-field (r = 10) velocity has decreased to U = 0.224. This is a consequence
of the viscoplasticity of the fluid and of the shape of the bubble. At higher Bn,
Bn = 0.19, viscoplasticity will further decrease the velocity field around the bubble.
Indeed, in figure 13(c) the radial velocity is two orders of magnitude smaller, but still
varies away from the bubble, following the cosine function. The shape of the bubble
is very different in these two cases, as discussed in § 4.2. The azimuthal velocity, for
both values of Bn, is zero at the axis of symmetry as it should be, while it has its
largest values at the equatorial plane. The azimuthal velocity is almost zero inside the
indentation that arises at the rear of the bubble for Bn = 0.01. Increasing the Bn to
0.19, the magnitude of the azimuthal velocity also decreases by 2 orders of magnitude.
Here an area of nearly uniform azimuthal velocity arises at the equatorial plane and
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in contact with the bubble surface. Indeed, the contour lines of the azimuthal velocity
clearly demonstrate that its gradient is much larger at the poles while it decreases
to zero at the equatorial plane, where the bubble surface is nearly flat. Figures 13(b)
and 13(d) show the pressure field (left side) and the second invariant of the rate of
strain tensor (right side), respectively. For both Bn values, the pressure field varies
linearly with the axial distance from the bubble, with negative values above it and
positive values below it, as expected. The presence of the bubble affects the pressure
field only locally and around it. The rate of strain has a local maximum at the poles,
a local minimum around the equatorial plane near the bubble and tends to zero at
infinity. Calculating γ̇ for a spherical bubble moving in a Newtonian fluid, where the
analytical solution is known, we find that at (θ = π/2, r = 1), γ̇ =0, whereas γ̇ 
= 0 at
θ = 0 and θ = π. The existence of even one point on the bubble surface where γ̇ = 0
forces the material to become unyielded there; this slows down the flow field and
decreases γ̇ around it. This eventually leads to the creation of a finite domain in the
material that is unyielded. In figure 13(b), we observe that γ̇ has a local maximum at
the bubble tip at the rear of the bubble and abruptly decreases as we move towards
the south pole of the bubble. However, it does not become small enough to allow
unyielded material to form inside the small indentation which exists there. This occurs
for other parameter values as seen in figures 10(a, b). On the contrary, in figure 13(d),
the larger Bn reduces the values that γ̇ takes and gives the bubble a prolate shape
without a tip or an indentation. Hence, γ̇ varies smoothly around the bubble surface
and is symmetric with respect to the equatorial plane of the bubble. For both values
of Bn the values of γ̇ where unyielded material exists are smaller by over three orders
of magnitude than those in the rest of the material.

In figure 14, we show corresponding contours for the same four variables and
the same Bo, but larger buoyancy with respect to dynamic viscosity, Ar = 50. For
Bn= 0.01 (figure 14a, b), the bubble has the shape of a spherical cap with a tip in
its rear side. For Bn= 0.19 (figure 14c, d), the bubble takes a prolate shape and is
nearly flat at its equatorial plane. In the smaller Bn case, the radial velocity is larger,
but quite asymmetric before and after the bubble because of the large vortex that
is formed in the bubble wake. The pressure contours remain straight and horizontal
away from the bubble and are slightly affected by it and only in its vicinity. The rate
of strain has a local sharp maximum at the bubble tip and becomes very low in its
wake, but unyielded material does not arise there. On the contrary, for Bn= 0.19, the
velocity components are much smaller, have a plane of symmetry and the azimuthal
velocity is very small at the equatorial plane near the bubble. At this same location,
the rate of strain takes its lowest values (smaller by 4 orders of magnitude than its
maximum at the poles) giving rise to unyielded material in contact with the bubble.

Selected cases of bubble shapes and streamlines are shown in figure 15. The
particular values of the stream function are given in each figure. For the lowest
Bingham number we examined, Bn = 0.01, the streamlines do not deviate appreciably
from the corresponding ones for a Newtonian fluid and no unyielded material arises in
contact with the bubble. In particular, for Ar= 1, Bo= 50 (figure 15a) an indentation
is formed behind the bubble and the streamfunction assumes very small and negative
values in this region, indicating flow separation. As the Archimedes number increases
to 500 (figure 15b), a vortex is formed behind the bubble, which takes an oblate shape
with rounded edge for Bo = 10 or more pointed edge at higher Bond numbers, Bo = 40
(figure 15c). At even higher Bond numbers it is possible that skirted bubbles could
be formed in analogy to those in Newtonian fluids. Figure 15(d) shows a particular
bubble shape that arises for Ar = 5000 and Bo =4.5 just before the region in which
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steady bubble shapes could not be computed for this Bingham number or for a
Newtonian fluid; see figures 5 and 10a. Here the bubble edge is smooth but tilted in
the upstream direction, the bubble resembles a hat and the vortex behind it is fairly
large. A slight increase of the Bingham number to 0.05 eliminates flow separation
and the vortex behind the bubble, see figure 15(e), which is a common feature in
general for Bn � 0.05. Increasing the Bingham number further to 0.1 (figure 15f ) or
0.14 (figure 15g) produces more rounded bubbles with a prolate shape and, hence,
streamlines that are less curved around the bubble.

We have measured and depict in figure 16 the size and the location of the
vortex behind the bubble in a Bingham fluid only for Bn= 0.01. These geometric
characteristics were defined in figure 8(a). Figure 16(a) clearly shows that the vortex
length and width increases with both the Archimedes and the Bond numbers. Similarly
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figure 16(b), shows that its centre becomes further away from the bubble back side
and the axis of symmetry as these dimensionless parameters increase.

4.4. Dynamic parameters of flow and critical Bingham number for bubble entrapment

The magnitude of the bubble rise velocities or equivalently the magnitude of the
far-field velocities in a frame moving with the bubble is given in terms of the
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corresponding Reynolds or Weber number as a function of the Bingham number in
figure 17. Both these dynamic parameters are post-calculated based on the bubble
velocity according to (4.2) and (4.3). The Bond number is fixed in figure 17(a) at
Bo= 10. As Ar increases, Re increases as well, more so for small Bingham numbers.
Moreover, as Bn increases Re decreases because the bubble rise velocity decreases
and at a critical Bn the bubble stops moving, irrespective of the value of Ar and Bo
because all the material becomes unyielded. The dependence of We on Bn is similar
to that of Re, as shown in figure 17(b), for Ar = 1 and for different values of Bo. The
Weber number increases monotonically with Bo and decreases with Bn. Apparently,
lines of different Bo approach zero for different values of Bn, indicating that capillary
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forces will affect the critical level of yield stress in a material that will cause bubble
entrapment. The exact condition for bubble entrapment is not easy to determine
from this figure or from plotting the drag force on the bubble as a function of Bn,
because Papanastasiou’s constitutive equation does not discriminate between yielded
and unyielded domains a priori and allows some residual flow even where unyielded
material is found a posteriori. So a clear asymptote in the drag force, like the one
produced in figure 6 of BTAB, should not be expected.

A first possible determining the conditions for bubble entrapment in a viscoplastic
fluid is to perform a plastic boundary layer analysis assuming that the bubble
remains spherical, i.e. the Bond and Archimedes numbers are fairly small, parallel to
the analysis in BTAB for a solid sphere. Under this assumption, we first examined
whether a boundary layer is formed around a bubble and whether the Papanastasiou
model can capture it by plotting the radial profile of the azimuthal velocity at the
bubble equatorial plane with Bn as a parameter. Unlike the analysis in BTAB, here
the bubble rise velocity is determined as part of the solution and decreases with
Bn, whereas on the bubble surface it is not zero, owing to the zero-shear boundary
condition applied there. In order to compare the various profiles with each other
more easily, we normalized the azimuthal velocity so that it is equal to 1 away from
the bubble. The computed profiles are shown in figure 18, where we have kept the
same low value for the Reynolds number, Re = 0.04, in analogy with the creeping
flow conditions in BTAB. We observe that the azimuthal velocity for a Newtonian
fluid approaches its far-field value monotonically. On the contrary, in a Bingham
fluid it exhibits a maximum, which moves closer to the bubble and becomes sharper
as the Bingham number increases. This occurs because the outer yield surface moves
closer to the bubble decreasing the width of the path through which material can
still flow through the equatorial plane. This approach of the velocity maximum to
the bubble surface indicates the formation of a boundary layer. At r = 1, the location
of the bubble surface at the equatorial plane, the azimuthal velocity is not zero as
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Figure 19. Yielded (white) and unyielded (grey) domains, left half, and contour plots of
the second invariant of the rate of strain, right half, near the critical Bingham number for
N = 104, R∞ =10, and (a) Bn = 0.142, Ar = 1, Bo =0.1, (b) Bn = 0.198, Ar = 50, Bo = 15, and
(c) Bn = 0.201, Ar = 5000, Bo = 30.

in the case of a solid sphere (see figure 10 in BTAB), but equals the bubble surface
velocity there because of the zero-shear condition. As Bn increases, this velocity first
increases above its far-field value, 0.04 � Bn � 0.11, but then it decreases towards
it as critical conditions are approached and the two yield surfaces tend to merge,
Bn= 0.135. Unfortunately, the inevitable formation of unyielded material around the
bubble equator, the shape and size of which depends on Bn, makes the necessary
scaling arguments very complicated and the outcome of this semi-analytical approach
questionable.

Instead, it is reasonable to consider that the bubble motion stops and that Bn has
reached its critical value when the unyielded area away from the bubble merges with
the one around its equatorial plane. Such a situation just before the two yield surfaces
merge is shown in figure 19 for three different sets of material parameters. If the third
decimal place of Bn increases by even one unit in each of the three cases the two yield
surfaces will merge. On the left half of each figure we show the bubble and the yielded
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Figure 20. Variation of the distance between the two yield surfaces at the equatorial plane,
du vs. Bn for various Bo. In an insert we show the definition of this distance.

domains in white and the unyielded domains in grey, while on the right half of each
figure we show the second invariant of the rate of strain tensor. In all cases, we see
that although the two unyielded regions are about to merge, γ̇ is nowhere equal to
zero, but where unyielded material is predicted it takes values that are smaller by 3–4
orders of magnitude than in the rest of the material and certainly below the critical
value N−1 for the Papanastasiou model as explained in § 3.3. So even when the two
regions have merged, finite motion of the material is predicted, albeit with very large
viscosity and, hence, very small velocity. Figure 19 also demonstrates that the critical
Bn at which the bubble will stop moving is distinct for the three cases and depends
mostly on the shape of the bubble. The higher the Bond number is, the more the
bubble is deformed, becoming elongated in order to squeeze through the material
as the critical condition approaches. This concurs with the conclusion of Dubash &
Frigaard (2007) who, based on scaling arguments, mentioned that larger and more
deformable bubbles are more difficult to immobilize. The variation of the distance
between these two surfaces at the equatorial plane, du, is shown in figure 20. It
decreases slowly with Bn up to a critical point, after which it decreases exponentially
and meets the x-axis at increasing values of Bn as Bo increases. We call the point
of intersection with the x-axis the critical Bingham number, Bnc. Its values, shown
in figure 21, are independent of the Archimedes number, when Ar < 100, and only
slightly dependent on it at higher Ar values. The Bond number does not affect Bnc,
if it is so small that surface tension does not allow the bubble to deform from its
spherical shape, i.e. Bo � 0.1, or so large that bubble deformation is restricted by the
outer yield surface, the shape of which does not vary much with the surface tension
of the bubble, i.e. Bo � 50. In these calculations of the critical conditions we used
a mesh of the type given in figure 2(b) with N = 104. We repeated this calculation
with a mesh of the type given in figure 2(c) with an even larger value N = 5 × 104.
The results are given in table 5 and demonstrate that neither the value of N nor
the structure and density of the mesh affect them. It is noteworthy that the Bingham
number used so far in this work is related to the so-called yield stress parameter, Yg ,
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Mesh, N/Bo 0.1 5 10 50
M1, 104 0.143 0.175 0.192 0.212

M2, 5 × 104 0.142 0.174 0.192 0.214

Table 5. Critical Bn values as a function of Bo for two meshes (figures 2a and 2c) and values
of N 104 and 5 × 104 at Ar = 1.
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Figure 21. Dependence of critical Bingham number on Bond and Archimedes numbers. The
curves with Bo = 0.01 and 0.1 are indistinguishable.

of BTAB by

Yg = 3
2
Bn. (4.6)

The critical value for entrapment of a sphere in a Bingham fluid under creeping
flow conditions was found in BTAB to be Yg = 0.143, i.e. it is smaller by a factor of
2/3 than that for a non-deformable bubble under the same conditions. This is the
same ratio as the ratio of the terminal velocity of a solid sphere to that of a spherical
bubble under the same buoyancy force. Clearly, the more retarding no-slip condition
on the solid sphere requires a smaller yield stress to entrap it in a Bingham fluid than
the shear free condition on a bubble surface.

As the two yield surfaces tend to merge, the magnitudes of the velocity and rate of
strain fields decrease everywhere in the domain that is still yielded. We stopped our
computations at the value of Bn for which they have just merged, because beyond
that value the numerical error in computing such small variables becomes significant.
In any case, it reasonable to monitor the bubble rise velocity as the Bingham number
increases. This is shown in figure 22, for just the first case given in figure 20, where
Ar= 1 and Bo= 0.1. We observe that as the Bingham number increases the logarithm
of the terminal velocity decreases, but for Bn > 0.13 the slope of the curve decreases
abruptly and then increases again. We attribute the sharp decrease in the slope to the
approach of critical conditions, but the subsequent increase to the numerical error
we described above. We have taken the slope of this curve at its inflection point
and we can clearly see that it intersects the abscissa at Bn ≈ 0.142. In other words,
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Figure 22. Dimensionless bubble rise velocity vs. Bn for Ar =1 and Bo = 0.1.

monitoring the terminal velocity results in the same critical Bingham number. The
outcome similar is for all other cases we examined. This abrupt change in slope
corresponds to the abrupt change in slope of the terminal velocity vs. bubble volume
experimentally measured by Astarista & Apuzzo (1965). Unfortunately, these authors
did not report the value of the material’s yield stress, so we cannot convert their
bubble volumes to our Bingham numbers and directly compare our predictions to
their measurements.

Dubash & Frigaard (2007) experimentally determined the critical Bingham number
for bubble rise in a Bingham fluid and found that, depending on bubble aspect
ratio, it varied between 0.01 and 0.15. Their upper limit falls within our predictions,
although it should be recalled that the experimental bubble shapes resembled inverted
teardrops and this should affect their mobility. On the contrary, the prediction of Bnc,
using variational principles and a Newtonian flow field around a spherical bubble by
the same authors (Dubash & Frigaard 2004) grossly overestimates it, since it places it
in the range of 0.7–2. We examined the predictions of two inequalities resulting from
these variational principles (Theorem 3) using the flow field and the bubble shape
we have predicted in this work. Starting with very small Bn values the predicted Bnc

values are about 0.7, as reported by Dubash & Frigaard (2004). Increasing the Bn
of the material affects not only the bubble shape but also the flow field qualitatively
as mentioned previously. This results in a continued decrease of the Bnc value up
to Bn ≈ 0.12, for which Bnc ≈ 0.25. However, for larger values of Bn, Bnc started
to increase. This is probably caused by the very small values of γ̇ that arise in the
denominator of the inequality (35) in Dubash & Frigaard (2004). The situation did
not change when inequality (51) was used.

Figure 23 shows the dependence of the bubble velocity (in mm s−1) on the equivalent
bubble radius (in mm) with the material’s yield stress as a parameter, keeping the
other material properties close to those reported by Maxworthy et al. (1996) for
the mixture of 80 % glycerin in water. For small bubbles, their rise velocity is zero



160 J. Tsamopoulos, Y. Dimakopoulos, N. Chatzidai, G. Karapetsas and M. Pavlidis

200 τy = 0 Pa

τy = 0.1 Pa

τy = 0.5 Pa

τy = 1 Pa

τy = 2 Pa

τy = 3 Pa

τy = 5 Pa

160

U
* 

(m
m

 s
–1

)

Rb
* (mm)

120

80

40

0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 23. Dimensional bubble rise velocity vs. dimensional bubble radius for various
viscoplastic fluids with surface tension, γ ∗ = 0.0655N m−1, density, ρ∗ =1008 kg m−3, and
viscosity, µ∗

o = 0.0601N sm−2.

irrespective of the yield stress, but it smoothly increases as the bubble size increases.
This is understandable, given that an increase in bubble radius decreases Bn. Bubble
mobilization occurs earlier and higher velocities are attained for materials with a
smaller yield stress. For easier comparison we have also included in the same figure
the bubble terminal velocity in a Newtonian fluid. Finally the drag coefficient is
shown as a function of the Bingham number for a given value of Ar (figure 24a) or
for a given value of Bo (figure 24b). In all cases, increasing Bn from zero increases
Cd by several orders of magnitude and more abruptly as the critical conditions are
approached, and for all practical cases the bubble is immobilized. The values of Cd

and its increase are larger for a less deformable bubble (Bo =0.01) with less inertia
(Ar = 1). As expected, given a value of Ar, increasing Bo decreases the drag coefficient
as the bubble deformability increases. Furthermore, given a value of Bo, increasing Ar
decreases the drag coefficient. This should be expected also, since according to (4.4)
Cd is inversely proportional to Ar. The same dependence is observed for a Newtonian
fluid with Bn = 0, which concurs with the fact that here Cd is inversely proportional
to Re. However, instead of approaching a vertical asymptote, as in the case of a solid
sphere (see BTAB), at some value of Bn, all curves attain a smaller slope. In the
single case of a non-deformable bubble this is attributed to numerical error at these
extreme values of Cd ≈ 108, while in all other cases the change of slope is associated
with a change in the shape of a deformable bubble. Indeed, in figure 25 we plot the
bubble height, h, and the axial distance of the outer yielded surface at the axis of
symmetry, Su, as a function of the Bingham number. We observe that for small values
of Bn, h does not change for Bo= 0.1 and slightly increases for 5 � Bo � 50, whereas
Su decreases as the outer yield surface approaches the bubble, more so at the axis of
symmetry; see figure 9(a). Above a characteristic value of Bn, h increases significantly
and almost linearly, whereas Su either decreases with a larger slope and tends to
intersect the h curve (Bo = 0.1), decreases with a smaller slope (Bo = 5) or increases
for the remaining Bond numbers. In other words, at these characteristic Bn values
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Figure 24. The drag coefficient as a function of the Bingham number, for various values of
(a) Ar and (b) Bo.

either (i) the outer yield surface approaches the bubble surface very rapidly and the
bubble is entrapped (Bo = 0.1), or (ii) the bubble elongates forcing the outer yield
surface to decrease its rate of approach to it, delaying bubble entrapment to higher Bn
values (Bo = 5, 10), or (iii) the bubble is slightly squeezed by the approaching yield
surface and then elongates as in (ii) (Bo = 50). The values of Bn at which the bubble
starts to elongate correspond to the inflection points in the drag force in figure 24(b).

5. Conclusions
We simulated the rise of a bubble in a viscoplastic material for a wide range of

material parameters. The simulation is based on the mixed finite element method
for the discretization of the governing equations coupled with a quasi-elliptic mesh
generation scheme in order to follow the large deformations of the physical domain.
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Figure 25. Bubble height, h, and axial distance of the outer yield surfaces, Su, at the axis of
symmetry vs. Bn.

Our results allow us to determine the evolution of (a) the velocity and pressure fields
in the fluid, (b) the shape of the liquid/air interface, (c) the domain of the unyielded
material, (d) the critical Bingham number for bubble entrapment and (e) the dynamic
parameters of the flow including the drag coefficient.

We examined the effect of the yield stress and the capillary, viscous and gravity
forces. First, we verified the accuracy of our new code by comparing our results with
previous theoretical and experimental ones for a Newtonian fluid. Where possible,
we extended earlier results to larger values of Reynolds and Weber numbers. In a
viscoplastic fluid, the bubble rise velocity and, hence, both the Reynolds and Weber
numbers decrease as the yield stress increases. Unyielded material exists at the rear of
the bubble at low Bingham numbers and large Bond and Archimedes numbers, when
the bubble has a distorted oblate spheroidal shape. This unyielded area disappears at
higher Bingham numbers as the shape of the bubble changes to a bullet-like shape
allowing it to squeeze through the material. Unyielded material also arises around and
far from the bubble and around the equatorial plane for Bn � 0.1. The size of these
domains increases with the Bingham number and when they merge the bubble stops
moving. As this critical Bingham number is approached the bubble tends to take a
bullet-like shape owing to the higher effective viscosity at its equatorial plane and the
lower viscosity at its poles. The critical Bingham number has strong dependence on
the Bond number, an increase of which allows the bubble to deform more. Finally
the drag coefficient decreases with the Bond and Archimedes numbers and increases
with the Bingham number.

The predicted bubble shapes and the drag coefficient can be used to determine
the material parameters, µ∗

o and τ ∗
y . The numerical approach presented here can be

extended to calculate mass transfer coefficients from/to a bubble in a yield-stress
fluid, which are unavailable today, despite being extremely important in determining
optimal operating conditions for various chemical and physical processes.
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