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a b s t r a c t

It is well-known that by increasing the flow rate in polymer extrusion, the flow becomes unstable and the

smooth extrudate surface becomes wavy and disordered to an increasing degree. In order to investigate the

mechanisms responsible for these instabilities we perform a linear stability analysis of the steady extru-

sion of a viscoelastic fluid flowing through a planar die under creeping flow conditions. We consider the

Phan–Thien–Tanner (PTT) model to account for the viscoelasticity of the material. We employ the mixed fi-

nite element method combined with an elliptic grid generator to account for the deformable shape of the

interface. The generalized eigenvalue problem is solved using Arnoldi’s algorithm. We perform a thorough

parametric study in order to determine the effects of all material properties and rheological parameters. We

investigate in detail the effect of the interfacial tension and the presence of a deformable interface. It is found

that the presence of a finite surface tension destabilizes the flow as compared to the case of the stick–slip

flow. We recognize two modes, which become unstable beyond a critical value of the Weissenberg number

and perform an energy analysis to examine the mechanisms responsible for the destabilization of the flow

and compare against the mechanisms that have been suggested in the literature.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

The extrusion process is widely used in the polymer industry.

ost polymers used in commercial processing have sufficiently high

olecular weight so that the polymer chains are highly entangled

n the melt, resulting in a flow field that differs significantly from

hat of a Newtonian fluid, for instance a viscoelastic fluid experi-

nces significant swelling as compared to the case of a Newtonian

uid [1,2]. The increased swelling is due to the relaxation of the poly-

eric chains, which, from being oriented primarily in the flow direc-

ion inside the die, can relax to any configuration outside it, where

he flow field is completely rearranged. Moreover, it has been ob-

erved that below some critical flow rate the surface of the extrudate

s smooth, whereas beyond this critical flow rate the surface becomes

istorted [3–8]. First the extrudate surface shows a small-amplitude,

igh-frequency disturbance which is generally known as sharkskin.

t higher flow rates the surface of the extrudate exhibits alternat-

ng smooth and distorted sections; this is known as stick–slip or spurt

ow. Upon further increase of the flow rate, gross irregularities are

eveloped, often called melt fracture. The onset of such flow instabili-
∗ Corresponding author.

E-mail address: tsamo@chemeng.upatras.gr (J. Tsamopoulos).
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ies affects significantly the quality of the final product and therefore

mposes a limit on the rate of production in many polymer processing

perations.

The problem of steady extrusion flow has been the subject of

everal studies in the past, since in most applications accurate di-

ensions of the extruded products are required and the amount of

he extrudate swelling is an important design parameter. The first

ttempt to address this problem theoretically was made by Tanner

9], who presented an elastic-fluid theory for die-swell in long dies.

anner came up with an expression for the final swelling ratio of

he extrudate as a function of the normal stress difference and the

hear stress on the die wall. More recently, following in general the

ame ideas, Tanner presented similar analytic formulas for various

onstitutive models such as the PTT and the pom-pom model [10].

ne of the first attempts for the numerical solution of this problem

as made by Nickel et al. [1] for a Newtonian fluid, using the finite

lement method, predicting with success the 13% swelling, which

as been previously observed in experiments. Naturally several ef-

orts followed to simulate numerically the extrusion of viscoelastic

uids [11–22], using a variety of constitutive models and numerical

chemes, not always with the same success as in the case of the New-

onian fluid. The main difficulties were posed by the presence of a

ingularity at the die lip due to the fact that the boundary conditions

hange abruptly from no-slip along the wall to perfect slip along the

http://dx.doi.org/10.1016/j.jnnfm.2015.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2015.07.011&domain=pdf
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Fig. 1. Schematic of the flow geometry and coordinate system.
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free surface, which posed significant difficulties in the case of vis-

coelastic fluids. Nevertheless the development of efficient numerical

schemes allowed the thorough study of this problem up to high Weis-

senberg numbers and the essential features of this process are now

more or less well understood.

On the other hand, our understanding regarding the onset of in-

stabilities on the extrudate surface beyond some critical Weissenberg

number is still far from complete. Over the years several researchers

have dealt with this problem, performing very careful experi-

ments to reveal the conditions under which these instabilities arise

[23–32]. Several theories for the origin of these instabilities have

been put forth, but three are the ones that have prevailed till now.

The first one associates the visual appearance of the surface defect

with the loss of adhesion at the polymer-wall interface inside the die,

the second one attributes it to an inherent instability of the constitu-

tive model, while according to the third one the extrudate distortions

could arise due to the strong stress field that develops right at the die

exit and the intense extensional flow especially at the surface of the

material that follows.

The effect of slippage was investigated by Ramamurthy [23] ini-

tiating a new period of studies of slip in polymers and the relation

between slip and extrusion instabilities. His experiments indicated a

change in the slope in the flow curve corresponding to the onset of

the sharkskin regime. Ramamurthy suggested that the vanishing of

the instabilities was a consequence of improved adhesion. The lat-

ter scenario, however, is contradicted by the fact that these instabil-

ities could be delayed significantly using materials in the polymer or

the die-wall that promote slip of the fluid with respect to the die

with very good results in the quality of the product [5,31]. More-

over, other researchers presented experiments, i.e. Kissi et al. [25,26],

with continuously changing of the slope over the stable and sharkskin

regimes, which show that sharkskin occurs without the presence of

macroscopic slip [25]. The change of slope was attributed to shear

thinning of the fluid, whereas sharkskin effects were observed to ini-

tiate at the die exit and diminish with the downstream distance from

it. The effect of a non-monotonic slip-law along the die wall has been

investigated in Refs. [33–35]. Their dynamic simulations showed that

in the presence of compressibility [33] or viscoelasticity [34,35] the

flow could become oscillatory inside the die causing the shape of the

free surface to become wavy, each case leading, however, to different

type of oscillations. The first one leads to oscillations similar to the

stick–slip instability whereas the second one leads to small ampli-

tude high-frequency oscillations reminiscent of sharkskin [7].

The second mechanism suggests that in order for the flow to be-

come unstable the constitutive law should be non-monotonic, i.e. ex-

hibit non-monotonicity of the shear stress/shear rate curve in simple

shear Poiseuille flows [4]. Indeed, it has been argued that this mech-

anism may lead to an unstable flow [36–38], but this mechanism is

not supported by the ideas in Refs. [7,39,40]. Moreover, the recent

theoretical study by Karapetsas and Tsamopoulos [39,40], who con-

sidered the linear stability of the stick–slip flow (a simplification of

the die swell problem in the limit of an infinite surface tension) ignor-

ing the presence of slip and using the affine PTT model, i.e. a mono-

tonic constitutive equation for the stresses, has shown that a non-

monotonic slip law or a non-monotonic constitutive law, although it

may be present, is not truly essential for the appearance of extrusion

instabilities.

The third possible mechanism for the sharkskin instability claims

that it results from the coupling of the strong and primarily exten-

sional stress at the die exit, as the velocity field adjusts from the no-

slip boundary condition to the free-surface condition. Polymer chains

are stretched during this tensile deformation, which causes the highly

entangled polymer to respond like a rubber [5] leading to the crack-

ing of the fluid. This idea was first suggested by Cogswell [41] and

partially confirmed by experiments by Kissi et al. [26] and Migler

et al. [42] among others. The experiments of Migler et al. [42], in
articular, demonstrate that there is no disturbance of the velocity

ithin 20 μm from the die exit, thus refuting the idea that tempo-

ary loss of adhesion inside the die is necessary to initiate the insta-

ility. Actually, they suggested that the cause of sharkskin resides not

n the flow boundary condition in the tube, but in the flow conditions

ust past the tube exit due to the high stretching rates that the fluid

xperiences in this area. In fact it has been proposed that the defini-

ion of sharkskin should be given to an instability initiated at the die

xit [7]. This hypothesis is supported by the linear stability analysis of

he stick–slip flow presented by Karapetsas and Tsamopoulos [40]. In

his study it was shown that the flow becomes unstable beyond some

ritical value of the Weissenberg number and that the perturbed flow

f the most unstable mode has a spatially periodic structure, which

s initiated at the rim of the die and extends for up to 2–5 die gaps

ownstream, but is confined close to the surface of the extrudate,

n qualitative agreement with the experimental observations. Their

nalysis suggests that the instability is indeed generated by the com-

ination of the abrupt change of the velocity and stress fields at the

ie lip and the strong extension that the extruded polymer undergoes

ear its surface.

Extrusion instabilities appear at the liquid–air interface and there-

ore it is reasonable to assume that interfacial effects may also play a

ole and a complete examination of this problem should take these

ffects into account. The most prominent effect of the extrusion flow

s the significant swelling of the material as it exits the die. One im-

ortant question that may arise is: “how does the swelling affect

he stability characteristics of the extrusion flow?” Karapetsas and

samopoulos [39,40] ignored the effect of interfacial deformation by

onsidering the limit of infinite surface tension. In the present work

e take into account fully the effect of a deformable liquid-air inter-

ace in order to study the stability of the steady die swell problem

nd our efforts focus on determining the effect of surface tension on

he critical conditions for instability as well as the wavenumber of

he most dangerous mode. Our approach is similar to that in [40], i.e.

e solve the steady die swell problem and perform a linear stabil-

ty analysis around this base state solution. Since it has been already

hown that the stability characteristics for the two-dimensional and

xisymmetric stick–slip flow are qualitatively similar [40], we will re-

trict our study in the case of a planar die.

The rest of this paper is organized as follows. We present the prob-

em formulation for the base state and its numerical implementation

n Sections 2, and 3, respectively. The essential features of the linear

tability analysis in Section 4. The numerical solution of the resulting

ystem is described in Section 5. In Section 6 we present the results

f our study and finally, conclusions are drawn in Section 7.

. Problem formulation

We consider the steady two dimensional extrusion flow of a vis-

oelastic fluid driven by pressure gradient. In what follows the sym-

ol “∼” indicates a dimensional quantity. The fluid is considered to

e incompressible with constant density, ρ̃ , surface tension σ̃ , re-

axation time λ̃ and total zero shear dynamic viscosity μ̃ = μ̃s + μ̃p,

here μ̃s and μ̃p are the viscosities of the solvent and the polymer,

espectively. Fig. 1 shows a schematic of the flow. The viscoelastic

uid initially flows inside the die of width 2H̃ and length L̃1. The ve-

ocity and pressure fields rearrange as the fluid exits the die until far
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rom it, at distance L2 from the exit, a fully developed shear-free flow

s obtained.

We scale all lengths with the half of the die gap, H̃, and veloc-

ties with the mean velocity at the inflow boundary, Ṽ , while both

he pressure and stress components are scaled with a viscous scale,

˜ Ṽ/H̃. Thus, the dimensionless groups that arise are the Reynolds

umber, Re = ρ̃Ṽ H̃/μ̃, which hereafter is set to zero under the creep-

ng flow assumption, the Weissenberg number, Wi = λ̃Ṽ/H̃, the capil-

ary number Ca = μ̃Ṽ/σ̃ , the ratio of the Newtonian solvent viscosity

ver the total zero shear viscosity, β = μ̃s/μ̃ and the geometric ratios

1 = L̃1/H̃ and l2 = L̃2/H̃.

The flow is governed by the momentum and mass conservation

quations, which in dimensionless form are:

P − ∇ · τ = 0, (2.1)

· v = 0, (2.2)

here “∇” denotes the gradient operator for planar coordinates, v
nd P are the velocity vector and the pressure fields, respectively, and

is the extra stress tensor, which is split into a purely viscous part,

βγ̇ , and a polymeric contribution, τ p,

= 2βγ̇ + τ
p

(2.3)

here γ̇ is the rate-of-strain tensor defined as γ̇ = 1
2 (∇ v + ∇ vT ).

To account for the viscoelasticity of the material we use the affine

xponential Phan–Thien and Tanner model [43]:

(
τ

p

)
τ

p
+ Wi

∇
τ

p
−2(1 − β)γ̇ = 0 (2.4)

here the symbol “∇” over the viscoelastic stress denotes the upper

onvective derivative defined as

∇
= DX

Dt
−

[
X · ∇ v

]T − X · ∇ v (2.5)

here X is any second order tensor and for the ePTT model the func-

ion ϒ(τ
p
) is:

(
τ

p

)
= exp

(
ε

1 − β
Wi trace

(
τ

p

))
(2.6)

The viscoelastic fluid properties are determined by a single model

arameter, ε. This parameter imposes an upper limit to the elonga-

ional viscosity, which increases as this parameter decreases, while

t introduces elongational and shear-thinning in the fluid model. The

redictions for the elongational and shear viscosity of this model for

arious values of ε appear in Fig. 9 of [40]. Clearly, the PTT model re-

uces to the Oldroyd-B model by setting ε equal to zero and to the

CM model by additionally setting β = 0.

In order to solve accurately and efficiently various viscoelastic

ows we employ the elastic-viscous split stress (EVSS-G) formula-

ion. This method consists of splitting the polymeric part of the extra

tress tensor into a purely elastic and a viscous part:

p
= 
 + 2(1 − β)γ̇ (2.7)

nd by introducing an independent (continuous) interpolation of the

omponents of the velocity gradient tensor wherever the latter arises

n the constitutive equation along with SUPG weighting. This scheme

as been used with success in the past [20,39,40] permitting the cal-

ulations up to very high Weissenberg numbers.

Thus, after reformulating the momentum and constitutive equa-

ions using the EVSS-G formulation under the creeping flow

ssumption we obtain

P − ∇ 
 − 2∇ · γ̇ = 0 (2.8)

t

(
τ

p

)

 + Wi

∇

 +2Wi(1 − β)

∇
D

−2(1 − β)
(
1 − ϒ

(
τ

p

))
D = 0 (2.9)

here D = 1
2 (G + GT ) and the upper convective derivative is given by

∇
= DX

Dt
−

[
X · G

]T − X · G (2.10)

.1. Boundary conditions

Along the free surface of the fluid (y = 1, l1 ≤ x ≤ l2), the veloc-

ty field should satisfy a local force balance between capillary forces,

tresses in the liquid and pressure in the surrounding fluid. Without

oss of generality, the pressure of the surrounding gas phase, Pgas, is

et equal to zero (datum pressure).

·
(
−PI + τ

)
= 2Hc

Ca
n − Pgasn, (2.11)

here n is the outward unit normal vector to the free surface and 2Hc

s twice its mean curvature defined as:

Hc = −∇s · n,∇s =
(
I − n n

)
· ∇ (2.12)

Moreover, along the free surface we impose the no penetration

ondition, i.e. the normal component of the velocity vector is equal to

ero:

· n = 0 (2.13)

On the die wall (y = 1, 0 ≤ x ≤ l1) we impose the usual no-slip, no

enetration conditions vy = 0, vx = 0. We also have to apply boundary

onditions at the entrance of the die and at the outflow boundary. We

onsider that both boundaries are far enough from the die exit and

hus we assume that the flow in each boundary is fully developed.

herefore at the outflow boundary (x = l1+l2) we impose a uniform

elocity profile, by setting ∂vx/∂x = 0 for the x-component of the mo-

entum equation and employing the open boundary condition [44]

or the y-component. At the die entrance (x = 0), besides the bound-

ry conditions for the velocity we also have to apply boundary con-

itions for the polymeric part of the stresses and we follow the same

pproach with Karapetsas and Tsamopoulos [20,39,40]. The flow at

he entrance is considered to be fully developed and thus we set the

elocity in the y-direction equal to zero, vy = 0 while vx, as well as,

he polymeric part of the stresses are functions of y only. It can be

eadily shown, using the y-component of the momentum equation,

hat the pressure varies only in the x-direction. For the x-direction of

he momentum equations using Eq. (2.3) we get:

∂

∂y

(
τp,yx + β

dvx

dy

)
= dP

dx
(2.14)

hile the constitutive equation reduces to

p,yy = τp,zz = 0, (2.15)

(
τ

p

)
τp,yx = (1 − β)

dvx

dy
, (2.16)

(τ
p
)τp,xx = 2Wiτp,yx

dvx

dy
, (2.17)

These equations can be solved numerically by imposing, two

oundary conditions on the two edges of the inflow boundary. At

= 1 we impose vx = 0 and at y = 0 we impose ∂vx/∂y = 0. The

ressure drop, dP/dx, that appears in Eq. (2.14) is determined by de-

anding that the dimensionless mean velocity is equal to unity, since

he mean velocity at the inflow boundary, V, is used as characteristic
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Fig. 2. Typical mesh (M3 see Table 1). For clarity we present only the region close

to the die lip. Two refinement levels out of three refinement levels that have been

implemented in M3 are presented above. Flow parameters: Wi = 2.0, Ca = 10, ε = 0.1,

l1 = 10, l2 = 25.
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velocity for scaling the governing equations. Therefore the additional

equation that arises is

< vx >=
∫ 1

0

vxdy = 1 (2.18)

3. Numerical implementation

In order to solve numerically the above set of equations we have

chosen the mixed finite element method to discretize the velocity,

pressure and stress fields, combined with an elliptic grid generation

scheme for the discretization of the deformed physical domain. The

weak formulation of the governing equations is presented in detail in

Appendix A.

3.1. Elliptic grid generation

The physical domain (x, y) is mapped onto a computational do-

main (ξ ,η). As computational domain we choose here the domain

that would be occupied by the fluid, if it remained undeformed, i.e.

with a flat interface. A uniform mesh is generated in the latter domain

while, through the mapping, the corresponding mesh in the physical

domain follows its deformations. This is accomplished by solving the

following system of quasi-elliptic, partial differential equations:

∇ · {(ε1S + (1 − ε1))∇ξ} = 0 (3.1)

∇ · ∇η = 0 (3.2)

where the subscripts denote differentiation with respect to the indi-

cated variable, S =
√

yξ
2+xξ

2

yη2+xη2 and ε1 is the parameter that controls

the smoothness of the mapping relative to the degree of orthogo-

nality of the mesh lines. Here we found by trial and error that it

should be set to 0.1. For further details the interested reader may re-

fer to Karapetsas and Tsamopoulos [20,39,40] and Dimakopoulos and

Tsamopoulos [45].

A blow up of the mesh, which was used for these calculations, near

the die lip is presented in Fig. 2. We should note that special care was

taken for the mesh near the plane of the die exit since the flow rear-

rangement mostly takes place in that area, as well as near the die wall

and even more so around the die lip where steep pressure of stress

gradients or boundary layers may arise. Therefore in order to resolve
dequately the flow, a more refined mesh around these regions in

eeded. To this end, we have used a grid for the physical domain the

esh lines of which are clustered near those regions combined with

local refinement scheme using the h-method, which bisects the el-

ments in both directions, while the communication of the refined

omain with the rest is achieved by using some special elements. The

etails of the h-refinement method can be found in [46], whereas the

ode clustering was performed following simple algebraic relations,

s in [40].

In order to check the convergence of the numerical algorithm for

he physical problem, we performed an extended mesh refinement

tudy. Some useful data about the meshes that were used are pre-

ented in Table 1. We should note that the number in the mesh sym-

ol corresponds to the number refinement levels close to singularity,

hile the letter denotes that the initial mesh has different structure.

or example, in mesh M0 the refinement is done only by clustering

he mesh lines near the die lip, while meshes M1–M5 originate with

he M0, but are enhanced with 1–5 local refinement levels, respec-

ively, in the region of radius 0.2H with center at the die lip, resulting

n sizes of elements in M5 as small as 1.7 × 10−4 near the die lip.

Moreover, in order to check the quality of the results compared

ith the mesh we create a series of meshes referred to the table as

3–F3. These meshes have 3 refinement levels close to the die exit,

hile the parameters of the algebraic packing remain constant as

e noted above. As a result, the distribution of the nodes varies and

his results in elements with different aspect ratio. Furthermore, we

mployed meshes S3 and Y3 to check the dependence of our results

ith the location of the outflow boundary, while making sure that

he minimum and maximum size as well as the aspect ratio of the

lements does not change.

. Linear stability analysis

The above set of equations describes the steady extrusion flow of a

iscoelastic material. In order to investigate whether this flow is actu-

lly stable we perform a linear stability analysis considering the sta-

ility of the steady flow subjected to infinitesimal two-dimensional

erturbations. The flow variables are decomposed into a base state

nd its perturbation using the following ansatz:

v(η, ξ , t)

P(η, ξ , t)

G(η, ξ , t)


(η, ξ , t)

x(η, ξ , t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

vb(η, ξ)

Pb(η, ξ)

G
b
(η, ξ)



b
(η, ξ)

xb(η, ξ)

⎤
⎥⎥⎥⎥⎦ + δ

⎡
⎢⎢⎢⎢⎣

vd(η, ξ , t)

Pd(η, ξ , t)

G
d
(η, ξ , t)



d
(η, ξ , t)

xd(η, ξ , t)

⎤
⎥⎥⎥⎥⎦ (4.1)

here x = [y(η, ξ , t), x(η, ξ , t)], xb = [yb(η, ξ), xb(η, ξ)] and xd =
yd(η, ξ , t), xd(η, ξ , t)]. The first terms on the right hand side of this

quation represent the steady state solution, indicated by the sub-

cript “b”, while the second ones are the perturbation, indicated by

he subscript “d”. We assume the following dependence on time for

he latter

vd(η, ξ , t)

Pd(η, ξ , t)

G
d
(η, ξ , t)



d
(η, ξ , t)

xd(η, ξ , t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

v′(η, ξ)

P′(η, ξ)

G′(η, ξ)


′
(η, ξ)

x′(η, ξ)

⎤
⎥⎥⎥⎥⎦e−λt , (4.2)

here λ is the decay rate. Under our ansatz, if the calculated λ turns

ut to have negative real part, the disturbance grows with time and

herefore the corresponding steady state is considered to be unstable.

ubstituting these expressions into the time-dependent form of the

overning equations presented in the previous section and neglecting

erms of order higher than the first in the perturbation parameter, δ,
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Table 1

Properties of typical finite element meshes used in the present work.

Mesh No. of 1D

elements in the (y,

x) direction

No. of refinement

levels

No. of triangular

elements

No. of unknowns

(base state)

No. of unknowns

(stability analysis)

l1 l2 �xmin �ymin
�xmin

�ymin

M0 (40,250) 0 20,000 265,234 263,118 10 25 7.4 × 10−3 7.5 × 10−3 0.99

M1 (40,250) 1 21,240 310,100 307,984 10 25 3.8 × 10−3 3.9 × 10−3 0.98

M2 (40,250) 2 22,803 373,762 371,598 10 25 1.8 × 10−3 1.8 × 10−3 1.00

M3 (40,250) 3 31,431 414,818 412,654 10 25 9.4 × 10−4 9.1 × 10−4 1.03

M4 (40,250) 4 32,439 428,084 425,920 10 25 4.7 × 10−4 4.5 × 10−4 1.03

M5 (40,250) 5 33,047 431,526 429,410 10 25 1.7 × 10−4 1.6 × 10−4 1.03

B3 (45,250) 3 35,505 467,870 464,362 10 25 9.6 × 10−4 8.3 × 10−4 1.16

C3 (50,250) 3 39,325 517,620 513,472 10 25 9.6 × 10−4 7.4 × 10−4 1.29

D3 (40,300) 3 28,561 378,084 374,910 10 25 7.9 × 10−4 9.4 × 10−4 0.84

F3 (40,350) 3 37,709 497,530 494,380 10 25 6.8 × 10−4 9.4 × 10−4 0.72

S3 (40,230) 3 29,840 393,854 390,954 10 23 9.6 × 10−4 9.3 × 10−4 1.03

Y3 (40,210) 3 28,259 372,898 370,148 10 20 9.6 × 10−4 9.3 × 10−4 1.03
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e obtain a set of linearized equations around the base state solution;

he latter are presented in detail in Appendix B of this paper.

.1. Arnoldi method

After we discretize the above set of equations we end up with a

eneralized eigenvalue problem of the form

w = λM w (4.3)

here A and M are the Jacobian and the mass matrices, respectively,

are the eigenvalues and w are the corresponding eigenvectors. This

igenvalue problem is solved using Arnoldi’s method [47–51] which

llows us to locate only the eigenvalues of interest; for determining

ritical conditions we need those eigenvalues with the smallest real

art.

For implementing the Arnoldi algorithm we use the public domain

ode ARPACK [48] which is capable by default to compute the eigen-

alues with the largest magnitude. Since we are interested only in

he eigenvalues with the smallest real part and to avoid the singular-

ty of the mass matrix, the following shift-and-invert transformation

s employed:

w = νw, where K =
(
A − sM

)−1
and ν = 1

λ − s
(4.4)

The leading eigenvalues of the above system are those eigenval-

es of the original problem that are closet to the complex shift value

, when v is maximum then λ − s is minimum. Therefore with a se-

uence of such complex shifts, adaptively generated with a proce-

ure similar to the one described in Natarajan [51], it is possible to

btain the desired part of the eigenspectrum (i.e. the leading eigen-

alues with the smallest real part). Typically a sequence of 10 dif-

erent shifts is used, calculating 50 eigenvalues in each shift with a

imilar procedure that was described in [40]. The accuracy of the con-

erged eigenpairs is independently checked by evaluating the resid-

al |A x − λM x|, and this quantity is always less that 10−10 for the

eported results.

. Numerical solution

The resulting set of algebraic equations for the base state problem

s solved simultaneously for all variables using the Newton–Raphson

cheme. The Jacobian matrix that results after each Newton iteration

s stored in compressed sparse row format and the linearized system

s solved by LU-decomposition using PARDISO, a robust direct sparse

atrix solver. The iterations of the Newton–Raphson method are ter-

inated using tolerance for the absolute error of the Residual vec-

or, which is set at 10−7. The eigenvalue calculations were done using

he implicitly restarted Arnoldi algorithm as it is implemented in the

RPACK library [48]. The code was written in FORTRAN 90 and was
un on a workstation with a Dual processor Xeon CPU at 2.5 GHz in

he Laboratory Fluid Dynamics. Each calculation for a wide range of

eissenberg numbers typically required 1–2 days for the steady state

base flow) and 1–2 days for the linear stability analysis, depending

n the mesh used.

. Results and discussion

.1. Base state

To set the stage for the discussion that follows, it is useful to ex-

mine first the base state, i.e. the solution of the steady extrusion of

viscoelastic fluid from a planar die. Fig. 3 illustrates the flow field

or Wi = 1.5, Ca = 10, ε = 0.05, β = 0. In addition to the shape of the

xtrudate, this figure presents the contour plots of the velocity, pres-

ure and stress field. The total number of the contour plot varies from

0 equidistant color lines for the velocity components to 50 equidis-

ant color lines for the stress and pressure field; the number of con-

our lines is kept the same in all subsequent contour plots presented

n the paper unless stated otherwise. The cross stream velocity, vy,

s zero almost everywhere except for a region around the die exit,

here the velocity field is rearranging from the fully developed shear

ow inside the die to the shear-free flow outside it. The cross stream,

y, has its maximum value near the free surface and close to the die

ip due to the swelling of the extrudate, while the stream wise ve-

ocity, vx as the fluid approaches and passes through the exit of the

ie, gradually turns from a parabolic into a plug flow profile. The nor-

al stresses, which arise due to the elasticity of the material, cause

uch larger swelling in the viscoelastic extrudate than in the New-

onian case; the swelling is approximately equal to 51% (see Fig. 4a)

s compared to 19% expected for a Newtonian liquid [52]. Contour

ines of τ p,yy (lower half of Fig. 3b) show that this stress component

aries mostly around the triple contact point and its magnitude de-

reases rapidly away from it. Finally in Fig. 3c contour lines of and

p,yx (upper half) and τ p,xx (lower half) are given. The axial normal

tress varies mainly inside the die and takes its maximum value at

he die lip, while outside the die it decreases rapidly, except for the

urface of the extrudate, where it takes longer to become zero.

The swelling of the extrudate depends significantly on both the

lasticity of the material as well as its surface tension. This depen-

ence is presented in Fig. 4a where we plot the swell ratio as a func-

ion of the Ca for four different Wi numbers. In the limit of infinite

urface tension (i.e. in the limit of Ca = 0) the liquid exits the die with-

ut any signs of swelling; this corresponds to the well-known stick

lip flow [39]. For finite values of the surface tension the swelling in-

reases exponentially with Ca, but this effect saturates for larger val-

es of Ca. We also find that the swelling of the extrudate is enhanced

ith increasing elasticity of the material as expected. Finally, as it is
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Fig. 3. Steady extrusion flow using the ePTT model for a slit die. Contour lines (a) vy, vx (b) P, τ p,yy (c) τ p,yx, τ p,xx in upper and lower half respectively, for Wi = 1.5, Ca = 10, ε = 0.05,

β = 0, (for clarity the region 5 ≤ x ≤ 20 is shown).

Fig. 4. Dependence of the free surface height at the outflow boundary (a) on the Ca number for various values of the Wi number. The remaining parameters are ε = 0.05, β = 0 (b)

on the Wi for various values of ε PTT parameter. The remaining parameters are β = 0, Ca = 10. Mesh M3 is used.
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shown in Fig. 4b, increasing the value of the rheological parameter, ε,

which introduces the effect of shear thinning leads to lower levels of

swelling.

6.2. Linear stability analysis

6.2.1. Validation

We proceed by performing a linear stability analysis as described

in Section 4 to account for the effects of infinitesimal disturbances

to the base flow. We compute the eigenvalues of our system and the

stability of the flow is determined by the real part of the eigenvalues,

λ. When all the eigenvalues have a positive real part, the correspond-

ing eigenmodes will decay, whereas, if at least one eigenvalue has

a negative real part, the corresponding eigenmode is linearly unsta-

ble. Karapetsas and Tsamopoulos [39,40] have examined thoroughly

the convergence of the steady solution and the eigenvalue calcula-

tions with mesh refinement for the viscoelastic stick–slip flow. It was

shown that for dense enough grids it is possible to resolve well the
ow throughout the domain, and especially close to the singularity.

efore proceeding with a parametric study of our linear stability cal-

ulations, we will perform a similar study to demonstrate that the

ew reported results of our stability analysis also converge with mesh

efinement.

To this end, we have prepared Fig. 5, where the results for the

igenspectrum of a viscoelastic fluid for Wi = 2, Ca = 0.01, ε = 0.1

nd β = 0 are presented for meshes with different characteristics the

etails of which are summarized in Table 1. For clarity, only eigenval-

es with positive imaginary part are shown, because eigenvalues ap-

ear as complex conjugates. Before proceeding with the discussion of

his figure it would be useful first to summarize the characteristics of

he spectrum of the same viscoelastic fluid for the case of the stick–

lip flow. As it was shown by Karapetsas and Tsamopoulos [40] the

pectrum consists of a continuous part located at the same position

hat is predicted for the Poiseuille flow of a PTT fluid, which is very

ell resolved, of some discrete eigenvalues that converge with mesh

efinement (e.g. the leading eigenmode) and of some that do not
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Fig. 5. Effect of the mesh characteristics on the calculated eigenspectrum for Wi = 2.0, Ca = 0.01, ε = 0.1, β = 0, L1 = 10, L2 = 25. The most dangerous eigenvalue converges with

(a) local refinement around the die lip and (b) global grid refinement. Here the aspect ratio of the meshes varies as the number of 1D elements increases either in x-direction or the

y-direction, see Table 1.

Fig. 6. Comparison of the spectrum of the stick–slip flow (Ca = 0) with extrusion flow

(Ca = 0.01) for Wi = 2.0, ε = 0.05, β = 0, using mesh M3.
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spurious eigenvalues). The spectrum for the stick–slip flow (Ca = 0)

as been reproduced in Fig. 6 and compared against the case of the

ie swell for a very small value of the Ca number (Ca = 0.01). As it is

hown, the spectrum in the latter case shares many common charac-

eristics with the one for stick–slip flow and there are some regions

hat the eigenvalues of the two spectra overlap. The modes that cor-

espond to this part of the spectrum are related with the flow inside

he tube and they are clearly not affected by the small variation of the

urface tension. This part of the spectrum appears to converge with

ocal mesh refinement around the die lip (see Fig. 5a), although the

igenvalues with high imaginary part seem to be somewhat affected

y the size of the elements in the x-direction (see Fig. 5b). The latter

s due to the fact that the element size affects the capability of the

esh in resolving disturbances of very small wavelengths; increas-

ng the number of elements in the x-direction rearranges this branch

f the spectrum so that it gets more vertical to the real axis of the

pectrum. Furthermore in the case of extrudate swell, an additional

ontinuous spectrum arises closer to the imaginary axis with respect

o the existing continuous spectrum for the stick–slip problem. This

s significantly affected by the distribution of 1D elements of the free

urface. We should note that this spectrum is obviously related with

he presence of a deformable liquid–air interface and the effect of

finite surface tension. In the case of the stick–slip flow the free
urface cannot be deformed, due to the fact that the surface tension

s considered to be infinite. For all the cases that we have examined

n this paper, this part of the spectrum was found to be stable and did

ot affect the stability of our system. Interestingly, we find that the

ffect of a finite surface tension also affects significantly the discrete

igenvalues of the system. Both the real and imaginary parts of the

ost dangerous eigenvalue, which, as shown in Fig. 5, converge with

esh, appear to depend significantly on the value of the Ca number.

e observe that for Wi = 2 the leading eigenvalue for Ca = 0.01 has

negative real part, which means that for this specific Weissenberg

umber the flow is unstable whereas for Ca = 0 the flow was found

o be stable (Fig 6). We should note, however, that despite some dif-

erences in the wavelength of the disturbances of the most danger-

us mode, which could have been anticipated by the difference in the

maginary part of the eigenvalue, the corresponding eigenvectors for

hese two cases are qualitatively similar with the instability starting

t die lip and propagating 2–3 radii downstream (see Ref. [40]).

Apart from the mesh refinement study, we have also examined

he effect of the location of the outflow boundary or even the type of

oundary condition that is applied therein. In the case of the stick–

lip flow [40] it was shown that the conditions that are applied both

t the inflow and outflow boundaries have a minimal effect on the

igenvalue calculations. In our case it is expected that the presence of

deformable interface may complicate things, since it is known that

he coexistence of a free surface and an outflow condition may give

ise to a corner singularity Renardy [54–56]. Although, this singular-

ty does not affect the steady state calculations, it could affect to some

xtent the eigenvalue calculations. As we can see in Fig. 7 for two dif-

erent values of the Ca number (Ca = 0.01 and Ca = 1) placing the out-

ow boundary 5 half-gap widths closer to the die exit, from l2 = 25

o l2 = 20, (see Table 1), has very little effect on the discrete part of

he spectrum. Note that for the steady calculations (base state) we

ave imposed as described above the OBC for the y-velocity compo-

ent and dvx/dx = 0 for the x-velocity. Being consistent for the stabil-

ty calculations we also imposed OBC for the linearized y-momentum

quation while we imposed dvx,d/dx = 0 in the x-momentum. Look-

ng carefully at the corresponding eigenvector of the most dangerous

igenvalue in the lower part of Fig. 8 we observe, however, that the

pplication of this boundary condition may not be appropriate for the

tability calculations, since the disturbance of the cross flow velocity

ppears to be severely affected by the corner singularity at the end

f our domain, where a nonphysical recirculation arises. Even more

mportant seem to be the repeated vortices that arise downstream

rom the die exit, but were not observed in the stability analysis of

he stick–slip flow. Although, the application of the open boundary

ondition in both directions was possible in the case of the stick–slip
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Fig. 7. Effect of the position l2 of the outflow boundary for two different Capillary numbers. (a) Ca = 0.01 and (b) Ca = 1.0. The remaining parameters are Wi = 2.0, ε = 0.1, β = 0.

For the mesh M3 we have l2 = 25, for S3 l2 = 23 and for Y3 l2 = 20.

Fig. 8. Spatial form of vy component of the eigenvector that corresponds to the most unstable eigenvalue using the full domain (lower part) and using the truncated domain as

explained in the text (upper part) for Wi = 1.5, Ca = 1, ε = 0.1 and β = 0. Mesh of M3 was used.

Fig. 9. Effect of the type of outflow boundary condition used for the eigenvalue calcu-

lations for Wi = 2, Ca = 1, ε = 0.1, β = 0. As outflow boundary we impose ∂vx/∂x = 0

(black dots) or OBC in momentum balance (orange stars). Mesh M3 was used. (For in-

terpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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flow [40] this option is not available in our case, since it is already

known that the application of the full OBC condition is problematic

when it comes to the simulation of the steady extrudate swell in the

presence of surface tension effects [57].

Upon extended examination of many reasonable alternatives, we

found that to overcome the difficulties posed by the singularity that

arises at this corner we can proceed as follows: since there is no other

viable option for the calculation of the steady state we use the set of

boundary conditions mentioned above to get the base state solution.

In order to perform the stability calculations, on the other hand, we

truncate the domain of the base state at x = l1 + l2 − dl, where dl is

the length of two elements adjacent to the outflow boundary; a typ-

ical value for dl is 0.35H, which may seem large, but its size is deter-

mined by the mesh clustering close to the die lip. However, due to

the plug flow near the outflow boundary, the coarser mesh is an ac-

ceptable mesh there. The linear stability analysis is performed about

the base state of the truncated domain and for the eigenvalue calcula-

tions we now impose the OBC in both directions at x = l1 + l2 − dl. As

it is shown in the upper part of Fig. 8, the application of this bound-

ary condition leads to velocity disturbances that remain totally unaf-

fected at the edge of our domain, and the non physical vortices in the

disturbed flow has disappeared. The effect of the different types of

boundary conditions on the eigenspectrum is presented in Fig. 9. As

expected, the elimination of some degrees of freedom from our sys-

tem due to the truncation of the domain leads to insignificant varia-

tions. More specifically, we find that the eigenvalues that are related

with the bulk flow inside the die are only slightly affected. The ef-

fect is a bit more significant on the continuous part of the spectrum

which is related to the free surface. However, as it was noted above,

this part of the spectrum does not affect the stability of the system,

since the real part of the eigenvalues remains positive in all calcu-

lations that we have performed. More importantly, we find that the

application of the OBC for both momentum components does not af-

fect significantly the value of the most dangerous eigenvalue, which

remains the stability determining one. The leading mode is the dis-

crete mode denoted with A in Fig. 9. When ∂vx/∂x = 0 is applied, only

three additional eigenvalues appear (denoted with B and C in Fig. 9),

in comparison to those appearing when the OBC boundary consitions
 t
re applied. These modes are highly affected by the specific condi-

ions imposed at the outflow boundary of the domain. For this reason,

hese eigenvalues are not related with the eigenmodes of the physical

ystem, they are considered spurious, and we do not take them into

ccount in the analysis that follows in Section 6.2.2.

.2.2. Effect of material properties on critical conditions for instability

Now that we have verified the convergence with mesh refinement

nd determined the proper inflow and outflow conditions, we may

roceed with the parametric study to examine the effect of various

heological properties of the material on the stability of the steady

iscoelastic extrudate swell. The dependence of the eigenvalue spec-

rum on the Weissenberg number is shown in Fig. 10 for ε = 0.1 and
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Fig. 10. Effect of viscoelasticity for on the eigenvalues calculated with mesh M3 for (a)

Ca = 0.01 and (b) Ca = 1.0 and ε = 0.1, l1 = 10, l2 = 25.
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= 0. We can see that as the Weissenberg number increases the

luster of the eigenvalues moves towards the imaginary axis while,

or some value of Wi, the leading eigenvalue crosses it, indicating a

ransition to instability similarly to the findings of Karapetsas and

samopoulos [40] for the stick slip flow. We also note that the fact

hat this complex eigenvalue and its conjugate cross simultaneously

he imaginary axis beyond a critical value of the Wi number indicates

he presence of a Hopf bifurcation [53] and the flow that results is

eriodic in time, similarly to the case of stick–slip flow, i.e. for Ca = 0

40].
ig. 11. Dependence of the real part of the leading eigenvalue for (a) Ca = 0.01 and (b) Ca =
a = 0.01 and 1.43 for Ca = 1.0. Mesh M3 is used.
A detailed calculation, presented in Fig. 11 where we plot the spec-

rums close on the Wi number for two values of the Ca number, shows

hat the crossing occurs at Wic = 1.64 for Ca = 0.01 and at Wic = 1.43

or Ca = 1. According to Karapetsas and Tsamopoulos [40] in the case

f stick–slip flow the transition to instability takes place at Wic = 2.5

ndicating that the presence of a deformable interface actually desta-

ilizes the flow.

Fig. 12 depicts the perturbations of the pressure field along the

iquid–air interface where these oscillations are shown more clearly

or two different values of the capillary number, Ca. For the low-

st value of Ca (see Fig. 12a for Ca = 0.01) the interface is less de-

ormable, approaching the stick–slip limit, and the pressure pertur-

ations propagate 4 half die-gaps downstream the die lip. On the

ther hand increasing Ca (see Fig. 12b for Ca = 1) we find that the

avelength of the most unstable mode decreases significantly and

n this case the perturbations fade away at a smaller distance from

he die lip, i.e. two half die-gaps. The decrease of surface tension in

he latter case allows larger deformation of the interface leading to

ignificantly more swelling of the extrudate (see Fig. 3) and at the

ame time permits interfacial disturbances of shorter wavelength to

ecome unstable as it is shown in Fig. 12c and d, where we plot

he height disturbances of the liquid–air interface for Ca = 0.01 and

a = 1, respectively.

The spatial variation of leading mode for Wi = 1.5, Ca = 1, ε = 0.1

nd β = 0 is illustrated in Fig. 13. We can see that, similarly to the

redictions of Karapetsas and Tsamopoulos [40], the perturbations of

he velocity and stress field are initiated at the die exit and are pri-

arily concentrated outside the die, close to the surface of the ex-

rudate and propagate approximately 3–4 half die-gaps downstream;

his mode of instability will be named hereafter as the EXT1 mode. No

ariation is observed in the entrance or well before the exit of the die

n agreement with experiments reporting that sharkskin is a die-exit

henomenon [7,27,58] and that the entrance conditions do not influ-

nce the sharkskin instability [29]. The perturbations of all variables

xhibit a spatial periodic structure with alternating signs along the

iquid–air interface while the oscillation appears to be most intense

or the axial normal polymeric stress component.

The effect of the Ca on the leading eigenvalue is also depicted

n Fig 14 where we plot the critical Wic as a function of Ca for vari-

us values of ε. First, we should mention that the imaginary part of

he eigenvalue at critical Wic corresponds to the temporal frequency

f the oscillations; since there is a constant flow rate, the latter is

lso related to the wavelength of the perturbation. As it is shown in

ig 14b, the temporal frequency of the instability increases monotoni-

ally with Ca, and this leads to disturbances with smaller wavelength

ypical of the sharkskin instability. On the contrary, Fig 14a shows
1.0 and for ε = 0.1 and β = 0. It is determined that the critical Wic equals 1.64, for
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Fig. 12. Profile of the free surface height and pressure field disturbances along the free surface for two values of the capillary number: Ca = 0.01 (a–c) and Ca = 1 (b–d) for Wi = 1.5,

ε = 0.1 and β = 0. Mesh M3 is used.
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that the capillary number has a non-monotonic effect on the critical

Wic. In general, higher values of Ca will make the free surface more

susceptible to disturbances of even shorter wavelength and therefore

the flow less stable.

Indeed, as it is shown in Fig 14a, the critical Weissenberg number

decreases with increasing Ca, for (approximately) Ca > 0.5. However,

for low values of Ca, (Ca ≤ 0.5), increasing Ca increases the critical

Wic, i.e. the flow is stabilized. This unexpected dependence on Ca can

be explained as follows: It is known that extensional stresses desta-

bilize the flow [40]. On the other hand, extrudate swelling tends to

relax the normal axial stress and, hence, it is reasonable to expect

that swelling stabilizes the flow. Fig. 4a shows that about 80% of the

swelling takes place for Ca < 0.5, so the increase of swelling in that re-

gion leads to the increase of Wic. At larger Ca, the increase of Ca affects

the swelling less, to the point that it is not sufficient to stabilize the

flow, while Ca keeps increasing. Moreover, by decreasing the rheolog-

ical parameter ε, the swelling of the material increases (see Fig 4b),

as a result criticality is expanded to higher values of Wi. Moreover, for

higher values of Ca, Wic decreases significantly with Ca; for Ca = 10

we find that the flow becomes unstable for Wic = 1.16, 0.89 and 0.68

for ε = 0.05, 0.08 and 0.10, respectively. The calculated values for the

critical Weissenberg number appear to be in the same range with the

critical values reported in experimental works found in the literature

[24,28,31,32] (see Table 2). We should note, however, that the esti-

mated Ca number in these experiments appears to be much larger

than the values used for our computations; the surface tension has

not been reported in the experimental works and the estimation was

made assuming that the surface tension of the polymer is equal to

30 dyn/cm. Numerical difficulties render convergence of computa-
ions at higher values of the Ca number quite hard. Another factor

hat may also affect the critical Wi number is the presence of slip

hich in some experiments was found to be present, but has been

gnored in our simulations.

As an additional check, we evaluate the wall shear stress at criti-

al conditions and compare it against experimental measurements of

oynihan et al. [31] and Lim and Schowalter [32] for a slit die and for

olymeric solutions with relaxation times λ = 0.06 s and λ = 0.63 s,

espectively. The wall shear stress has been evaluated at the entrance

f the domain for Ca = 10 at critical conditions for a range of values of

he rheological parameter, ε. Given the relaxation time of the specific

olymer solution we evaluate the critical flow rate from Wic and use

he evaluated critical mean velocity to re-dimensionalize our theoret-

cal predictions. Interestingly, we find that for the case of Moynihan

t al. [31] the critical wall shear stress varies from 0.14 to 0.20 MPa

hich is fairly close to the reported value of 0.149 MPa. In the case

f Lim and Schowalter [32] our prediction gives 0.15–0.21 MPa while

he reported value is 0.14 MPa. Note that the range in the theoreti-

al calculations corresponds to values of ε which range from 0.05 to

.1.Next, we turn our attention to the effect of the extensional pa-

ameter ε. The effects of shear and elongational thinning become in-

reasingly important as we approach the triple contact point where

he stresses become very high. We should mention, however that this

arameter introduces to the PTT model the effect of shear thinning

s well as an extensional viscosity which is varying with extensional

ardening followed by extensional thinning for smaller values of ε or

xtensional thinning only for larger values. As it was shown in Fig. 14,

or high values of the parameter ε the critical Wic of the disturbances

ecreases and the non-monotonic dependence with Ca becomes less
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Table 2

Experimental and theoretical work in extrusion process of viscoelastic fluid.

Die Ca Wic Polymer

Experiments

Kalika and Denn [24] Capillary 3175 1.5 LLDPE

Moynihan et al. [31] Slit 1860 1.19 LLDPE

Lim and Schowalter [32] Slit 2100 0.72 LLDPE

Pomar et al. [28] Capillary 1106 1.73 LLDPE

Theory

Karapetsas and Tsamopoulos [39] Capillary 0 2.0 PTT fluid

Karapetsas and Tsamopoulos [39] Slit 0 2.5 PTT fluid

Present work Slit 0.01–10 1.64–0.68 PTT fluid

Fig. 13. Spatial form of the eigenvector for a planar die. (a) vʹy, v’x (b) Pʹ, τ ʹp,yy (c) τ ʹp,yx,

τ ʹp,xx on the upper and lower half respectively for Wi = 1.5, Ca = 1.0, ε = 0.1, β = 0,

l1 = 10, l2 = 25 (for clarity we present the region). 8 ≤ x ≤ 14 The corresponding eigen-

value is λ = − 0.370 + i24.887. Mesh M3 is used.
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Fig. 14. (a) The critical Weissenberg number, Wic for various values of the capillary number

the Ca number for β = 0. Mesh M3 is used.
ntense. This could be attributed to the effect of strain-thinning which

ecomes increasingly important with increase of ε and the fact that it

as a destabilizing effect on the flow as it was shown earlier by Kara-

etsas and Tsamopoulos [40]. The destabilizing role of strain thin-

ing is also supported by the experimental observations of Venet and

ergnes [29] indicating that polymers exhibiting long chain branch-

ng and more strain hardening are less sensitive to sharkskin.

The effect of the extensional parameter, ε, on the critical Weis-

enberg number, Wic, is examined in Fig. 15. Similarly to the predic-

ions of Karapetsas and Tsamopoulos [40] we find that Wic depends

on-monotonically on ε. As it was noted by there, the non-monotonic

ependence is due to the fact that this parameter introduces simulta-

eously the effects of strain-thinning and shear-thinning, which ex-

ibit a destabilizing and stabilizing effect on the flow, respectively.

e note, however, that the presence of a deformable interface re-

ults in the increase of the value of ε for which Wic becomes mini-

um. In the case of stick–slip flow (Ca = 0) the minimum arises for

∼ 0.06 whereas for a finite value of Ca = 0.01 the minimum arises

or ε ∼ 0.12. The imaginary part of the leading eigenvalue, evaluated

t Wic, as a function of the extensional parameter ε is presented in

ig. 15b. As it is shown, there is a monotonic dependence indicating

hat increasing the effect of strain thinning leads to higher temporal

requency of the instability, which also results in disturbances with

maller wavelengths.

Next, we examine the effect of the solvent by presenting in

able 3 the dependence of Wic on the solvent viscosity ratio, β , for

a = 1 and ε = 0.1. We find that the critical Weissenberg number

or which the EXT1 mode becomes unstable, denoted as Wic, in-

reases considerably with increasing β , indicating that the addition

f a Newtonian solvent has a strongly stabilizing effect, in agreement

ith the findings of [40,59]. In Table 3 we also monitor the critical

eissenberg number for which the second most dangerous mode be-
and (b) The imaginary part of the leading eigenvalue computed at Wic as a function of
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Fig. 15. Dependence of the (a) critical Weissenberg number and (b) the imaginary part of the most dangerous eigenvalue on the rheological parameter ε. The remaining parameters

are Ca = 0.01. Mesh M3 is used.

Fig. 16. Spatial form of the eigenvector for a planar die. Isolines (a) vʹy, vʹx (b) Pʹ, τ ʹp, yy (c) τ ʹp,yx, τ ʹp,xx on the upper and lower half respectively for Wi = 5.5, Ca = 10, ε = 0.05, β = 0,

l1 = 10, l2 = 25 (for clarity we present the region 0 ≤ x ≤ 20). The corresponding eigenvalue is λ = − 0.016 + i0.908

Table 3

Critical Wi numbers for the two most dangerous modes for various

values of the solvent viscosity ratio, β , and for Ca = 0.01 and ε = 0.1.

Mesh M3 is used.

β 1st mode (EXT1) 2nd mode (EXT2)

WiEXT1 Imaginary part WiEXT2 Imaginary part

0 1.64 25.363 5.45 0.898

0.005 5.12 13.199 6.73 0.853

0.01 8.45 9.851 7.85 0.824
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comes unstable; this mode will be named hereafter as the EXT2 mode

and the corresponding critical Weissenberg number is denoted with

WiEXT2. We note that for β = 0.01, the highest value of the solvent

viscosity ratio that we have used, since we are mainly interested in

polymer melts, we find that the EXT1 is no longer the most unstable

mode, because EXT2 becomes unstable for a smaller value of the Wi

number. The characteristics of the EXT2 mode will be discussed in

detail below.

6.2.3. Examination of the second most unstable mode (EXT2)

The spatial variation of the most unstable eigenvector, corre-

sponding to the EXT2 mode, near critical conditions for Wi = 5.5,
a = 10, ε = 0.1 and β = 0 is illustrated in Fig. 16. This mode of insta-

ility was also found in the case of the stick–slip flow and similarly

o the predictions of Karapetsas and Tsamopoulos [40], we find that

he perturbations exhibit a spatially periodic structure while the

elocity and stress field are primarily concentrated inside the die,

ocalized close to the die exit. The perturbations are initiated in the

icinity of the die lip and the amplitude of the oscillations decreases

pstream from it. We also note that a boundary layer in v’z and τ ’zz

s formed near the wall with the velocity boundary layer thickness

eing larger than the one for the stress. We should note that the

resence of an oscillatory flow and the boundary layer in the stress

nd velocity field near the die exit could perhaps be perceived by an

xperimentalist as loss of adhesion which leads to a stick–slip motion

f the polymeric liquid. To make sure that the eigenvector of this

ode is not affected in any way by the position of the inlet boundary

e performed simulations either by increasing the length of the

nlet domain or by imposing the open inflow boundary condition

uggested by Dimakopoulos et al. [60] and found that the position

r type of the inlet boundary boundary condition perturbations does

ot play any significant role. Since this mode of instability appears

nside the die it is reasonable to expect that interfacial effects will not

ffect significantlly the critical conditions for this mode to become

nstable. Indeed plotting the dependence of WiEXT2 on Ca in Fig. 17

e find that WiEXT2 does not vary significantly. Finally, the effect of
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Fig. 17. Critical values of Wi for the second leading mode. The capillaty force has a very

mild impact on the 2nd leading mode. Flow parameters Wi = 5.5, ε = 0.05, β = 0. Mesh

M0 is used.
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he extensional parameter ε on the value of the Weissenberg number

hat EXT2 becomes unstable, WiEXT2, is examined in Fig. 18. Similarly

o the predictions for the EXT1 mode (see Fig. 17) we find that WiEXT2

epends non-monotonically on ε whereas the imaginary part of the

igenvalue increases monotonically with ε indicating that increasing

he effect of strain-thinning also leads to higher temporal frequency

f the EXT2 mode.

.3. Energy analysis

In order to identify the physical mechanism that leads to instabil-

ty we perform an energy analysis, which has been used with success

n the past for the analysis of various viscoelastic flows [61–65]. The

nergy method considers the interaction of the base flow and the dis-

urbance flow by evaluating the mechanical energy balance for the

erturbed system. Hence it is used to determine the stabilizing and

estabilizing effect of the coupling of the velocities and stresses from

he base flow and perturbation flow. The method is described in de-

ail in the Appendix of Karapetsas and Tsamopoulos [40].

The disturbance energy equation is obtained by taking the inner

roduct of the linearized perturbation of the momentum equation

ith the perturbation velocity and integrating the resulting equation

ver the volume of the flow field and one period in time. (i.e. 0 ≤ t ≤
ig. 18. Dependence of the (a) critical Weissenberg number and (b) the imaginary part of t

arameters are β = 0, Ca = 10, l1 = 10 and l2 = 25. Mesh M3 is used.
π /imag(λ))

2π/imag(λ)

0

∫
�

[
∇ P̃ − β∇ ·

(
G̃ + G̃

T
)

− ∇ · τ̃
p

]
·ṽd�dt = 0 (6.1)

Note that for the evaluation of all terms shown in Eq. (6.1) and in

he equations below we take just the real part of the perturbations, ṽ,
˜, G̃, 
̃, while the subscript “b” denotes the base state variables After

ome manipulation the energy budget becomes:

dV D

dt
= ϕpr − ϕvis + ϕrelax + ϕpv1 + ϕpv2 + ϕps1

+ϕps2 − ϕel + ϕ jump. (6.2)

The physical interpretation of the various terms of Eq. (6.2) is

iven in Table 4. For further details on the applied method the in-

erested reader may refer to Karapetsas and Tsamopoulos [40].

The correct mode of instability can be tracked by using dVD/dt as

he quantity which indicates the stability or instability of the flow

40,61]. Therefore, when the solvent viscosity is small or even zero

s in our study, we can use the energy balance given by Eq. (6.2) to

etermine the critical couplings that cause the onset of the viscoelas-

ic instability by examining the magnitude of each one of the terms

n the right hand side near the critical Wi number. The driving force

or the instability will be determined by finding which terms grow

hen dVD/dt grows and especially which terms grow most rapidly

ith Wi.

For the EXT1 mode the analysis was performed for ε = 0.1 and

= 0 and Ca = 0.01 or Ca = 1 while for the EXT2 mode the phys-

cal parameters are ε = 0.05 and β = 0 and Ca = 10 and for Weis-

enberg numbers around the critical conditions in both cases. The

arious terms of the energy equation for both eigenmodes are pre-

ented in Figs. 19 and 20, without normalization of the eigenvectors.

n Fig 19 we find that the only positive terms are ϕjump, ϕpv2, ϕps2

hile the rest of the terms are negative for all values of Wi. As Wi in-

reases, passing the critical values, of 1.64 and 1.43 for Ca = 0.01 and

a = 1 respectively (mesh M3 was used), the terms ϕjump increase sig-

ificantly and seem to have a strong destabilizing effect on the flow.

e should mention that the ϕjump is related with the jump of the

hysical properties across the free surface. On the other hand, ϕps2

nd ϕpv2 appear to be smaller and increase less rapidly with Wi hav-

ng a mild destabilizing effect as compared to ϕjump, ϕpv2 represents

he rate of energy production due to the coupling of velocity gradi-

nt perturbations and base state stresses, while ϕps2 represents the

oupling of the stress perturbation with the base state velocity gra-

ient. Considering that in extrusion flow the streamlines of the base

ow near the singularity are curved and the base and disturbance ax-

al normal stress and the disturbance velocity gradient vary the most
he second most dangerous eigenvalue on the rheological parameter ε. The remaining
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Table 4

Physical interpretation of terms arising in the energy budget (Eq. (8.2)).

Term Physical interpretation

dV D
dt

=
2π/imag(λ)∫

0

∫
�

Wi 1−β
Y(τ

p,b
)

∂
∂t

(G̃ + G̃
T
)d�dt The rate of change of total viscous dissipation

ϕpr =
2π/imag(λ)∫

0

∫
�

[n · (P̃I)]d�dt Energy associated with pressure perturbation

ϕvis =
2π/imag(λ)∫

0

∫
�

∇ · [β + 1−β
Y(τ

p,b
)

](G̃ + G̃
T
) · ṽd�dt Viscous dissipation energy term

ϕel = −
2π/imag(λ)∫

0

∫
�

∇ · [ Wi
Y(τ

p,b
)

∂
̃

∂t
] · ṽd�dt Growth rate of purely elastic stress

ϕrelax =
2π/imag(λ)∫

0

∫
�

∇ · [ εWi
1−β

trace(τ̃
p
)τ

pb
] · ṽd�dt Energy associated with the changes in effective relaxation time

ϕpv1 =
2π/imag(λ)∫

0

∫
�

∇ · [ Wi
Y(τ

p,b
)
ṽ · ∇τ

p,b
] · ṽd�dt Coupling of the stress gradient perturbation with the base state velocity

ϕpv2 = −
2π/imag(λ)∫

0

∫
�

∇ · [ Wi
Y(τ

p,b
)
(τ

p,b
· G̃ + (τ

pb
· G̃)

T
)] · ṽd�dt Coupling of the velocity gradient perturbation with the base state stresses

ϕps1 = −
2π/imag(λ)∫

0

∫
�

∇ · [ Wi
Y(τ

p,b
)
vb · ∇ τ̃

p
] · ṽd�dt Coupling of the stress gradient perturbation with the base state velocity

ϕps2 = −
2π/imag(λ)∫

0

∫
�

∇ · [ Wi
Y(τ

p,b
)
(τ̃

p
· G

b
+ (τ̃

p
· G

b
)

T
)] · ṽd�dt Coupling of the stress perturbation with the base state velocity gradient

ϕ jump =
2π/imag(λ)∫

0

∫
�

n · [Wi 1−β
Y(τ

p,b
)

∂G̃

∂t
] · ṽd�dt The jump in physical properties across the interface outside the die

Fig. 19. Energy analysis diagrams for the leading mode (EXT1) for (a) Ca = 0.01 and (b) Ca = 1. The remaining parameters are ε = 0.1, β = 0. Mesh M3 is used.

Fig. 20. Energy analysis diagrams for the second leading mode (EXT2) for Ca = 10. The

remaining parameters are ε = 0.05, β = 0. Mesh M0 is used.
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nd in particular near the free surface, it should not be surprising

hat these three terms are the ones driving the instability in this flow.

omparing the energy analysis with the case of stick–slip flow [40],

t is worthwhile to mention that the instability in the two problems

ollows the same mechanism due to the fact that ϕjump, ϕps2 and ϕpv2

re the non-zero terms that grow with increase of the Wi number.

owever, it should be noted that in the case of a deformable inter-

ace (finite value of Ca) ϕjump is significantly larger than the other

erms and have a large contribution to the mechanical energy of the

ystem destabilizing the flow. This is hardly surprising, because the

resence of a finite surface tension allows the free surface to be de-

ormed leading to a curved interface and in turn to significantly larger

ressure jump compared to the case of the stick–slip flow with a flat

lip surface.

On the other hand the second leading eigenvalue (EXT2 mode)

ppears to follow another instability mechanism as shown in

ig. 20. In the discussion of Fig. 18 we mentioned that the instabil-

ty in generated close to the lip inside the tube and propagates back-

ard with respect to the fluid flow and naturally capillary forces have

weak impact on this mode. In Fig. 20 as the Weissenberg number

asses the critical value 5.42, dVD/dt increases significantly and the

nly terms that acquire a positive value are the ϕpv2, ϕel, whereas

he ϕjump and ϕps1 have a mild destabilizing effect. We should note,

owever, that ϕjump despite being positive appears to decrease near
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he critical value of the Wi number and therefore it cannot be

onsidered that it contributes to the destabilization of the flow.

learly the main destabilizing factors are ϕpv2 which represents the

oupling of the velocity gradient perturbation with the base state

tresses and ϕel, which represents the growth rate of the purely elas-

ic stresses. Grillet et al. [62] have found that instability in planar

oiseuille or Couette flow of a PTT fluid is related to the ϕpv2 term.

lthough the EXT2 mode is different than the one that was reported

o be most unstable in the Poiseuille flow of an ePTT fluid by Grillet et

l. [62] due to the fact that the EXT2 mode is localized at the die exit

e believe that the mechanism of the instability shares many com-

on characteristics with the mechanism responsible for the destabi-

ization of the viscoelastic Poiseuille flow.

. Conclusions

The purpose of this work was to study the stability of the vis-

oelastic extrusion flow for a planar geometry. To this end, we per-

ormed a linear stability analysis around the steady state solution of

he extrusion flow for a viscoelastic fluid using the affine exponential

TT model. For the numerical calculations we have used the mixed fi-

ite element method combined with the EVSS-G method for the cal-

ulation of the elastic stresses together with the SUPG method for the

eighting of the constitutive equation.

The linear stability analysis around the steady extrusion of a vis-

oelastic fluid showed that the flow becomes unstable as the Weis-

enberg number increases more than a critical value, Wic. At this crit-

cal value we have a Hopf bifurcation [53] to a time periodic solution,

he frequency of which increases as capillary forces decrease. More-

ver we found that this critical value of Wic increases as the shear-

hinning of the polymer is increasing, in agreement with the exper-

mental observations. The flow disturbances are localized in a small

rea around the die exit, close to the free surface and exhibit a spatial

eriodicity which results in a high frequency wavy surface, typical

f the sharkskin instability. The presence of a deformable interface

ctually destabilizes the flow. We investigate in detail the effect of

nterfacial tension and the presence of a deformable interface. It is

ound that the presence of a finite surface tension destabilizes the

ow as compared to the case of the stick–slip flow [40]. Solvent vis-

osity tends to stabilize the flow while for a small but non-zero value

f β another mode becomes the most unstable (EXT2), in which the

isturbance of velocity and stress field are primarily concentrated in-

ide the die and localized close to the die exit. To reveal the mecha-

isms responsible for the instability we performed an energy budget

nalysis for the most critical modes. It was shown that for the EXT1

ode the mechanism of instability is due to the coupling of velocity

radient perturbations and base state stresses, and the jump in phys-

cal properties across the liquid-air interface. On the other hand, for

he EXT2 mode another mechanism has been recognized. In this case

he destabilization is due to the coupling of the velocity gradient per-

urbation with the base state stresses; the mechanism shares many

ommon characteristics to the one found in the case Poiseuille flow

f an ePTT fluid.

In the literature it has been suggested that the mechanism for

he instabilities should include either a non-monotonic slip law or

non-monotonic constitutive law. In agreement with Karapetsas and

samopoulos [40] this work proposes that such a non-monotonic slip

aw or a non-monotonic constitutive law is not essential for the ap-

earance of extrusion instabilities. Instead we show that extrusion

nstabilities could be due to purely elastic instabilities which can be

riggered by the coupling of strong stress gradients at the die lip and

he intense extensional flow, primarily at the surface of the extrudate

hat ensues. Our findings support the mechanism for the sharkskin

nstability initially proposed by Cogswell [41].
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ppendix A. Mixed finite element method

We approximate the velocity and the position vector with 6-node

agrangian basis functions, ϕi, and the pressure, the elastic stresses

s well as the velocity gradients with 3-node Lagrangian basis func-

ions, ψ i. We employ the finite element/Galerkin method, which after

pplying the divergence theorem results in the following weak forms

f the momentum and mass balances:

�
−P∇φi + ∇φi · 
 + 2∇φi · γ̇ Jd�

+
∫
∂�

n ·
(
−PI + τ

)
φiQd� = 0 (3.6)

�
ψ i∇ · vJd� = 0 (3.7)

here d� and d� are the differential volume and surface area in the

omputational domain, respectively, while J and Q denote the corre-

ponding Jacobians of the transformation from physical to computa-

ional domain. The weak form of the mesh generation equations is

erived similarly by applying the divergence theorem:

�
(ε1S + (1 − ε1))∇ξ · ∇φiJd� = 0 (3.8)

�
∇η · ∇φiJd� = 0 (3.9)

The continuous approximation of the components of the velocity

radient tensor is determined by:

�
ψ i

(
G − ∇v

)
Jd� = 0 (3.10)

Finally the hyperbolic character of the constitutive equation ne-

essitates discretizing it using the SUPG method proposed by Brooks

nd Hughes [66]:

�

{
ϒ

(
τ

p

)

 + Wi

∇

 +2Wi(1 − β)

∇
D −2(1 − β)

[
1 − ϒ

(
τ

p

)]
D

}

×χ iJd� = 0 (3.11)

The weighting function χ i is formed from the finite element basis

unction for the elastic stress components according to:

i = ψ i + hch

|v| v · ∇ψ i (3.12)

here |v| is the magnitude of the mean velocity and hch is a charac-

eristic length in each element. The mean velocity |v| in an element is

efined as |v| = (1/3)
∑3

n=1 |v|n, |v|n denoting the magnitude of the

elocity at the vertices of the corresponding triangular element. As a

haracteristic length hch, we used the square root of the area of each

riangular element.

ppendix B. The linearized equations

Substituting expressions (4.1) and (4.2) into the time-dependent

orm of the weak formulation of the governing equations (Eqs. (3.6)–

3.11)) and neglecting terms of order higher than the first in the per-

urbation parameter δ, the following set of linearized equations is ob-

ained from the corresponding momentum and mass balances and
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R

the PTT model, respectively:∫
�

[
−(∇P)b +

(∇ · 

)

b
+ 2

(∇φi
)

b
· γ̇

b

]
Jdd�

+
∫
�

[
−(∇P)d +

(∇ · 

)

d
+2

(∇φi
)

d
· γ̇

b
+ 2

(∇φi
)

b
· γ̇

d

]
Jbd�

+
∫
∂�

nb ·
(
−PbI+τ

b

)
φiQp+

[
np ·

(
−PdI + τ

d

)
+ nb ·

(
−PdI + τ

d

)]
×φiQbd� = 0 (A.1)

∫
�

ψ i[(∇ · v)dJb + (∇ · v)bJd]d� = 0 (A.2)

∫
e

χ i

(
ϒ

(
τ

p,b

)



b
+ Wi

∇



b
+ 2Wi(1 − β)

∇
D

b
− 2(1 − β)

[
1 − ϒ

(
τ

p,b

)]
D

b

)
Jdd�

+
∫

e

χ i

⎛
⎝ϒ

(
τ

p,d

)



b
+ ϒ

(
τ

p,b

)



d
+ Wi

∇


d

+ 2Wi(1 − β)
∇
D
d

−2(1 − β)
{[

1 − ϒ
(
τ

p,b

)]
D

d
+

[
1 − ϒ

(
τ

p,d

)]
D

b

}
⎞
⎠Jdd� = 0 (A.3)

∫
e

ψ i
(
G

d
− (∇v)d

)
Jbd� +

∫
e

ψ i
(
G

b
− (∇v)b

)
Jdd� = 0 (A.4)

The expression for the base state and perturbation of the poly-

meric stress is readily obtained from

τ
p,i

= 

i
+ (1 − β)

(
G

i
+ G

i

T
)
, i = b, d (A.5)

Moreover, the linearized weak formulation for the mesh genera-

tion equation is∫
e

[(∇φi
)

b
· (∇ξ)d +

(∇φi
)

d
· (∇ξ)b

]
[(1 − ε1) + ε1Sb]Jbd�

+
∫

e

[(∇φi
)

b
· (∇ξ)b

]
[(1 − ε1) + ε1Sd]Jbd�

+
∫

e

[(∇φi
)

b
· (∇ξ)b

]
[(1 − ε1) + ε1Sb]Jdd� = 0 (A.6)

∫
e

{[(∇φi
)

d
· (∇η)b +

(∇φi
)

b
· (∇η)d

]
Jb

+
(∇φi

)
b
· (∇η)bJd

}
d� = 0 (A.7)

where, in the above formulation the subscripts b and p denote the

base state value and the perturbation, respectively, of the correspond-

ing variable.

Boundary conditions: The above system of equations is subjected

to the following boundary conditions:

• No slip, no penetration at the wall (y = 1 and 0 ≤ x ≤l1):

vy,d = 0, vx,d = 0 (A.8)

• Plane of symmetry (y = 0):

vy,d = 0, vy,d = 0 dvx,d/dy = 0 (A.9)

• We assume that each perturbation of velocity and stress compo-

nents vanish at inflow boundary (x = 0):

vy,d = 0, vx,d = 0, 

d

= 0 (A.10)

• At the outflow boundary x = l1+l2, in order to minimize the nu-

merical error, we apply the open boundary condition, as we have

explained in Section 6.2
• Along the free surface we linearize the normal stress balance (Eq.

(2.11)) and end up with the following expression:

nd · ( − PbI + σ
b
) + nb · ( − PdI + σ

d
) = 2Hc,d

Ca
nb + 2Hc,b

Ca
nd,

(A.11)
which is introduced in Eq. (4.3) by replacing the corresponding

terms in the surface integral. Moreover, we linearize the time-

dependent form of the kinematic equation and end up with the

following equation:

∂yd

∂t

(
∂xb

∂η

)
− ∂xd

∂t

(
∂y

∂η

)
b

+ vx,d

(
∂y

∂η

)
b

+ vx,b

(
∂y

∂η

)
d

−vy,d

(
∂x

∂η

)
b

− vy,b

(
∂x

∂η

)
d

= 0, (A.12)

which is applied as a boundary equation for the mesh generation

equations.
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