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a b s t r a c t 

We examine the two-dimensional, steady flow of a viscoelastic film under the action of gravity over a 

substrate with periodic topographical features. We account for the rheology of the viscoelastic material 

using the exponential Phan–Thien and Tanner (PTT) constitutive model. The conservation equations are 

solved via the mixed finite element method combined with a quasi-elliptic grid generation scheme, while 

the viscoelastic stresses are discretized using the EVSS-G/SUPG method. Our scheme allows the computa- 

tion of accurate steady-state solutions up to high values of Deborah, Reynolds and capillary numbers. We 

perform a thorough parametric analysis to investigate the effect of the elastic, capillary and inertia forces 

on the flow characteristics. Our results indicate that surface tension and elasticity affect the film closer 

to the location with abrupt changes of the substrate topography; the sizes of the capillary ridge before 

a step down and of the depression before a step up are increased and move upstream as fluid elasticity 

or interfacial tension increase. It is shown that under creeping flow conditions the length scale of the 

capillary ridge increases with De following a power law of ¼, which can also be predicted by simple 

scaling arguments. Inertia has a more global effect on the film affecting larger portions of it, while in its 

presence the length scale of the capillary features is not affected significantly by the material elasticity. 

Moreover, it is shown that similarly to the case of Newtonian liquids, high inertia causes the formation of 

a ridge just after the step up. We also explore the effect of the geometrical characteristics of the substrate 

as well as its inclination angle and it is shown that the interface shape becomes more deformed as the 

topography appears wider, deeper or it approaches the vertical plane. 

© 2016 Published by Elsevier B.V. 
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. Introduction 

The flow of liquid films over a solid substrate with variable

opography is encountered in various liquid-film deposition and

rinting processes, in arrangements aiming at intensifying heat or

ass transfer operations or, on a much larger scale, in various ge-

logical phenomena. Typical examples include spin coating (Still-

agon and Larson [1] ), gravure printing (Booth [2] , Yin and Kumar

3] and Schwartz et al. [4] ), flows in two-phase heat exchangers

nd in adsorption or distillation columns using structured packings

Argyriadi et al. [5] ), mudslides and lava flows (Balmforth et al.

6] ). In these applications, the flow is typically driven by a body

orce (such as gravity or centrifugal force) or can be driven by

he motion of the substrate itself. The topography may have the

orm of periodic or localized depressions, protrusions, corrugations

r arrested particles and bubbles on the substrate. Naturally, the

resence of these topographic variations can lead to undesirable
∗ Corresponding author. 
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hickness variations of the coated layer or, conversely, can be ex-

loited, for example, to intensify the desired mixing of the material

n the film through induced fluid recirculation. Often, the flowing

aterial is a polymeric solution or a suspension of particles which

xhibit non-Newtonian properties (e.g. viscoelastic properties). The

resence of viscoelasticity may considerably affect the flow, intro-

ucing interesting effects on the flow arrangement and the film

hape. This will be the subject of the present work. Our goal is to

horoughly investigate the effect of the elastic, capillary and iner-

ia forces on the flow characteristics of a viscoelastic liquid flowing

ver a substrate with periodic topographical features of different

izes. 

Not surprisingly, film flows over topography have received con-

iderable attention in the literature (informative reviews can be

ound in Pavlidis et al. [7] and Cao et al. [8] ). Experimental in-

estigations include the work of Argyriadi et al. [5] who studied

he wave formation along the periodic corrugations of the inclined

lane and the effect of corrugation steepness and fluid inertia on

he static shapes of the film. They also reported conditions under

hich the flow is stabilized or evolves from 2D steady flow into

raveling waves or to near-solitary humps or to 3D flow consisting

http://dx.doi.org/10.1016/j.jnnfm.2016.06.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2016.06.011&domain=pdf
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of transverse arrays of depressions along the corrugation valleys.

Decré and Baret [9] quantified images of the film surface flow-

ing over step, trench, rectangular or square topographies of various

depths and lateral dimensions and film thicknesses up to 120 μm

and compared them with theoretical predictions. In addition, Wier-

schem & Aksel [10] and Scholle et al. [11] examined the effect of

film inertia and thickness on the separation eddies created in the

valleys of a corrugated wall. 

An early attempt to address this problem theoretically was

made by Pozrikidis [12] who studied the 2D flow over a wavy

wall using the boundary integral method under the Stokes flow

assumption. The same method was later used by Mazouchi and

Homsy [13] for the study of the 2D flow inside and out of a

square trench and by Blyth and Pozrikidis [14] for examining the

flow over a 3D obstacle attached on the substrate. Alternatively

and more frequently, the lubrication (long-wave) approximation

has been employed in such studies using topography-adjusted lu-

brication models, which, under conditions (low values of Ca ), were

able to retain relatively sharp and nearly rectangular the inden-

tations of the wall. In this context, Stillwagon and Larson [1] were

the first who used it to determine the film thickness variation over

a trench as it arises in spin coating. Kalliadasis et al. [15] deter-

mined the effect of the geometry of the trench or mount on the

film characteristics, while Tseluiko et al. [16] examined the possi-

bility of eliminating the film thickness variations by applying an

electric field normal to the substrate. Lenz and Kumar [17] , on the

other hand, investigated the case where there are two layers con-

fined in a channel, with one of the walls having topographical fea-

tures. The stability of Newtonian film flow over a step-down has

been reported by Kaliadasis and Homsy [18] for linear 2D distur-

bances and by Bielarz and Kalliadasis [19] to nonlinear 2D and 3D

disturbances. It has been shown that under the long-wave assump-

tion the film is stable, although the flow could be unstable based

on the similarity of the capillary ridge formed here before the step

down to that formed in a drop spreading on a rotating substrate,

which leads to the formation of rivulets, Fraysse and Homsy [20] . 

The limitations of the former approaches were investigated by

Gaskell et al. [21] and Veremieiev et al. [22] by actually solving the

exact NS equations in the presence of 2D square trenches. Simi-

larly, Zhou and Kumar [23] examined the limitations of lubrication

theory for two-layer flow in a channel containing a step. Heining

et al. [24] , on the other hand, examined the emergence of higher

harmonics on a film surface flowing over a wavy wall and com-

pared these results with those obtained via the integral boundary-

layer approximation. Extensive numerical solutions of the Navier-

Stokes equations for steady film flow over 2D periodic topogra-

phies with finite inertia and capillarity have also been reported

by Malamataris and Bontozoglou [25] and Bontozoglou and Ser-

ifi [26] using the finite element method. In the latter study, in-

teresting order-of-magnitude arguments of the gravity, capillary

and inertia terms in the momentum balance demonstrated that

the computed streamwise length of the capillary ridge/depression

decreases with Re , while its dependence on capillarity changes

from C a −1 / 3 to C a −1 / 2 as inertia increases from zero. Moreover, the

height of the capillary features first grows but then decreases with

increasing inertia, when finally the latter dominates capillarity. 

Despite the fact that polymeric solutions are typically used in

spin coating, the effect of viscoelasticity has been largely ignored

in the literature. In the first part of our study (Pavlidis et al. [7] )

we examined the viscoelastic flow, using the exponential Phan-Tien

and Tanner (ePTT) model, over a 2D trench under creeping flow

conditions. These conditions are relevant in spin coating where,

primarily, the very small film thickness ˜ H o = O (1 μm ) restrains the

Reynolds number to values well below unity. However, in other

processes the film thickness and its velocity may increase consider-

ably, as for example in the case of gravure printing, where thicker
lms arise ( ̃  H o = O (100 μm ) ) over patterns of similar depth and

idth flowing at much higher speeds than in spin coating ( ̃  U ≈
0 m/s ), hence increasing the Reynolds number up to 10. Moreover,

n heat and mass transfer operations the film Reynolds number can

ncrease up to O (200). The interaction of fluid inertia and elasticity

as been studied by Saprykin et al. [27] albeit under the long-wave

pproximation and assuming that De � 1; The Deborah number

s typically defined as the ratio of the fluid relaxation time and

he characteristic time of the flow, and it is often used as a mea-

ure of the elastic properties of the viscoelastic liquid. Therefore it

s important to extend our previous study in order to thoroughly

xamine the interplay of inertia forces with capillary, viscous and

lastic forces and their effect on the film thickness and planariza-

ion efficiency over steep topographical changes of the substrate.

o this end, we will not rely on the lubrication approximation, be-

ause it inadvertently underestimates the normal elastic stresses

e.g. see [28–31] ). In addition, we will employ a constitutive model

hat allows for more realistic variation of the shear and extensional

uid viscosities with the local rate of strain components, such as

he ePTT model [32,33] . In this way we will eliminate the main

ssumptions used by Saprykin et al. [27] and study more general

eometries and fluids with larger elastic effects, i.e. of the same

r larger magnitude than the viscous stresses (not perturbations of

nown results for Newtonian fluids). 

The rest of this paper is organized as follows: In Section 2 , we

riefly present the problem formulation and the solution method

sed, since the interested reader may find more details in our pre-

ious paper (Pavlidis et al. [7] ). In Section 3 , we validate our nu-

erical code by comparing its predictions with finite inertia to

hose reported previously for Newtonian fluids. In Section 4 , we

resent scaling laws as well as numerical results for the effect of

lasticity, capillarity and inertia and the influence of geometry on

ubstrate planarization. Finally concluding remarks are drawn in

ection 5 . 

. Problem formulation and method of solution 

We consider the steady, two-dimensional film-flow of a vis-

oelastic fluid driven by a body force over a substrate with iso-

ated or periodic square-trenches. In what follows, the tilde indi-

ates that the quantity under it has dimensions. The fluid is con-

idered to be incompressible with constant density ˜ ρ , surface ten-

ion ˜ σ , relaxation time ˜ λ and total dynamic viscosity under zero

hear ˜ μ = ˜ μs + ˜ μp ; ˜ μs and ˜ μp are the viscosities of the solvent

nd the polymer, respectively. The viscoelastic film thickness at the

ntrance of the flow domain is denoted with 

˜ H o ; a schematic of

he flow geometry is presented in Fig. 1 . At a distance ˜ L 
1 

from the

ntrance, the film encounters an orthogonal trench with length 

˜ L 
2 
,

hile the distance from the right end of the trench to the exit of

he flow domain is denoted with 

˜ L 3 . 
˜ D denotes the position of the

ottom wall of the trench. The flow is considered as gravity-driven

although the analysis for centrifugally-driven flow in spin coating

s similar as explained in Pavlidis et al. [7] ), with α the inclination

ngle that the substrate forms with the horizontal direction and g̃

he magnitude of the gravitational acceleration. Under the action

f gravity, a steady flow is generated. 

We scale all lengths with the film thickness, ˜ H o , and velocities

ith the cross-sectional average film velocity, ˜ U , at the entrance,

hile the pressure and stress components are scaled with a vis-

ous scale, ˜ μ ˜ U / ̃  H o . The dimensionless groups that arise are the

eynolds number, Re = ˜ ρ ˜ U ̃

 H o / ̃  μ, the capillary number, Ca = ˜ μ ˜ U / ̃  σ ,

he Deborah number, De = ̃

 λ ˜ U / ̃  H o , the generalized Stokes number,

t = ˜ ρ˜ g ̃  H 

2 
0 / ( ̃  μ ˜ U ) , the ratio of the solvent viscosity over the total

iscosity, β = ˜ μs / ̃  μ, and the geometric ratios l 1 = ̃

 L / ̃  H o , l 2 = ̃

 L / ̃  H o ,
1 2 
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Fig. 1. Schematic of the flow geometry, the coordinate system and variables characterizing the deformation of a film flowing over a substrate with 2D topography. 
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 3 = ̃

 L 3 / ̃
 H o and d = 

˜ D / ̃  H o ; d denotes the dimensionless trench depth

nd takes negative values since the origin of the Cartesian system

as been set at the level of the wall surface at the entrance of the

omain. 

The flow is governed by the momentum and mass conservation

quations, which in dimensionless form are: 

e u · ∇ u + ∇ P − St g − ∇ ·τ = 0 (1)

 · u = 0 (2) 

here ∇ denotes the gradient operator for Cartesian coordinates,

 = ( u x , u y ) , and P are the velocity vector and the pressure, respec-

ively; g = ( sin a, − cos a ) denotes the dimensionless gravity accel-

ration vector. The extra stress tensor, τ is split into a purely vis-

ous part, 2 β ˙ γ , and a polymeric contribution, τ
p 
: 

= 2 β ˙ γ + τ
p 
, (3) 

here ˙ γ is the rate-of-strain tensor defined as 

˙ = 

1 

2 

(∇ u + ∇ u 

T 
)
. (4) 

To describe the rheology of the viscoelastic fluid we employ the

ffine ePTT model [32,33] , 

xp 

[ 
ε 

1 − β
De tr τ

p 

] 
τ

p 
+ De 

(
u · ∇ τ

p 
− ∇ u 

T · τ
p 
− τ

p 
· ∇ u 

)
= 2 ( 1 − β) ̇ γ . (5) 

The viscoelastic fluid properties depend on the dimensionless

arameters, De, β and ɛ . Finite values of the parameter ɛ impose

n upper limit to the elongational viscosity, which increases as this

arameter decreases, while it introduces elongational and shear

hinning in the fluid model. 

The above equations are solved following the EVSS-G method

34,35] , which splits the polymeric part of the extra stress tensor

nto a purely elastic, 
, and a viscous part: 

p 
= 
 + 2 ( 1 − β) ̇ γ , (6) 

nd introduces an independent (continuous) interpolation, G , of

he components of the velocity gradient tensor 

 = ∇ u , (7) 

herever the latter arises in the constitutive equation. 

In terms of boundary conditions, along the free surface of the

lm the velocity field should satisfy a local force balance between

apillary forces, stresses in the liquid and pressure in the surround-

ng fluid and the velocity component normal to this free surface is

ero. On the walls of the substrate we impose the usual no-slip
nd no-penetration conditions. We also impose periodic boundary

onditions between the entrance and exit of the flow domain on

ll primary variables: both streamwise and normal velocity compo-

ents, pressure, fluid/air interface, velocity gradients and the poly-

eric part of the stresses. Note that film height at both the inlet

nd outlet boundaries is set equal to 1 due to our choice of char-

cteristic variables. 

It is important to note that, in general, the flow field will de-

iate from the classical Nusselt flat film solution even in the en-

rance. Hence, the numerical solution will determine the dimen-

ional film velocity and height in the entrance and from them the

tokes number, St , which appears in the momentum balance. In

ther words, St is not a parameter of our model but has to be

etermined as part of the solution by requiring that the average

lm velocity is equal to unity since the mean velocity at the in-

ow boundary, ˜ U , is used as a characteristic velocity for making

he model equations dimensionless. Therefore, the additional equa-

ion that arises is 

 x = 

∫ 1 

0 

u x d 

y = 1 . (8)

In order to solve numerically the above set of equations we

ave followed the procedure described in Pavlidis et al. [7] ). More

pecifically, the mixed finite element method is used to discretize

he velocity, velocity gradient, pressure and stress fields, com-

ined with streamwise upwinding for the constitutive equations

nd an elliptic grid generation scheme for the discretization of

he deformed physical domain (see Dimakopoulos and Tsamopou-

os [36] ). The generated mesh is refined locally around the convex

orners of the topography, as described in Chatzidai et al. [37] . 

. Comparison with 2D solutions for Newtonian film flow 

Our creeping flow results for Newtonian fluids have been vali-

ated already in Pavlidis et al. [7] , since they were found to quan-

itatively agree with the boundary integral solutions obtained by

azouchi and Homsy [13] . Here we extend this validation to finite

e by first comparing our results for a Newtonian fluid ( De = 0 )

ith the predictions provided by Gaskell et al. [21] for Re = 6 . 67 ,

 = −2 , l 1 = l 2 = l 3 = 40 and a = 90 o . 

Fig. 2 a shows that the calculated film shapes for two different

alues of Ca coincide with theirs. Secondly, we compare our pre-

ictions for even larger Re with those obtained by Bontozoglou and

erifi [26] for films over topography with isolated step changes for

 = 90 o . To enable a direct comparison with their results for iso-

ated steps and prevent higher inertia from affecting the periodic

oundary conditions, we increased the length of our topography to

 = l = l = 40 for the smaller Re values and to l = l = l = 60
1 2 3 1 2 3 
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Fig. 2. Comparison of our predictions for a vertically inclined substrate ( a = 90 o ) with previous studies by Gaskell et al. [21] (a) for Re = 6 . 67 and (b) by Bontozoglou and 

Serifi [26] for various Reynolds numbers at a step down or (c) at a step up for Ca = 0 . 025 . 
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for Re = 60 or 100. In Fig. 2 b our calculated film profiles are su-

perimposed to those in Bontozoglou and Serifi [26] for a step

down with Ca = 0 . 025 and d = −1 for various Re , while in Fig. 2 c

we present a similar comparison for a step up with d = −1 . 5 .

Our computations are in excellent agreement with those in Bon-

tozoglou and Serifi [26] up to Re = 60 , while some deviation is ob-

served for Re = 100 only around the ridge formed over the step up.

The reason for this deviation is unclear. It is certain however, that

we have used a much finer mesh than the one used in Bontozoglou

and Serifi [26] , which we have further locally refined around the

convex corners and that we have used a long enough distance from

the geometry corners to the inflow and outflow boundaries. 

4. Results and discussion 

Typical values of the various dimensional quantities in rel-

evant applications (Mazouchi and Homsy [13] , Kalliadasis et

al. [15] , Fraysse and Homsy [20] , Bontozoglou and Serifi [26] ,

Saprykin et al. [27] ) are ˜ μ = 1 − 50 0 0 cp, ˜ σ = 20 − 50 dyn/cm ,˜ ρ ≈ 10 3 kg/ m 

3 , ˜ H o = 0 . 5 μm − 1 mm , ̃  L 2 = 1 μm − 1 mm , | ̃  D | = 1 μm −
1 mm , ˜ U = 10 −3 − 10 3 cm/s , ˜ λ = 10 −3 − 1 s , which result in the fol-

lowing values for the dimensionless parameters: Ca = 10 −7 − 3 ,

Re = 10 −3 − 400 , De = 10 −5 − 10 2 , l = 1 − 10 3 and | d| = 0 . 1 − 10 2 .
2 
he numerical solutions that will be presented below cover a wide

ange of these parameter values. Since the effect of the rheolog-

cal parameters ε and β has been discussed in detail by Pavlidis

t al. [7] , we will keep these values constant, i.e. ε = 0 . 05 , β = 0 . 1 ,

nd focus our attention on the remaining parameters of our model.

his set of parameters corresponds to a liquid that exhibits the ef-

ect of shear thinning as well as an extensional viscosity which is

arying with extensional hardening followed by extensional thin-

ing for high values of De . For the substrate topography we choose

 representative ‘base’ case with l 1 = l 3 = 30 , l 2 = 20 and d = −1 ,

nless otherwise noted. The entrance and exit lengths are larger

han in our previous study (Pavlidis et al. [7] ) to ensure that, in

pite of the much smaller values of the capillary number used

ere, the flow is fully developed both at the inlet and outlet

oundaries. 

In the results that will follow, the film will be characterized by

ertain features, which can be easily quantified for comparing the

ffect on it of various flow and fluid parameters. In particular, be-

ore a step down a capillary ridge is formed and before a step up

 capillary depression arises. An important feature of the film is

he height of the capillary ridge, h cr = 

˜ H cr / ̃  H o , and the y -position

f the capillary depression, h cd = ( ̃  H cd − | ̃  D | ) / ̃  H o ; see Fig. 1 . An ad-

itional feature is a second ridge that appears above the step up,
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reated by inertia, the height of which is denoted by h ir = 

˜ H ir / ̃  H o .

hese features of the film have been used often in the literature

13,15,26] . 

.1. Scaling laws 

In this section, we will investigate the effect of gravity, elastic,

apillary and inertia forces on the flow characteristics by invok-

ng simple scaling arguments. As it will be shown, the approach

f [13,15,26] can be extended to take into account the effect of

lasticity in order to predict the streamwise length of the capil-

ary features of the film. In order to be able to write an order-

f-magnitude estimate of the streamwise momentum balance it

s necessary to derive proper scales for the velocity, pressure and

tresses. 

The characteristic scale for the velocity is based on the clas-

ical Nusselt solution for flow along a flat and vertical wall and

t is taken to be equal to the mean velocity, U = ρg H 

2 / (3 μ) . The

cale for the pressure disturbance can be obtained by balancing the

ressure to the usual interface curvature times the surface tension

s it appears in the normal stress balance, p ≈ σ∂ 2 h / ∂x 2 . Regard-

ng the stresses, in order to derive their characteristic scales it is

ecessary to distinguish between the cases of creeping and inertial

ow. 

.1.1. Creeping flow 

When the effect of inertia is negligible, it is possible to derive

he characteristic scales for the stresses by examining the predic-

ions of lubrication theory along the capillary features for a UCM

iquid ( ε = β = 0 ) (see Saprykin et al. [27] ). The shear stress pro-

le is prescribed mainly by the Newtonian part of the flow and

herefore for a vertically positioned surface, at leading order, it is

etermined as follows 

˜ p,xy ≈ ( ̃  p x − ρg)( ̃  y − ˜ h ) , (9) 

The normal xx -component of the polymeric stress, on the other

and, arises at the next order and is given by the following expres-

ion 

˜ p,xx ≈ 2 λ
∂ ̃  u x 

∂ ̃  y 
˜ τp,xy . (10) 

Using the above expressions and denoting with 

˜ H c the height

f the capillary features, which is taken to be at most comparable

o the local film height, ˜ H c ≈ ˜ H , and ̃

 L their streamwise length, we

nd up with the following scales for the pressure and polymeric

tresses 

˜ p ∼ ˜ σ ˜ H 

˜ L 2 
, ˜ τp,xy ∼ ˜ σ ˜ H 

2 

˜ L 3 
, ˜ τp,xx ∼ 2 

˜ λ ˜ U 

˜ H 

˜ σ ˜ H 

2 

˜ L 3 
= 2 De 

˜ σ ˜ H 

2 

˜ L 3 
. (11)

In our previous study (Pavlidis et al. [7] ) it was found that at

ntermediate to large values of De the capillary ridge gets higher

nd broader and in this sense, elasticity affects the film in the

ame way as capillarity. The physical mechanism leading to these

hanges is the following: inside the ridge, the streamlines are

urved and this leads to the development of hoop elastic stresses,

ue to the stretching of molecules, acting towards the center of

urvature and thus working cooperatively with the capillary pres-

ure to drive liquid in the transverse direction towards the trench.

hese two forces must be sufficient to balance the combined ef-

ect of gravity and inertia which drive liquid in the streamwise di-

ection. Taking this into account along with the scales discussed

bove, we write the following order-of-magnitude estimate of the

treamwise momentum balance 

˜ ̃  g ≈ ˜ σ ˜ H 

˜ L 3 
+ 2 De 

˜ σ ˜ H 

2 

˜ L 4 
⇒ 3 l 3 ≈ 1 

Ca 
+ 2 

De 

Ca 
l −1 , (12)
here elasticity and capillary pressure balance the effect of grav-

ty. Here l = ̃

 L / ̃  H denotes the dimensionless streamwise scale of the

apillary features. As discussed in Bontozoglou & Serifi [26] , the in-

uence of viscous forces that appears to be neglected in the above

alance is actually hidden in the definition of the velocity scale, U .

From Eq. (12) it is possible to identify 2 different limiting

egimes 

I. capillary-gravity regime (
De � C a −1 / 3 

)
: l ∼ C a −1 / 3 (13) 

II. elasticity-gravity regime (
De � C a −1 / 3 

)
: l ∼

(
De 

Ca 

)1 / 4 

(14) 

The first regime (I.) is identical to the one that has already been

dentified by Kalliadasis et al. [15] and Bontozoglou & Serifi [26] in

he case of a Newtonian fluid. When, however, the flow is domi-

ated by the elasticity of the material, and therefore the capillary

ffects can be neglected, another regime arises (II.), where gravity

s balanced by elasticity. By equating the two terms of the right

and side of Eq. (12) , it is possible to derive a criterion for the

ransition from the capillary-gravity regime to the elasticity-gravity

egime. Doing so, we find that the two terms balance when l = 2 De

nd by substituting back this value we end up with the following

xpression for the transition Deborah number 

 e t = 

(
1 

12 Ca 

)1 / 3 

. (15) 

.1.2. Inertial flow 

In order to derive the characteristic scales for the stresses in

he presence of finite inertia, we examine again the case of a UCM

iquid ( ε = β = 0 ) following however a similar methodology to the

ne that has been described in the works of Benney [38] , Krantz

 Goren [39] and Atherton & Homsy [40] for a Newtonian liquid,

.e. by expressing the velocity in terms of a stream function and us-

ng a long wave perturbation expansion (i.e. assuming disturbances

ith aspect ratio (height/length) δ � 1). It is found that the shear

tress profile is again prescribed mainly by the Newtonian part of

he flow which is now given by the following expression at leading

rder 

˜ p,xy ≈ ρg( ̃  y − ˜ h ) , (16) 

The above expression has been derived assuming that the We-

er number ( W e = ˜ ρ ˜ U 

2 ˜ H o / ̃  σ ) is of the order We ∼ O ( δ2 ). Un-

er this condition the effect of surface tension on shear stress,

˜ p,xy , becomes subdominant, therefore arising at the next order

see Atherton & Homsy [40] ). Such an assumption is not unrea-

onable and corresponds for instance to the cases shown in Fig. 2 a

aking as δ the aspect ratio of the capillary ridge. The normal xx -

omponent of the polymeric stress arises at the next order and is

iven by 

˜ p,xx ≈ 2 λ
∂ ̃  u x 

∂ ̃  y 
˜ τp,xy . (17) 

Using the above expressions and denoting with 

˜ H the height

f the capillary features and 

˜ L their streamwise length, we end up

ith the following scales for the pressure and polymeric stresses

˜ p ∼ ˜ σ ˜ H 

˜ L 2 
, ˜ τp,xy ∼ ˜ ρ ˜ g ̃  H , ˜ τp,xx ∼ 2 De ̃  ρ ˜ g ̃  H . (18)

Now, assuming that the flow is dominated by inertia it is pos-

ible to write the following order-of-magnitude estimate of the

treamwise momentum balance 

˜ ρ ˜ U 

2 

˜ L 
≈ ˜ σ ˜ H 

˜ L 3 
+ 2 De 

˜ ρ ˜ g ̃  H 

˜ L 
⇒ Re l 2 ≈ Re 

W e 
+ 6 De l 2 , (19)
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t  
where the combined effect of elasticity and capillary pressure bal-

ance the effect of inertia. For negligible elasticity, inertia is bal-

anced by the effect of surface tension and in this case we are able

to reproduce the regime that has been identified by Bontozoglou

& Serifi [26] in the case of a Newtonian fluid ( l ≈ W e −1 / 2 ). On the

other hand, for an elastic liquid and in the limit De � Re , it is

possible to derive from Eq. (19) the following expression for the

streamwise lengthscale 

l ≈ W e −1 / 2 
(

1 + 

3 De 

Re 

)
, (20)

which suggests that the lengthscale increases with De . We also ob-

serve in Eq. (19) that the streamwise length, l , is raised to the same

exponent in the inertia and elastic terms which indicates that l

does not scale to some power of De and therefore should not de-

pend strongly on the level of the material elasticity. 

The scaling arguments that have been presented here both for

creeping flow conditions and inertial flow will be checked against

our numerical results that will be presented below. 

4.2. Effect of surface tension 

We begin our numerical study by examining the case of a vis-

coelastic film with De = 2 , under creeping flow conditions ( Re = 0 ),

for various values of the Ca number. We also consider that the

substrate is vertically oriented ( a = 90 o ). Regarding the computed

value of the St number, it should be mentioned that it does not

vary with Ca and its dependence on De has been given in Fig. 14 of

Pavlidis et al. [7] . The free surface profiles are depicted in Fig. 3 a,

while the dependence of the most important film features, i.e. the

heights of the capillary ridge, h cr , and the capillary depression, h cd ,

on Ca are plotted in Fig. 3 b. The capillary ridge height monotoni-

cally decreases with increase of Ca , whereas the height of the cap-

illary depression first decreases and then increases with Ca . More-

over, both appear to move upstream, away from the topographical

feature, and the film variation around them becomes broader. We

also note that, for high values of Ca, the shape of the liquid-gas

interface follows more closely the topography of the substrate; the

opposite is true for low Ca values. The physical mechanism lead-

ing to these changes is the following: The increased capillary force

smooths out the film interface inside the trench. This leads to the

upstream movement of the capillary depression and to the merg-

ing of the initially distinct concave corners of the free film surface

to a single but deeper depression. When this starts occurring, the

flow in the middle of the cavity ceases to be fully developed, in

spite of its length, and the film variations around the step down

and the step up are no longer independent from each other. As

long as the film depression remains closer to the step up its ampli-

tude increases with decreasing Ca , but when it gets further away

from it reaching the middle of the trench, its amplitude starts to

decrease with decreasing Ca , because now capillarity more effec-

tively smooths out the film/air interface. Turning now into the cap-

illary rise before the step down, the smoothening of the film inside

the trench as Ca decreases makes necessary an increased maxi-

mum height of the ridge in order to maintain the pressure differ-

ence generated by capillarity, which changes the flow direction of

the film and drives it inside the trench. 

In general, capillarity is seen to act in the same way as with

Newtonian fluids, but the presence of viscoelasticity intensifies its

effects and maintains them for larger values of Ca . In Fig. 3 b we

observe that the height of the capillary ridge monotonically de-

creases with increasing Ca and at a value of Ca that depends on

De it becomes zero. For small values of De this occurs at a spe-

cific value of Ca ( h cr becomes equal to unity at Ca ≈ 0.55, 0.77 and

1.20 for De = 0 , 0.5 and 1, respectively), whereas for larger values

of De the height of the capillary ridge decreases asymptotically to
nity (see Fig. 3 c). Apparently, in the case of highly elastic liquids

he ridge is maintained even for large values of Ca . In terms of

he planarization efficiency this behaviour implies that in order to

chieve an unperturbed film thickness just before the step down

or materials with increasing elasticity (increasing De ) it would be

ecessary to increase the value of Ca as much as possible. Regard-

ng the capillary depression, the variation of h cd is similar for the

wo values of De in this figure, but De decreases the capillary de-

ression for the smaller values of Ca . 

The effect of viscoelasticity on the film features is also depicted

n Fig. 4 a and 4 b where we plot the variations of the maximum

idge height, h cr , and the minimum y -position of the capillary de-

ression, h cd , as a function of De with Ca as a parameter. In our

revious study (Pavlidis et al. [7] ) it was shown that for small

evels of fluid elasticity, h cr decreases with De due to the effect

f fluid elasticity and more specifically the presence of primary

ormal stress, τ p, xx , in the vicinity of the step down (see also

aprykin et al. [27] ). However, above a certain value of De , shear

nd elongational thinning become important leading to a reduc-

ion of the polymeric stresses and this in turn leads to increase

f the ridge height with De . As it is shown in Fig. 4 a, this non-

onotonic dependence exists for all Ca that have been examined,

lbeit it becomes weaker for high values of Ca ; the ridge height

ecreases significantly in the high Ca regime and thus its depen-

ence on De also decreases for low elasticity. We also note that

he critical value of De for which the monotonicity changes de-

ends on Ca , moving towards smaller values with decreasing sur-

ace tension. The picture is somewhat more complex for the cap-

llary depression, h cd , shown in Fig. 4 b. In the low De regime, h cd 

eakly increases with De whereas in the case of high elasticity the

epression may either deepen for large Ca values or decrease its

epth for small Ca . Interestingly, for highly elastic liquids, h cd may

ven acquire positive values for Ca = 0 . 01 which indicates that in

his case the free surface exhibits very little conformance to the

opography. 

As it was discussed in Section 4.1 , under creeping flow condi-

ions and for highly elastic liquids, the flow in the x -direction is

riven by gravity and it is balanced by the liquid elasticity which

rives the liquid inside the trench. In this elasticity-gravity regime

he streamwise length-scale of the ridge before the step down was

hown to scale as l ∼ ( De 
Ca ) 

1 / 4 . In order to check the above scaling

stimate, we compare it against our numerical results presented

bove. For the evaluation of the streamwise length scale, l , we

dopt the same definition with Bontozoglou & Serifi [26] , i.e. the

orizontal distance defined by the intersection of the unperturbed

lm surface (at y = 1 ) with the two tangents to the main ridge be-

ore the step down at the locations of maximum absolute slope.

he values of l calculated following the above procedure are plot-

ed in Fig. 5 a as a function of De for different values of Ca . Indeed,

he numerical data confirm the existence of a power law with ex-

onent 1/4 in the high De regime verifying the above asymptotic

imit. The dependence of l on Ca is also evident in this figure. By

aking into account that in the limit of a Newtonian fluid ( De = 0 )

he lengthscale varies as l newt ∼ C a −1 / 3 , the above scaling estimate

or the elastic liquid can be rewritten in terms of the normalized

engthscale as l / l newt ∼ ( DeCa 1/3 ) 1/4 . Interestingly, plotting l / l newt 

gainst DeCa 1/3 in Fig. 5 b we find that the different curves almost

ollapse to one thus corroborating the validity of our analysis. Fi-

ally, according to Eq. (15) the transition from the capillary-gravity

egime to the elasticity-gravity regime takes place for De t Ca 1/3 ≈
1/12) 1/3 , indicated with a vertical line in Fig. 5 b. 

.3. Effect of inertia 

We continue our study with the investigation of the interac-

ion of fluid inertia with viscoelasticity and how it may affect the
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Fig. 3. (a) Profiles of the calculated free surfaces for De = 2 and various Ca . Dependence of (b) h cr and h cd and (c) the net deviation height, h cr − 1 on Ca for various values 

of De . The remaining parameters are Re = 0 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 30 , l 2 = 20 , d = −1 , a = 90 o . 

Fig. 4. Dependence of (a) h cr and (b) h cd on De for various Ca . The remaining parameters are Re = 0 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 30 , l 2 = 20 , d = −1 , a = 90 o . 
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Fig. 5. Variation of (a) the streamwise lengthscale, l, on De and (b) the normalized streamwise lengthscale, l / l newt , on DeCa 1/3 . The remaining parameters are Re = 0 , ε = 0 . 05 , 

β = 0 . 1 , l 1 = l 3 = 30 , l 2 = 20 , d = −1 , a = 90 o . 

Fig. 6. Comparison of our predictions with previous study by Saprykin et al. [27] for (a) various Deborah numbers when Re = 5 . 69 and (b) various Reynolds numbers when 

De = 0 . 23 at a vertically oriented isolated step ( d = −1 , a = 90 o ). 
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resulting flow field. Before we proceed further it is useful to com-

pare first our 2D numerical simulations for finite inertia against

the predictions of Saprykin et al. [27] who employed the lubrica-

tion theory in the limit of De < < 1, while adopting the Maxwell

model to describe the fluid rheology. In Fig. 6 a we depict a com-

parison of the calculated free surface profiles for the case of an iso-

lated step ( d = −1 ) for Re = 5 . 69 and Ca = 

0 . 025 
3 and three different

values of De ; note that for comparison purposes the streamwise

length in this figure has been scaled with the capillary lengthscale

x ∗ = x C a 1 / 3 . This figure confirms that for finite inertia and in the

limit of small De our results are in good agreement with Saprykin

et al. [27] . However, as the elasticity of the material becomes more

important, the deviation between the two approaches appears to

increase significantly and as it is shown for De = 1 . 14 the lubri-

cation approximation considerably underestimates the size of the

capillary features. In order to evaluate how the validity of long-

wave theory depends on Re we fix De to a small value ( De = 0 . 23 )

and compare in Fig. 6 b the solutions for a wide range of Re val-
es keeping the same flow configuration. Clearly, our results are

n excellent agreement at the creeping flow limit, as should be

xpected, whereas the waves on the interface deviate not only

n height but also in modulation as Re increases. These results

re hardly surprising since the asymptotic expansion presented by

aprykin et al. [27] is valid under the assumptions of weak inertia

nd weak viscoelasticity. It is also important to note that one more

onstraint which arises from the analysis of Saprykin et al. [27] is

hat their analytical model is valid only for relatively high surface

ension values because of the long wave assumption. No such re-

triction applies in our numerical approach since we solve directly

he 2D problem without making simplifications of any kind. 

We turn now our attention back to the film flow over a rectan-

ular trench. In Fig. 7 free surface profiles are depicted for a wide

ange of Re and for Ca = 0 . 1 , De = 2 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 30 ,

 2 = 20 , d = −1 , a = 90 o . For moderate values of Re , we observe a

arked departure from the creeping flow limit, since the usual sin-

le capillary ridge and depression have been substituted by a wave
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Fig. 7. Profiles of the calculated free surfaces for De = 2 . The remaining parameters are Ca = 0 . 1 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 30 , l 2 = 20 , d = −1 , a = 90 o and various Re . 
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R

hich is spatially damped in the upstream direction in both cases.

t has been established already for a Newtonian fluid (see Bonto-

oglou & Serifi [26] ), that inertia apart from giving rise to a ridge

bove the step up, also generates damped waves that span almost

he entire film, in contrast to all other forces and parameters ex-

mined so far, which have a local effect on the film. Clearly, this

ehaviour is retained in the case of a viscoelastic liquid examined

ere. 

It is seen in Fig. 7 a that both waves near the step down and

he step up cover a larger distance as Re increases up to ∼6, while

heir maximum moves downstream and increases in amplitude. At

ven larger values of Re , Fig. 7 b, the location of their maximum

emains fixed and decreases in magnitude until they disappear for

ery high values of Re . On the other hand, the elevation of the free

urface which occurs immediately after the step up, hereafter re-

erred as the inertial ridge, appears to move downstream and grow

n size with increasing Re as in the case of Newtonian liquids. As it

ill be shown below the presence of viscoelasticity intensifies the

haracteristics of these features. 

The parametric variation of the flow characteristics with Re and

e numbers is shown in detail in Fig. 8 . More specifically, Fig. 8 a

hows the dependence of the Stokes number, which is calculated

s part of the solution using Eq. (8) , on Re for various De , while

a = 0 . 1 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 30 , l 2 = 20 and d = −1 . The

tokes number decreases with increasing De due to the effect of

hear thinning, introduced by the parameter ε, but has a rather

eak dependence on the Reynolds number. Regarding the char-

cteristics of the various interfacial features, we depict in Fig. 8 b

he dependence of the net height of the capillary ridge, h cr − 1 ,

n Re for various De . The height of the most prominent ridge near

he step down obtains its maximum value for intermediate Re val-

es, having a non-monotonic dependence with De , while for higher

e it drops to the unperturbed thickness. As the material becomes

ore elastic, the maximum height of this ridge increases while the

ransition to an unperturbed film thickness for higher Re becomes

teeper. A similar behavior is also found for the capillary depres-

ion which becomes deeper with increasing material elasticity; this

s shown in Fig. 8 c. Its amplitude is also maximized at moderate Re

i.e. Re < 20) whilst for larger Re values, h cd becomes very small

nd with a rather weak dependence on inertia and elasticity. 

The order-of-magnitude analysis presented in Section 4.1 sug-

ests that in the case of inertial flow the streamwise length-scale

f the capillary features should not depend strongly on the mate-
ial elasticity. In order to check this, we plot in Fig. 9 a the stream-

ise length-scale, l , (evaluated from the numerical solution in a

imilar manner with Fig. 5 ) as a function of De for Re = 10 and

a = 0 . 1 . The dependence of the streamwise lengthscale on the

aterial elasticity is indeed found to be rather weak in direct

greement with the analysis based on simple scaling arguments. 

According to Bontozoglou & Serifi [26] , in the case of a New-

onian fluid ( De = 0 ) the disappearance of the capillary ridge takes

lace for a constant value of the Weber number, W e = ReCa , in-

icating that when this happens inertia dominates over capillary

orces. Fig. 9 b demonstrates that this is also true in the case of a

iscoelastic material, albeit the disappearance of the ridge happens

t higher value of the We , since inertia has also to overcome the

ffect of elasticity. 

As it was noted above apart from the disappearance of the cap-

llary ridge, the presence of inertia is also responsible for the for-

ation of a ridge above the step up when Re is large enough. The

ppearance of this ridge is clearly caused by an overshoot of the

iquid film as it is deflected in the horizontal direction by the step;

ts height is denoted by h ir . Fig. 8 d depicts the net height of the in-

rtial ridge, h ir − 1 , as a function of Re . The inertial ridge arises be-

ond some critical value of Re , which depends on the level of elas-

icity of the material, and its size increases up to Re ≈ 20 for both

ewtonian and viscoelastic fluids. Nonetheless, the size of the in-

rtial ridge increases considerably with De , because the polymeric

hains try to maintain their configuration and flow direction. In the

ase of a mildly elastic material ( De = 0 . 5 ) further increase of Re ,

eads to a decrease of the inertial ridge height reaching the New-

onian limit whereas for the most elastic liquid ( De = 2 ), the ridge

ppears to keep growing with inertia. 

In order to visualize the flow inside the cavity we depict the

treamlines in Fig. 10 for De = 2 , Ca = 0 . 1 , ε = 0 . 05 , β = 0 . 1 , l 1 =
 3 = 30 , l 2 = 20 , d = −1 and a = 90 o and for three different val-

es of Re . Under creeping flow conditions the presence of elastic-

ty gives rise to a recirculation vortex in the downstream corner

f the cavity due to the effect of normal stresses; this is a well

nown property of a viscoelastic fluid when facing an abrupt con-

raction. Increase of the Reynolds number, however, leads eventu-

lly to the suppression of the formed wake whereas on the other

ide of the rectangular cavity we observe exactly the opposite be-

avior. At the bottom of the sudden expansion, flow separation oc-

urs for Re = 10 which becomes more prominent with increase of

e . 



210 M. Pavlidis et al. / Journal of Non-Newtonian Fluid Mechanics 234 (2016) 201–214 

Fig. 8. Dependence of (a) h cr − h o , (b) h cd , (c) h ir − h o and (d) St on Re for De = (0 , 0 . 5 , 2) . The remaining parameters are Ca = 0 . 1 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 30 , l 2 = 20 , 

d = −1 and a = 90 o . 

Fig. 9. (a) Dependence of the streamwise length-scale of the capillary ridge on De for Re = 10 and Ca = 0 . 1 , (b) The conditions where the capillary ridge disappears for 

De = (0 , 0 . 5 , 2) . The remaining parameters are ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 30 , l 2 = 20 , d = −1 and a = 90 o . 
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Fig. 10. Streamlines for various values of Re . The remaining parameters are Ca = 0 . 1 , De = 2 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 30 , l 2 = 20 , d = −1 and a = 90 o . 

Fig. 11. Dependence of (a) shapes of the predicted free surfaces and (b) streamlines on width, l 2 , for Re = 0 , Ca = 0 . 1 , De = 1 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 10 , d = −1 and 

a = 90 o . 
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.4. Effect of substrate geometry 

We continue our study with the investigation of the effect of

he various geometrical characteristics of the substrate topography,

.e. the effect of cavity width, l 2 , and depth, d . 

.4.1. Effect of the cavity width, l 2 
First we examine in Fig. 11 the effect of the cavity width, l 2 for

e = 0 , Ca = 0 . 1 , De = 1 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 10 d = −1 and

 = 90 o . The dependence of the free surface shape on the trench

idth is shown in Fig. 11 a. For cavities with narrow widths (low

alues of l 2 ) the interface remains almost unperturbed as less liq-

id enters in the smaller trench, but flows over it. In Fig. 11 b the

treamlines are presented and show that in the case of cavity with

he smallest width ( l 2 = 1 ) the fluid inside the cavity is essen-

ially trapped in this region and a single recirculation vortex cov-

rs the whole cavity. As the cavity width increases we find cases

 l 2 = 2 ) where a large volume of fluid is entrapped in two sepa-

ate co-rotating vortices which cover almost the whole bottom re-

ion; note that the flow between the vortices is negligibly small.
urther increase of the width leads to separation of the two eddy

ow structures which remain close to the concave corners. 

We observe that as l 2 increases, more viscoelastic fluid enters

nside the cavity and this leads to a distortion of the liquid-air

nterface. This also necessitates the formation of a capillary ridge

ith larger size, since there is greater need to re-orient the liquid

nside the cavity. Moreover, for the greatest examined width, we

ote the existence of a constant film thickness region inside the

rench. 

.4.2. Effect of the cavity depth, d 

Fig. 12 a shows the dependence of the free surface shape on

he trench depth for Re = 0 , Ca = 0 . 1 , De = 1 , ε = 0 . 05 , β = 0 . 1 ,

 1 = l 3 = 10 , l 2 = 20 and a = 90 o . We observe that as the trench

epth increases, both the sizes of capillary ridge and depression

ecome more intense. This can be explained by the fact that in

eeper cavities, the fluid needs to follow the substrate geome-

ry and to move in the transverse direction for longer distances.

he capillary pressure which forces the fluid to move in the nor-

al direction has to increase resulting in more prominent ridges.

imilarly, the capillary depression becomes enhanced so that the
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Fig. 12. Dependence of (a) shapes of the predicted free surfaces and (b) deviation heights normalized by the trench depth for Re = 0 , Ca = 0 . 1 , De = 1 , ε = 0 . 05 , β = 0 . 1 , 

l 1 = l 3 = 10 , l 2 = 20 and, a = 90 o . 
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capillary pressure pushes the fluid towards the topography at the

step up. This can be seen more clearly in Fig. 12 b where we plot

the net height of the capillary ridge (solid line) and depression

(dashed line) normalized by the trench depth. It is observed that

a linear variation exists between depth and these normalized cap-

illary features. Interestingly, these quantities remain unequal even

for the case of an infinitesimal depth contrary to the predictions

for a Newtonian fluid (Bontozoglou and Serifi [26] ) and this effect

can be attributed to material elasticity. 

4.5. Effect of inclination angle, α

So far we have examined the case of a vertically oriented sub-

strate. It is interesting though to examine the effect of the inclina-

tion angle, α, of the solid substrate on the flow of the viscoelastic

fluid. In Fig. 13 a we plot the free surface profiles for De = 2 and

various values of α. As the inclination angle departs from the ver-

tical case, the topology of the free surface changes drastically; the

ridge before the step down diminishes and the depression before

the step up is elevated and moves upstream. This is due to the fact

that with decreasing inclination angles the liquid is not driven in-

side the trench solely due to the effect of the capillary pressure but

the latter acts cooperatively with the increasing y -component of

gravity and therefore not as large capillary pressure is needed re-

ducing the height of the capillary ridge. The latter is also reflected

on the drastic change of the pressure field which is depicted in

Fig. 14 ; as the substrate approaches the horizontal plane, pressure

contours are becoming parallel to it. Pressure increases with in-

creasing depth because of the increasing weight of fluid exerting

downward force from above. On the contrary in the case of a ver-

tically oriented film the capillary-generated pressure is responsible

for driving the liquid inside the cavity. 

The dependence of the maximum ridge height, h cr , and depres-

sion depth, h cd , on αare shown more clearly in Fig. 13 b for two

different values of De . With decreasing α the height of the capil-

lary ridge, h cr , decreases up to a certain value of inclination angle

which depends strongly on De . Decreasing further the inclination

angle leads to a change of monotonicity albeit the ridge height

remains approximately equal to the unperturbed film thickness.

Regarding the capillary depression depth, h cd , we observe an el-

evation with decreasing αwhich becomes more pronounced in the

case of a viscoelastic fluid. 
Finally, the dependence of the calculated St number on α is de-

icted in Fig. 13 c. Moving from a vertically oriented film to a hor-

zontal one it is reasonable to expect that the average velocity will

ecrease. Since St is by definition inversely proportional to the av-

rage velocity, this implies that the value of St should increase with

 and this is indeed found by our simulations. We observe that in

he case of the viscoelastic fluid the rate of increase diminishes as

ompared to the case of a Newtonian fluid and this is attributed

o the shear thinning properties of the viscoelastic material which

llows higher flow rates for films of the same height. 

. Conclusions 

We have studied the steady film flow of a viscoelastic fluid

beying the PTT constitutive law focusing on the interaction of the

ffect of material elasticity with the effect of capillary and iner-

ia forces. We solve the 2D problem using the mixed finite ele-

ent method combined with an elliptic grid generation scheme.

he viscoelastic stresses where discretized using the EVSS-G/SUPG

ethod which allowed simulation up to high values of the Debo-

ah number. In order to validate our code we compared our predic-

ions with previous works concerning Newtonian and weakly vis-

oelastic materials. 

It is shown that viscoelasticity and surface tension act in the

ame way, i.e. capillary waves move upstream and become broader

ith increasing material elasticity. It appears therefore that the

ulk elasticity of the viscoelastic material has a similar effect to

urface tension, which can also be interpreted as the elasticity of

he interface. Interestingly, the streamwise length-scale of the cap-

llary ridge changes in a way that is directly evaluated using scaling

rguments and the predicted power law of De 1/4 compares favor-

bly with our numerical computations. Regarding the effect of in-

rtia forces, it is found that as Re increases up to moderate values,

oth capillary waves, near the step-down and step-up, become nar-

ower but further rise leads to a series of damped capillary waves

hich act more globally as compared to the effect of capillarity.

t appears, though, that the dependence of the streamwise length-

cale of these features on the material elasticity is not significant,

n accordance with the predictions of an order-of-magnitude anal-

sis. At the highest value of Re that we have examined, the sur-

ace topology changes drastically, i.e. the capillary waves disap-

ear from the region near the step down while an inertial ridge

rises immediately after the step up; these features arise also for a
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Fig. 13. Dependence of (a) shapes of the predicted free surfaces, (b) deviation height relative to Newtonian free surface, h v − h n , on inclination angle, α for De = 2 . (d) 

Dependence of St on a for De = (0 , 2) . The remaining parameters are Re = 0 , Ca = 0 . 1 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 10 , l 2 = 20 and d = −1 . 

Fig. 14. Pressure contours for (a) α = 90 ◦ and (b) α = 20 ◦ . The remaining parameters are Re = 0 , Ca = 0 . 1 , De = 2 , ε = 0 . 05 , β = 0 . 1 , l 1 = l 3 = 10 , l 2 = 20 and d = −1 . 
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ewtonian fluid but seem to intensify with increasing material

lasticity. We also investigate the effect of geometrical character-

stics of the substrate as well as its inclination angle with respect

o the acceleration of gravity. Interface deformation is more promi-

ent as the trench becomes broader or deeper. In the case of nar-

ow cavities strong recirculation takes place inside the cavity and

s a result the bulk liquid prefers not to enter in the trench but

o flow over it. Finally, regarding the effect of the inclination angle

t is shown that as the film becomes more horizontal the effect of

apillarity diminishes (increases) near the step-up (step-down) due
o the increased effect of gravity in the transverse direction of the

ow. 

The present analysis is based on the usual assumption that the

lm will wet the cavity completely. This may not be the case

n general, as we have demonstrated for Newtonian liquids re-

ently, Lampropoulos et al. [41] . Moreover, our study leaves open

he question about the stability of the computed steady solutions.

ewtonian films flowing over the limited length of the topography

ave been shown to be remarkably stable as opposed to the de-

elopment of travelling and solitary waves that arise in film flows
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over a planar wall (Kalliadasis & Homsy [18] ). On the other hand,

the effect of elasticity in the absence of topography has been ex-

amined in detail by Shaqfeh et al. [31] . These authors have shown

that the effect of elasticity can be quite involved even in the case

of a flat substrate. For small Reynolds numbers and De of O(1)

viscoelasticity destabilizes the flow, exhibiting though very small

growth rates, whilst for large values of De it was shown that the

elastic effects actually have a stabilizing effect on the flow. The

presence of topography will certainly complicate things even fur-

ther. Hence, this study must be supplemented not only by exam-

ining the stability of the present solutions, taking into account the

effect of streamwise and spanwise disturbances, but also by allow-

ing the film to partially wet the entire surface of the cavity in the

substrate. Such effort s are under way. 
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