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Synopsis

he injection of a viscoplastic material, driven by a constant pressure drop, inside a pipe or
etween two parallel coaxial disks under creeping flow conditions is examined. The transient
ature of both flow arrangements requires solving a time-dependent problem and fully accounting
or the advancing liquid/air interface. Material viscoplasticity is described by the Papanastasiou
onstitutive equation. A quasi-elliptic grid generation scheme is employed for the construction of
he mesh, combined with local mesh refinement near the material front and, periodically, full mesh
econstruction. All equations are solved using the mixed finite element/Galerkin formulation
oupled with the implicit Euler method. For a viscoplastic fluid, the flow field changes
ualitatively from that of a Newtonian fluid because the material gets detached from the walls. For
mall Bingham numbers, the contact line moves in the flow direction, so that initially the flow
esembles that of a Newtonian fluid, but even in that case detachment eventually occurs. The
istance covered by the contact line, before detachment takes place, decreases as the Bingham
umber increases. For large enough Bingham numbers, the fluid may even detach from the wall
ithout advancing appreciably. In pipe flow, when detachment occurs, unyielded material arises at

he front and the flow changes into one under constant flow rate with pressure distribution that
oes not vary with time. In the flow between disks, it remains decelerating and the material keeps
earranging at its front because of the increased cross section through which it advances. The wall
etachment we predict has been observed experimentally by Bates and Bridgwater �Chem. Eng.
ci. 55, 3003–3012 �2000�� in radial flow of pastes between two disks. © 2009 The Society of
heology. �DOI: 10.1122/1.3191779�

. INTRODUCTION

The transient injection of a viscoplastic fluid inside a pipe or between two parallel
isks is examined. Both of these flows are encountered in several processes with practical
nterest. For example, the radial flow between two parallel disks is a model of the process
f filling with cement thin fractures at the walls of oil wells in the oil industry, in order
o avoid oil leakage into them and deterioration of the well operation �Peysson et al.
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1156 PAPAIOANNOU et al.
2005�; Peysson �private communication, 2006��. A similar application but in a larger
cale is that of grout injection in large cavities created in underground mines. This filling
f the gaps that separate the successive layers of rocks with coal mine and power plant
aste materials is essential to avoid mine subsidence �Mills �2001��. In addition, various

ndustrial processes include radial flow of pastes between flat surfaces, for example, in
eramic manufacturing �Huang and Oliver �1999��. Pipe flow of a viscoplastic material is
ncountered in various engineering processes. Some of them are the transport of waxy
rude oil through pipelines �Vinay et al. �2006��, of lignite-in-water slurries for the
xploitation of lignite deposits �Davis and Mai �1991��, and the pumping of mud suspen-
ions during the drilling of a borehole �Billingham and Ferguson �1993��. Our aim here is
o develop rigorous and efficient predictive tools capable of simulating both flows of
iscoplastic materials.

The materials mentioned above are all viscoplastic: they do not obey Newton’s law of
iscosity, but a constitutive law that distinguishes two different material behaviors in their
olume. In the first one, the material behaves as a viscous inelastic liquid and, therefore,
t flows with a viscosity that depends on the local rate of strain, while in the other one it
ehaves as a rigid solid. The first constitutive law proposed to describe this material
ehavior is the Bingham model �Bingham �1922��. It states that in the first region the
econd invariant of the stress ��=�� exceeds a particular value, which is called yield stress,
nd the material viscosity is finite and constant, whereas in the second one, ��=�� is equal
o or less than this value and the viscosity is practically infinite. Early on, this model was
pplied only in one-dimensional �1D� flows. In the context of radial flow between disks,
ai and Bird �1981� used it first to obtain an analytical solution for the flow in a plane slit

nd then tried to extend this solution to radial flow. In this way, they predicted an
nyielded region around the plane of symmetry between the disks. Unfortunately, this is
nown to be false, as explained by Lipscomb and Denn �1984� and by Smyrnaios and
samopoulos �2001�. As the common boundary of the two distinct regions �the so-called
ield surface� is approached, the exact Bingham model becomes singular. The complexity
n applying this model increases because the yield surface is usually not known a priori
ut must be determined as part of the solution. In simple flows, for which analytical
olutions are possible, this singularity does not generate a problem, but, in more complex
ows which require numerical solution, it leads to profound computational problems. A
are successful analysis of a two-dimensional �2D� flow, where this constitutive law was
sed, was presented by Beris et al. �1985�, who computed the creeping flow around a
alling isolated sphere in a viscoplastic fluid. Even in this very basic flow, a complicated
umerical solution was needed to find the shape and location of the yield surfaces.
nother exception is the case of Vinay et al. �2006�, who examined the start up of weakly

ompressible pipeline flows of waxy crude oils. It required a complex method based on
agrange multipliers to solve numerically the system of equations including the afore-
entioned constitutive law. The same method was used by Roquet and Saramito �2003�

o determine the flow of viscoplastic fluids around a cylinder. Finally, approximate solu-
ions can be obtained by applying variational principles, e.g., Frigaard et al. �2003� and
ubash and Frigaard �2004�.
In order to overcome such difficulties, several modifications of the Bingham consti-

utive equation have been introduced to produce a non-singular constitutive law, by
ntroducing some “regularization” parameter �Frigaard and Nouar �2005��. Besides, ex-
eriments have not shown definitively that such a singularity actually exists �Barnes
1999��. In the present study, we will use one such model, which seems to perform better
han the others according to Frigaard and Nouar �2005�, the exponential model proposed

y Papanastasiou �1987�,
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1157INJECTION OF VISCOPLASTIC MATERIALS
�=� = − ���
� +

�y
��1 − e−m��̇�

�
�̇� ��̇

=

�, �1�

here �̇
=

� is the rate of strain tensor, defined as �̇
=

�=��
�v� �+ ��� �v� ��T, �̇� is its second

nvariant, �̇�=� 1
2 �̇
=

� : �̇
=

��1/2, and m� is the stress growth exponent or regularization param-
ter. The symbols that are followed by an asterisk denote dimensional quantities, and this
onvention will be used hereafter. In the limit that m�→�, the original Bingham model
s recovered. In fact the predictions of these two models are indistinguishable in the
uasi-steady squeeze flow studied by Smyrnaios and Tsamopoulos �2001�, when large
nough values of m� are used. However, Burgos et al. �1999� argued that too large values
hould not be used because they adversely affect the numerical stability and stiffness of
he resulting discrete system. The Papanastasiou model has been extensively used by
everal researchers in the past. For example, Matsoukas and Mitsoulis �2003� and
lorides et al. �2007� used it to study the quasi-steady squeeze flow and Tsamopoulos
t al. �2008� used it to determine the flow around a rising and deformable bubble. In
ransient flows, Tsamopoulos et al. �1996� employed it to simulate the thinning of a
iscoplastic fluid film on a rotating disk in the process of spin coating, Dimakopoulos and
samopoulos �2003a� used it to study the displacement of a viscoplastic material by air in
traight and suddenly constricted tubes, Karapetsas and Tsamopoulos �2006� used it to
tudy the transient squeeze flow of viscoplastic materials under either a constant disk
elocity or a constant applied force on the disks, and Chatzimina et al. �2007� used it to
xamine the cessation of annular Poiseuille flow, where they calculated the time for the
omplete cessation of this flow.

The key feature of the flows examined herein is their transient character, which is
artly due to the moving and deforming interfaces. The first who described the behavior
f an advancing liquid front in a duct was Rose �1961�. He used the terms “fountain
ffect” and “spill over,” to describe the motion of fluid elements as they decelerated while
pproaching the interface, if that motion is observed with a reference frame moving with
he interface, and moved toward the wall. Several contributions on fountain flow have
een reported since then. As such, we mention the work of Mavridis et al. �1986�, who
imulated the transient flow of a highly viscous Newtonian fluid between two flat infinite
lates. They found that the fluid elements behind the advancing flow front eventually take
V-shape, in complete agreement with experiments. Actually, Coyle et al. �1987� com-

leted this picture and showed that the complex shear and elongational deformation
istories of fluid particles in fountain flow lead to a “mushroom” shape of a tracer line
nitially placed perpendicular to the axis of symmetry and away from the flow front.
ehrens et al. �1987� carried out experiments with Newtonian fluids advancing in a
ylindrical tube and presented numerical simulations. Mavridis et al. �1988� simulated
he flow of a Newtonian fluid inside a tube, using the results of Behrens et al. �1987� for
alidation. Fountain flow has also been studied with various, more complex fluids. Quite
ecently, Grillet et al. �2002� conducted both experimental and numerical work in ana-
yzing surface defects, which arise in injection molding of polymer melts. They con-
luded from the experiments that these defects are caused by flow instabilities during the
lling of the mold, while the stability analysis that they performed predicted accurately

hese instabilities. Later on, Bogaerds et al. �2004� extended this work by investigating
he effect of fluid elasticity on the stability characteristics of the injection molding pro-
ess.

Radial flow between parallel disks has also been extensively studied in the literature.

ome notable contributions are those of Berger and Gogos �1973� and Wu et al. �1974�,



w
C
v
s
i
m
B
o
c
m

b
c
c
c
e
s
t
y

S
n
p

I

a
p
f
s
c
i
a
fl
m
t
s
r
u
f
p
l
p
t
s
p
c
f
f

1158 PAPAIOANNOU et al.
ho simulated numerically the transient non-isothermal flow of power-law fluids, and of
o and Stewart �1982�, who provided the numerical solution for the steady isothermal
iscoelastic flow from a tube into a radial slit. More recently, Chung and Kwon �2002�
olved for the non-isothermal Stokes flow of fiber suspensions in center-gated disks and
n a film-gated strip predicting, additionally, fiber orientation. On the other hand, experi-

ental work associated with the injection flow between parallel disks was reported by
ates and Bridgwater �2000�, who used pastes for their experiments and provided useful
bservations, while Peysson et al. �2005� and Peysson �private communication, 2006�
arried out experiments and approximate analysis with a Newtonian fluid and bentonite
ud.
The two primary ways by which injection of a fluid inside a cylindrical tube or

etween two parallel disks can take place are either under a constant flow rate or under a
onstant pressure drop applied between the inlet and the outlet, depending on the appli-
ation. In the present work, we studied the case in which the flow is generated by a
onstant pressure drop. We perform transient simulations of both flows and study the
ffect of the yield stress on the velocity and pressure fields, as well as on the location and
hape of the advancing front and the yield surfaces. Moreover, we highlight the qualita-
ive departure of the flow field in such materials from that of Newtonian fluids as their
ield stress increases.

The governing equations and the boundary conditions for both problems are given in
ec. II. The finite element algorithm as well as mesh generation and refinement tech-
iques are described in Sec. III. In Sec. IV we present the results of the complete
arametric analysis of both flows. Finally, conclusions are drawn in Sec. V.

I. PROBLEM FORMULATION

We consider the isothermal flow of a viscoplastic fluid with a constant yield stress �y
�

nd, upon yielding, a constant dynamic viscosity �o
�. We assume that the fluid is incom-

ressible with a constant density �� and that the fluid-air interface has a constant inter-
acial tension ��. This work deals with two different flow geometries, which, however,
hare many common elements as we will see below. In the first one, presented schemati-
ally in Fig. 1�a�, a pipe of inner radius R� is partially filled with a viscoplastic fluid. The
nitial control volume of the fluid is a perfect cylinder of radius R� and length equal to the
xial distance between the location, where a constant pressure is applied and the initially
at liquid front L�. The second geometry is shown schematically in Fig. 1�b�. Here, the
aterial is injected through a hole in the center of two parallel and co-axial disks to fill

he space between them. Initially, this space is partially filled with material, while the free
urface of the fluid is a perfectly cylindrical one. To eliminate the effect of the flow
earrangement that takes place near the injection hole, we define the initial control vol-
me so that its inflow boundary at L1

� and the initial position of the liquid/air interface are
ar enough from it. Their actual values are determined numerically by trial and error. This
rocedure makes again the flow field at the inflow boundary nearly 1D. The short-dotted
ines in Fig. 1�b� indicate the initial control volume. Moreover, to make sure that the
ressures on the inflow boundary do not undergo appreciable variation during the flow,
he initial distance of the free surface from it, L� and L2

�, is large enough, so that a
ufficient amount of fluid exists at start up in the control volume. These simplifications
ermit us to avoid additional computational cost without losing any of the significant
haracteristics of the flows examined in this paper. Moreover, assuming that gravitational
orces are negligible, which is often the case for such flows of viscoplastic materials �see,

or example, Karapetsas and Tsamopoulos �2006��, we can introduce additional symme-
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1159INJECTION OF VISCOPLASTIC MATERIALS
ries in the flow: an axis of symmetry at r�=0 in the case of pipe flow or a plane of
ymmetry at z�=0 in the case of radial flow. In both cases, the pressure inside the fluid is
niform initially, while the ambient pressure is taken to be zero. At start up, the pressure
f the air remains zero, whereas the pressure of the fluid at the inflow boundary is
ncreased abruptly from zero to Pin

� , thus, setting the fluid in motion. This change causes
uid injection in both geometries and deformation of the liquid/air interface.

For scaling the governing equations, we choose as characteristic length for the pipe
ow its radius R� and for the radial flow the half distance between the two disks H�. Time

s scaled with D� /V�, where D� stands for either H� or R� in the corresponding problem,
nd V� is a characteristic velocity. Pressure and stresses are scaled with the viscous scale

0
�V� /D�. There are at least two choices for the characteristic velocity:

�a� Because of the monotonically decelerating nature of both flows, one may select as
� the velocity at the intersection of the fluid/air interface with the plane or the axis of
ymmetry, depending on the geometry, at t=0+. This choice is convenient because it sets
ts maximum dimensionless value to unity always, irrespective of the fluid yield stress,
he applied pressure, or the initial amount of fluid. This ensures that the order of magni-
ude of �̇ is large enough, allowing us to use the same moderate values for the dimen-
ionless exponent N=m�V� /D� in the Papanastasiou constitutive equation and achieve
onvergence to the original Bingham model, even when �̇ is reduced by about one order
f magnitude toward the end of the simulations. The validity of our choice for the
imensionless exponent N�300–400 has been confirmed by numerous numerical ex-
eriments. In other words, we have made a consistent choice of this regularizing param-
ter as recommended by the analysis of Frigaard and Nouar �2005�. Moreover, the same
trict criterion 10−10 for convergence of the Newton–Raphson iterations can be used.

� � � �

IG. 1. Initial arrangement of a finite amount of viscoplastic fluid �a� in a semi-infinite pipe and �b� between
arallel and coaxial disks.
hen, the dimensionless groups that arise are the Reynolds number Re=� V D /�0, the
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1160 PAPAIOANNOU et al.
ingham number Bn=�y
�D� /�0

�V�, and the Capillary number Ca=�0
�V� /��. In addition,

he geometric ratios that arise are l=L� /R� for the pipe flow and l1=L1
� /H� and l2

L2
� /H� for the radial flow between the disks.
�b� Alternatively, the scaling can be based on the applied pressure difference 	P�, and

� can be derived from it ignoring the flow in the advancing front �in the case of the pipe,
his is like assuming fully developed Stokes flow� and balancing the pressure difference
riving the flow 	P� to the wall shear stress �0

�V� /D�, yielding V�=	P�D� /�0
�. Then the

imensionless variables and groups will be defined differently and will be indicated by an
verbar. Their values are related to those defined above as follows:

	P = 1, V̄ = V/Pin, t̄ = Pin/t, Bn 	 �y
�/	P� = Bn/Pin, and N̄ 	 m�	P�/�0

� = m�V�/D�

= NPin, �2�

here Pin is the initial dimensionless pressure difference according to the first scaling �a�
nd determined by our simulations, and N is the dimensionless exponent in the Papanas-
asiou model. For the reasons presented in �a�, we have used the first scaling in the
imulations and the results to be presented subsequently. The last relation in Eq. �2� is
specially important. It indicates that the dimensionless exponent according to scaling �b�
hould increase with the applied pressure, whereas according to scaling �a� it can be kept

onstant. Moreover, the numerical values required for N̄ should be 30–60 times larger
depending on Pin which in turn depends on the other problem parameters� than our N
alues in order for the Papanastasiou model to be close enough to the original Bingham
odel. This is another indication that, although the values we used for the dimensionless

xponent may seem low, they correspond to much higher values of the exponent one
ould have to use with the scalings in �b�.
The flow of an incompressible fluid is governed by the momentum and mass conser-

ation equations, which, in their dimensionless form, are

Re
Dv�
Dt

+ �� P + �� · �= = 0, �3�

�� · v� = 0, �4�

here �= is the viscous part of the total stress tensor �=,

�= = − PI= + �= , �5�

� , P are the axisymmetric velocity vector and the pressure, respectively, while D /Dt
enotes the material derivative and � denotes the gradient operator. Under typical ex-
erimental conditions for viscoplastic materials, creeping flow conditions prevail and
ereafter we will take Re=0. To complete the description of the flow problem, a consti-
utive equation that describes the rheology of the fluid is required. In the present study,
e employ the regularized constitutive model proposed by Papanastasiou �1987�, which

elates the stress tensor �= to the rate of strain tensor �̇
=

by a simple relation with expo-
ential dependence of the effective viscosity on the rate of strain. The dimensionless form
f this constitutive equation is

�= = − �1 + Bn
1 − e−N�̇

�̇
��̇
=

, �6�

here N is the stress growth exponent N=m�V� /D�. In the simulations to be presented in

his paper, we have chosen N=400 for the radial flow problem, so that this parameter
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1161INJECTION OF VISCOPLASTIC MATERIALS
oes not affect our predictions. The same value was used for the pipe flow for Bn
2.
owever, for this geometry we found that for higher values of Bn, it was necessary to

ower this value to 300 because convergence could not be easily obtained with higher
alues of N and still results were not affected by this lower choice.

. Boundary and initial conditions

The boundary conditions will be presented for conciseness in a general formulation for
oth problems. Hereafter, we will indicate with n� and t� the outward unit normal and unit
angential vectors, respectively, on the corresponding boundary. Along the free surface,
he velocity field should satisfy a local force balance between surface tension and viscous
tresses in the liquid, setting the pressure in the surrounding gas to zero �datum pressure�

n� · �= =
2H

Ca
n� , �7�

here 2H is the mean curvature of the free surface, defined as

2H = − �� s · n� , �� s = �I= − n�n� � · �� . �8�

aking the tangential and normal to the free surface components of this force balance, we
btain

t�n� :�= = 0, �9a�

n�n� :�= =
2H

Ca
. �9b�

On the surface of the disk or the internal pipe wall, the usual no-slip and no penetra-
ion conditions are imposed,

t� · v� = 0, n� · v� = 0. �10�

n addition, either on the plane of symmetry z=0 for the radial flow or on the axis of
ymmetry r=0 for the pipe flow, we impose the typical boundary conditions for flow
ymmetry

n� · v� = 0, t�n� :�= = 0. �11�

As far as the inflow boundary is concerned, we consider that there the flow is 1D and,
hus, the tangential component of the velocity vector is zero,

t� · v� = 0. �12�

t the same location, we impose a constant value on the pressure from the start of the
ow, since this is the examined type of flow, using the open boundary condition proposed
y Papanastasiou et al. �1992�. We should mention here that the value of the dimension-
ess pressure Pin is determined by requiring that the dimensionless velocity at the tip of
he air-liquid interface at t=0+ is equal to unity, since the initial tip velocity is used as a
haracteristic velocity. Finally, the model is completed by assuming that for both prob-
ems the fluid is at rest initially, v� �r ,z , t=0�=0.

II. NUMERICAL IMPLEMENTATION

In order to numerically solve the governing equations and accurately simulate both

ows, we chose the mixed finite element method combined with an elliptic grid genera-
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1162 PAPAIOANNOU et al.
ion scheme for the discretization of the deforming physical domain. This method was
ombined with mesh refinement to resolve the flow, where this is needed the most as well
s with occasional mesh reconstruction, to improve the spatial discretization when it was
ecessary.

. Elliptic grid generation

We use a set of partial differential equations, the solution of which generates a
oundary-fitted discretization of the deforming domain occupied by the liquid. This
ethod was developed by Dimakopoulos and Tsamopoulos �2003b� and was successfully

pplied in various complex flows, involving free surfaces undergoing large deformations
Dimakopoulos and Tsamopoulos �2003a�; Dimakopoulos and Tsamopoulos �2007�;
arapetsas and Tsamopoulos �2006�; Tsamopoulos et al. �2008��. Here, we will only
resent our adaptation of its essential features to the current problem. The interested
eader may refer to Dimakopoulos and Tsamopoulos �2003b� for further details on all the
mportant issues of the method. With this scheme, the time-dependent physical domain is

apped onto a fixed with time computational one. The mapping depends on the flow
eometry,

�r ,z�→ �� ,��, for the pipe flow,
�z ,r�→ �� ,��, for the flow between parallel disks.

A fixed computational mesh is generated in the latter domain, while, through the
apping, the corresponding mesh in the physical domain follows its deformations. As

nitial computational domain for each geometry, we choose here the initial control vol-
me defined above. This mapping is based on the solution of the following system of
uasi-elliptic partial differential equations,

�� · 
1� r�
2 + z�

2

r�
2 + z�

2 �� � + �1 − 1��� �� = 0, �13�

�� · �� � = 0, �14�

here 1 is a parameter that adjusts the orthogonality of the resulting mesh; its value is
hosen by trial and error, and here it is set to 0.1. The mesh in the physical domain
eforms, with a velocity which is not necessarily equal to the local fluid velocity, and
herefore this method belongs to the group of arbitrary-Langrangian-Eulerian methods.
he solution of these differential equations requires the imposition of the appropriate
oundary conditions. In both problems, along the moving interface we impose the kine-
atic equation,

DF�

Dt
= v� , �15�

here F� =re�r+ze�z is its position vector, together with a condition to uniformly distribute
he interfacial nodes. On each of the remaining boundaries, which are fixed, two condi-
ions are imposed. The first one determines their position, while the other one distributes
niformly the nodes along the boundary line. Either an algebraic distribution or the
enalty method is applied for that purpose �see Dimakopoulos and Tsamopoulos

2003b��.
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1163INJECTION OF VISCOPLASTIC MATERIALS
. Global mesh reconstruction

The free surface of the fluid becomes highly deformed as the fluid advances with time.
arts of it come very close to the solid wall and, possibly, into contact with it. Therefore,
new triple contact point is created ahead of the previous one. In order to deal with this
roblem, we adapted the method first described by Behrens et al. �1987� and Mavridis
t al. �1988� and later on advanced by Poslinski and Tsamopoulos �1990, 1991�, Kara-
etsas and Tsamopoulos �2006� and Dimakopoulos and Tsamopoulos �2007� to model the
otion of the contact line in transient flows when the capillary number is very large, as

n the present case. This makes capillary forces insignificant when compared to viscous
orces and the apparent contact angle equals 180°. Thus, at start up the interface, which
s initially perpendicular to the wall, deforms and the contact angle increases, while the
o-slip condition keeps the contact line fixed. When the contact angle becomes 180°,
oints from the advancing interface come in contact with the wall and the contact line
ffectively moves. This implies a rolling motion of the liquid around the contact line,
hich is occupied by a different material point as it translates downstream. Different

djustments of the time stepping and treatment of the collision of material points with the
all have been employed in the above papers without an appreciable effect. Having used
much smaller and adjustable time step, we found that, in Newtonian fluids, only the

ode, which is nearest to the wall, simply approached it with a very small velocity
ecause of the no-slip condition at the neighboring contact point. This nearest point never
urpassed the wall and was considered attached to it when the distance from it was less
han 10−4. Consequently, we managed to retain the no-slip condition on the wall and
llowed the flow kinematics near it to dictate the advancement of the contact point.

A consequence of this rolling motion is that as time passes, more nodes collide with
he wall making the discretization of the free surface coarser. The importance of this
dverse effect increases with time, especially for those simulations that proceed to very
ong times. In order to overcome these difficulties, we have developed a mesh recon-
truction scheme. The goal is for the free surface to retrieve all its nodes that collided
ith the bounding wall and to attain again its original element density. In Fig. 2, we

IG. 2. Schematic representation of the remapping scheme of the interfacial nodes �a� before and �b� after the
rocedure.
ighlight the differences of a mesh before and after the reconstruction procedure. As one
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1164 PAPAIOANNOU et al.
an clearly notice in Fig. 2�a�, the free surface has been deformed and its discretization
as become coarser because eight of its elements have collided with the wall. In Fig. 2�b�
t is shown that, after the mesh reconstruction, these eight elements became again part of
he free surface and the mesh in the contact point region became less distorted. This
rocedure is applied after a certain number of nodes, have collided with the wall and
efore the free surface has lost too many nodes, in order to preserve the accuracy of our
omputations. Typically, this occurred after one element collided with the wall, but this
umber could be adjusted up to eight elements. At the chosen time step, time integration
s paused until the generation of the new mesh is completed and the values of the solution
ectors are assigned to the new locations of the nodes.

The basic steps of this procedure are:

a� Define the new computational domain to extend from the position of the inflow
boundary to the current location of the triple contact point.

b� Reconstruct the new mesh in the physical domain by solving the elliptic mesh
generation equations and applying as boundary conditions the position of all bound-
aries. As initial guess, the new computational domain is used. The position of the
fixed boundaries is known and simple algebraic equations are applied for the equal
distribution of the nodes along them. The procedure for the free surface nodes,
though, is not as simple: in the perpendicular to flow direction, the nodes are placed
in the position they had just after the previous remeshing, i.e., the initial number of
nodes on the front is restored. Given this position, we use interpolation techniques
to calculate from the old mesh the new positions of the nodes in the flow direction.
It was found that this is a good way to achieve a uniform distribution of the nodes
on the free surface during the remeshing. However, we should note here that for
these calculations, a continuation procedure is needed in order to achieve conver-
gence, since the computational mesh is not a very good initial guess for the new
mesh in the physical domain.

c� Compute the values of velocity and pressure vectors at the new grid points using
interpolation and search techniques between the old and the new mesh.

. Local mesh refinement

In order to increase the accuracy of the solution in the region near the deforming flow
ront and simultaneously reduce the computational cost, the h-refinement method has
een used. The h-method was proposed by Szabo and Babuska �1991�, who subdivided
he elements in which the error measure was larger than a prescribed tolerance. Later,
siveriotis and Brown �1993� applied a non-conforming splitting of rectangular elements

n a free boundary problem and argued that local mesh refinement is essential in cases
here elliptic grid generators are used because this technique relaxes the requirements on

he mapping equations and provides a greater flexibility on the handling of the grid.
lternatively, Chatzidai et al. �2009� developed and tested a conforming splitting of

riangular elements to refine locally the mesh around a corner. This method has been
dapted to the present problem. For further details about it and the benefits from using it
n various flows, one may also refer to Chatzidai et al. �2009�.

An example of the resulting mesh following this procedure in the present problem is
hown in Fig. 3. Here, two levels of local refinement are shown for the case of a
iscoplastic material flowing between two disks. As the material flows outward in the
adial direction, it gets detached from the disk wall. Part of the fluid and the interface

pproaches the wall as the fluid advances but never comes into contact with the disk
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1165INJECTION OF VISCOPLASTIC MATERIALS
urface �more details on this subject will be presented in Sec. IV�. As time passes, the
ength of the free surface increases significantly resulting in an increased size of the
lements at the interface, which could lead to loss of accuracy in our computations. When
his type of interface deformation arises, the contact line does not move and the collision
f nodes with the disk surface stops, rendering the mesh reconstruction technique, de-
cribed earlier, useless. This makes the employment of the local mesh refinement scheme
ssential for our computations, since it allows assigning more nodes to the interface and
he area around it without increasing excessively the overall computational cost. An
dditional benefit is the fact that we expect that unyielded material will arise near the free
urface due to the low stresses that the fluid experiences there and the refined mesh will
elp in resolving the yield surface more accurately.

. Mixed finite element method

The discretization of the flow and mesh equations is performed using the mixed finite
lement/Galerkin method. The computational domain is discretized using triangular ele-
ents as already described. We approximate the velocity and position vectors with six-

ode Lagrangian basis functions �i and the pressure with three-node Lagrangian basis
unctions �i.

Applying the divergence theorem, the weak form of the momentum balances is given
s


�
�Re

Dv�
Dt

�i + ��i · �=�d� + 
�

�n� · �=��id� = 0, �16�

hile the weak form of the mass balances is


�

�i � · v�d� = 0, �17�

here d� and d� are the differential volume and surface area, respectively. The bound-
ry integral that appears in the momentum equations is split into four parts, and each one
f them corresponds to a boundary of the physical domain and the relevant boundary
ondition is applied therein. More specifically, the term of the surface integral that cor-
esponds to the interface involves second order derivatives, through the definition of the
ean curvature H. In order to avoid dealing with them, we have used an equivalent

ormulation for it,

2Hn� =
dt�

ds
−

n�

R2
, �18�

here the first term describes the change of the tangential vector along the free surface

IG. 3. Typical mesh with two levels of local refinement behind the advancing front for the flow between two
isks with Bn=5, N=400, and Pin=53.13 at time t=3.33
nd R2 is the second principal radius of curvature. At the remaining boundaries, the
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1166 PAPAIOANNOU et al.
omentum balances are replaced by the essential conditions imposed therein.
The weak form of the mesh generation equations is derived in a similar way applying

he divergence theorem,


�


1� r�
2 + z�

2

r�
2 + z�

2 + �1 − 1���� � · �� �id� = 0, �19�


�

�� � · �� �id� = 0. �20�

. Solution procedure

The resulting set of discrete equations is integrated in time with the implicit Euler
ethod. An automatically adjusted time step is used for that purpose, which ensures the

onvergence and optimizes code performance �Dimakopoulos and Tsamopoulos �2007��.
he final set of algebraic equations is non-linear and an iterative solver has to be used. In
articular, they are solved in each time step using a two-step Newton–Raphson/non-linear
auss–Seidel iteration scheme, which decouples the flow equations from the mesh gen-

ration equations. The former ones are solved first on the grid points of the physical
omain determined from the previous time step until convergence, and the computed flow
ariables are used for the solution of the spatial equations. The iterations of the Newton–
aphson method are terminated using 5�10−10 as tolerance for the absolute error of the

esidual vector. This is an effective method because it results in significantly smaller
acobian matrices, which are easier to handle. The Jacobian matrices that are generated
re stored in a compressed sparse row format �Saad �2000��, and the linearized system is
olved by Gaussian elimination using PARDISO, a robust, hybrid, and sparse matrix-solver
Schenk and Gärtner �2004�; Schenk et al. �2000��. A number of convergence tests have
hown which mesh is sufficient to give accurate results in either geometry for the various
ingham numbers used. The selected meshes are shown in Table I. Meshes M2 and M3
ere used for the pipe flow. The former mesh was used for a Newtonian fluid or materials
ith low Bingham numbers �e.g., Bn=0.5�. At higher Bingham numbers leading quite

arly to detachment of the fluid from the pipe wall, a more refined mesh near the free
urface is needed and, as such, mesh M3 was found to be satisfactory. In radial flow
etween parallel disks, even the initial flow domain is larger in the radial direction
equiring the finer mesh M1 for all the simulations. The initial time step for all the
imulations was 	t=10−5. The codes were written in FORTRAN 90 and were run on a
orkstation with dual Xeon CPU at 2.8 GHz in the Laboratory of Computational Fluid

ABLE I. Properties of the finite element meshes used in this paper.

esh

Initial number of 1D elements
Levels of

local refinement

Number of 1D
elements on

the free surface
Number of

triangular elements
Total number
of unknowns� -direction � -direction

1 20 80 2 80 9020 78133
2 30 60 1 60 6870 59507
3 30 60 2 120 13410 115529
ynamics. Each run typically required 4–5 days to complete.
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1167INJECTION OF VISCOPLASTIC MATERIALS
. Yield surface determination

Using the exact Bingham model, the shape and location of the yield surface can be
btained by two criteria: it is either the contour surface where the second invariant of the
ate of strain tensor equals zero �̇=0, or the one where the second invariant of the stress
quals the Bingham number ��=�=Bn. However, it is clear that these two criteria are not
quivalent using the Papanastasiou model. This is because this constitutive model is
ifferentiable and predicts small but non-zero values of �̇ for regions, where ��=��Bn.
herefore, in this case the only acceptable criterion is the second one �Dimakopoulos and
samopoulos �2003a��. The main differences between these two criteria were also exten-
ively discussed by Karapetsas and Tsamopoulos �2006�. According to the second one,
he material yields when the second invariant of the stresses exceeds the yield stress,
hich is summarized by the following:

yielded material: ��� � Bn, �21a�

unyielded material: ��� 
 Bn. �21b�

In order to calculate the second invariant of the stresses, the gradient of the velocity is
eeded. The latter, however, is discontinuous at the sides of each element of the mesh,
nd its calculation directly at the nodes is not possible. A nice way to overcome this
ifficulty is to obtain a continuous approximation of the extra stress tensor using the
alerkin projection method,


�

�i�T= − �=�d� = 0, �22�

here T= stands for the continuous approximation of the stress tensor �=. A similar proce-
ure is followed to obtain contours of �̇.

V. RESULTS AND DISCUSSION

A parametric analysis for both flow arrangements is presented here. The qualitative
hanges in their main characteristics as the yield stress increases are the outstanding
eatures in the present study. In Sec. IV A, we present results for the pipe flow, while in
ec. IV B we present results for the flow between two parallel disks.

. Flow inside a cylindrical pipe

To set the stage for the discussion that follows, it is useful to examine first the
volution of certain variables when a Newtonian fluid, i.e., Bn=0, flows inside a straight
ipe. Taking the initial length of the control volume as l=4 leads to a dimensionless
pplied pressure at the inlet boundary of Pin=16.45. As an indicative value of the weak
apillary effects, we take Ca=103 in this and all subsequent simulations. The upper and
ower halves of Fig. 4 illustrate the contour lines of the radial and axial velocities,
espectively, at three time instants. The left and right boundaries of each plot correspond
o the inflow boundary and the fluid/air interface, respectively. We observe that the free
urface, which was initially flat, deforms everywhere and that, after its initial develop-
ent, it retains its shape even at large times. As expected, the computed flow to some

xtent from the inflow boundary is 1D and it is in quantitative agreement with the
nalytical solutions for fully developed Poiseuille flow in a pipe �Bird et al. �1960��.
ndeed, the pressure difference we calculate between z=0 and z=2, where the flow

hould be fully developed, is 	P=3.727 at time t=15.83. Using this pressure gradient in
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1168 PAPAIOANNOU et al.
he expression for Poiseuille flow yields a maximum axial velocity of Umax=0.466, which
s identical to the value calculated from our simulations. This test is a direct validation of
ur code.

Closer to the free surface, however, the flow becomes 2D. At every instant, the axial
elocity takes its maximum value at the intersection of the inflow boundary with the axis
f symmetry, and this value remains constant along the axis of symmetry up to an axial
osition about two radii behind the tip. However, radially its value monotonically de-
reases toward its minimum �zero� value at the pipe wall, where the no-slip condition is
mposed. We notice that the velocity decreases with time throughout the domain. The
eceleration of the flow is expected because during the simulation we impose a constant
ressure drop on increasing amounts of fluid in the expanding control volume, which
ncrease the viscous resistance. As for the radial velocity, it takes non-zero values only
lose to the liquid-air interface. Its maximum value is located near the contact line. There,
he material is displaced slowly toward the pipe wall and the aforementioned wetting
rocess of the pipe takes place. Moreover, we observe that the radial velocity is one order
f magnitude smaller than the axial one and decreases with time as well. In fact in
ountain flow and near the flow front, the radial velocity is of the same order of magni-
ude as the difference between the axial velocity and its average value. The radial velocity
akes negligible values in the rest of the domain, verifying that the flow there is 1D.
imilarly, the pressure as well as the stress variation is 1D far away from the free surface.
he variation in the shear stress �rz and the pressure are shown on the lower and upper

IG. 4. Contours of the radial, upper half, and the axial, lower half, velocity component of a Newtonian fluid
n a straight pipe at �a� t=6.62, �b� t=15.83, and �c� t=20.36 for �Ca,Bn, l , Pin�= �103 ,0 ,4 ,16.45�. The interval
etween the max and min vz in each snapshot was divided by 16, 15, and 14 contour lines, respectively. The
umber of contour lines for vr in each of the three snapshots is 16, 14, and 14, respectively. The M2 mesh was
sed.
alf of the domain in Fig. 5, respectively. This snapshot is taken at time t=15.83 �same
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1169INJECTION OF VISCOPLASTIC MATERIALS
s Fig. 4�b��. We observe that the pressure depends only on the axial direction almost up
o the triple contact point and that �rz exhibits a strong singularity at that point where the
ransition from the no-slip to the shear-free condition at the interface of the fluid takes
lace. Away from the liquid front, the distances between the P or the �rz contours are
qual, verifying that in Newtonian liquids the pressure or the shear stress depend linearly
n the axial and the radial distance, respectively. The �rz contours bend toward the triple
ontact point, as they approach the liquid front.

In order to validate further our numerical code, we compared our simulation results
ith the experimental data provided by Behrens et al. �1987� for Newtonian fluids as
ell, advancing in straight cylindrical tubes. The comparison is demonstrated in Fig. 6.
hese data relate the axial distance between the flow front tip and the triple contact point

tip-zc, with the axial displacement of the front tip ztip-ztip,init. Although a constant flow
ate was maintained in the experiments, our numerical results show very good agreement
ith their data, indicating that the front shape is not affected by the condition driving the
ow. Initially, the interface is flat and the triple contact point has the same axial position
ith the tip. Subsequently, the difference of these two positions increases as the free

urface deforms, while at larger axial tip positions it reaches asymptotically a constant

IG. 5. Contours of the pressure field, upper half, and �rz, lower half of a Newtonian fluid at time t=15.83 for
Ca,Bn, l , Pin�= �103 ,0 ,4 ,16.45�. There are 31 contour lines for �rz and 36 contour lines for the pressure.

IG. 6. Variation in the axial distance between the flow front tip and the triple contact point ztip-zc, with the
xial position of the front tip ztip for a Newtonian fluid in a straight pipe with �Ca,Bn, l , Pin�
�103 ,0 ,4 ,16.45�. Comparison with experimental data provided by Behrens et al. �1987�. The same symbols
ave been used for all the experimental data, although the indicated variation is caused because the experiments

ook place with different fluids, pipe diameters, and flow rates.
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alue, since the free surface acquires a constant pattern. It is known from experiments
nd earlier simulations inside a tube �Behrens et al. �1987�� that this constant value for

tip-zc is 0.83�0.04 and that the front shape is nearly circular.
The effect of material viscoplasticity is shown in Fig. 7, the upper half of which gives

he contours of the second invariant of the stress ��=�, while its lower half gives the
ontours of axial velocity, at three time instances, for a relatively small Bingham number
n=0.5, while N=400. To set in motion the same amount of liquid as in the Newtonian
ase l=4 and under the same capillary forces, Ca=103, requires a higher applied pressure

Pin=23.00 because of the material yield stress. The vz contours are parallel to the tube
all far from the free surface but are bent toward the axis of symmetry or the interface in

he same area that the radial velocity takes non-zero values, just as in the Newtonian case.
ar from the interface, the only non-zero stress is the shear stress. However, it takes zero
alues on the axis of symmetry and, thus, unyielded material should arise in that area.
he unyielded domains can be determined easily �see Eq. �21�� by computing the yield
urface where ��=�=Bn. The upper half of each snapshot in Fig. 7 depicts the isolines of
�=� for values greater than the dimensionless yield stress Bn=0.5, while the shaded areas
ndicate the unyielded material. Indeed, we notice that far from the interface, unyielded
aterial arises in the core region of the pipe, surrounding the axis of symmetry, as

xpected. Closer to the interface, however, things are quite different: the contours of ��=�,
rom nearly parallel to the tube walls, bend and intersect the axis of symmetry preventing
he unyielded material from reaching the free surface of the fluid. We observe that the
ize of the unyielded domain grows significantly, as time passes both in the radial and in

IG. 7. Contours of the second invariant of the stresses, upper half, and the axial component of the velocity,
ower half, of a viscoplastic fluid in a straight pipe at �a� t=2.51, �b� t=6.80, and �c� t=15.68. The dimension-
ess parameters are �Ca,Bn,N , l , Pin�= �103 ,0.5,400,4 ,23.0�. The range between the maximum and minimum
alue of vz in each of the three snapshots was divided by 13, 11, and 10 contour lines, respectively. The number
f isolines for the second invariant of the stresses in each snapshot is 28. The M2 mesh was used.
he axial directions. The evolution of the maximum radius and the axial length of the
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1171INJECTION OF VISCOPLASTIC MATERIALS
nyielded material is presented more clearly in Table II. The growth of the unyielded
aterial in the axial direction is due to the axial displacement of the free surface as the
uid advances. On the other hand, its growth in the radial direction occurs because the
uid continuously decelerates and experiences ever decreasing stresses with time and, as
result, a larger part of the fluid experiences a stress magnitude lower than the yield

tress of the fluid. For this small value of Bingham number and up to the time indicated,
he material behaves similar to the Newtonian case: as the fluid advances in the pipe after
he initial transient deformation, the cross section of its front remains nearly semicircular
orming a constantly moving contact point. Although at the liquid front the tangential
tress is identically zero, the fountain-like motion of the nearby material is strong enough,
o that unyielded material, at least for the interval that the simulation lasted, does not
rise here.

This simulation provides another possibility for a critical validation test of our code by
omparing its predictions with the analytical solution given in Bird et al. �1960� for the
ully developed flow inside a tube of a viscoplastic fluid, which follows the exact Bing-
am model. More specifically, Table III presents the differences in mean pressure 	P
alculated between the inflow boundary z=0 and z=2 at different times. Then the radius

o of the unyielded region in the core of the tube is calculated analytically

ro =
2Bn�	z�

	P
, �23�

hile ro,sim is the corresponding radius computed with the present simulation. One time
nstant was used also from the above results t=15.68 to analytically calculate the velocity
rofile at z=2,

vz = 0.6910�1 − r2� − 0.5�1 − r�, ro � 0.3618,

vz = 0.2814, ro 
 0.3618. �24�

TABLE II. Extent of unyielded region of a viscoplastic in a pipe material
with Bn=0.5, N=400, and Ca=1000.

Time t Maximum radius of core region Length of core region

2.51 0.219 4.264
6.80 0.281 5.728

10.73 0.324 6.702
15.68 0.368 7.695

TABLE III. Comparison of the radius of unyielded domain in a pipe at
various time instants between the analytically predicted value ro and the
calculated one using the present code ro,sim for a material with Bn=0.5,
N=400, and Ca=1000.

Time t Pressure drop 	P ro ro,sim at z=2

2.51 9.3697 0.2135 0.2179
6.80 7.2503 0.2759 0.2798

15.68 5.5282 0.3618 0.3641
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The comparison of the analytical velocity profile with the solid line �Eq. �24�� and the
elocity profile extracted from the data of the simulation with the dotted line are shown
n the Fig. 8. The two curves coincide except for a small area around the bending of the
rofile at ro=0.361 8, verifying not only the accuracy of the present simulations but also
hat the value of the exponential parameter we chose was large enough, so that the
redictions of the two models are identical.

Increasing the material yield stress introduces a very interesting departure from this
icture. Figure 9 illustrates the injection of a viscoplastic fluid with Bn=3 and N=300.
he increased material yield stress requires an even higher applied pressure Pin=52.17 to
ive to the same amount of material and the same capillarity the value of unity to the
nitial dimensionless tip velocity. The figure gives ��=�, on its upper part, and pressure, on
ts lower part, at three time instants. From the first snapshot of this figure at t=1.38 �Fig.
�a��, we deduce that at very early times the contact point has moved slightly following
he motion of the liquid front. Indeed, the axial position of the triple contact point is at

c=4.17, while initially it was at zc=4. However, after this instant the material interface
loser to the wall becomes nearly parallel to it. As more and more fluid enters the control
olume, the front advances but clearly it remains detached from the tube wall leaving the
ontact line stationary. We should note here that as the simulation proceeds, the length of
he free surface increases significantly. It is characteristic that at time t=8.23, the total
ength of the cross section of the free surface has almost quintupled from its initial value
t start up. This makes apparent the need for a local refinement scheme near it in order to
ssign more nodes to the free surface and retain the desired accuracy of our computations
ithout increasing excessively the overall computational cost.
The unyielded material is represented by the shaded areas, in the upper half of each

napshot in Fig. 9. We observe that unyielded material arises both in the core region of
he tube as with Bn=0.5, but now also in the region close to the free surface. With Bn
3 and while the interface deforms from flat to curved, the flow field is strong enough
ear the liquid front to keep the stress in the material near it above its yield value.

IG. 8. Comparison of the analytical prediction for the axial velocity profile with numerical simulation along

=2 with 	P̄=5.5282 at t=15.68 for Bn=0.5.
owever, when the front only slightly deforms from its curved shape, the small stresses
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1173INJECTION OF VISCOPLASTIC MATERIALS
hat the fluid experiences near it are not sufficient to overcome the yield value and an
nyielded material is formed there. It should be reminded here that the movement of the
ontact line is due to a spilling motion of fluid from the advancing front because the
ontact point remains fixed in space while it is overtaken by fluid from the front. All these
ncrease locally the material viscosity and prevent new viscoplastic material, moving in
ountain-type flow, from approaching the contact point, and leading to detachment. From
hat instant onward, the material behind the front advances as a solid and the unyielded
egion right behind the material front grows axially following it in its motion, while its
eft point at the axis of symmetry remains at about the same position z�4.6. Starting
rom that point, the yield surface bends back toward the triple contact point but remains
head of it. Therefore, as the material passes the region of the contact point, it becomes
etached from the wall and solid-like and, hence, it maintains its steady motion without
onsuming additional energy to do so. Thus, the viscous resistance at the pipe wall does
ot increase, since the fluid in contact with the wall does not increase either. In other
ords, although the material ahead of the contact point increases, its unyielded condition
revents the flow from developing any more. For this reason, the area of the unyielded
aterial in the core region of the tube does not change significantly with time, in contrast

o the previous simulation with Bn=0.5. This can be readily seen in Table IV, where ro,sim

or the two time instants 3.33 and 8.23, when the detachment had already occurred,
emains the same at 0.5194. Similarly, after it reaches zc=4.17, the triple contact point
oes not move. The material detachment from the wall and the high values of stress that
re retained around the contact point stop the translation of the yield surfaces toward each
ther and prevent them from merging. The radial growth of the unyielded domain in the

IG. 9. Contours of the second invariant of the stresses, upper half, and the pressure field, lower half of a
iscoplastic fluid at �a� t=1.38, �b� t=3.33, and �c� t=8.23 for �Ca,Bn,N , l , Pin�= �103 ,3 ,300,4 ,52.17�. In each
f the three snapshots, we have plotted 40 isolines for ��=� and 30 isolines for the pressure. The M3 mesh was
sed.
ore region of the fluid for Bn=0.5 occurs because of the deceleration of the flow.
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1174 PAPAIOANNOU et al.
eceleration, however, for Bn=3 does not take place, as explained above. To verify this
ew picture, Fig. 9 demonstrates that along the tube wall ��=� is nearly constant throughout
he simulation and in spite of the large advancement of fluid in the tube. This confirms
hat the variation of the viscous forces opposing the constant applied pressure difference
s negligible and the fluid does not decelerate as in the previous two simulations, but it
etains an almost steady flow rate. The flow around the triple contact point remains
nvariant after detachment producing a plug of constant radius ahead of it.

As for the pressure shown in the lower part of Fig. 9, we notice that it exhibits a
trongly 2D character at the axial position near the triple contact point and between the
wo unyielded domains. Moreover, we observe that even closer to the inflow boundary
he contours of pressure are not straight lines showing a weak dependence on the radial
irection in contrast to the Newtonian solution. At long times, the pressure shows very
mall variation near the free surface, as expected, due to the plug-like flow in that area.
n addition, the variation of pressure does not change significantly among the three time
nstants shown in the figure. For example, at the position with coordinates �r ,z�
�0.96,2.00�, the value of pressure changes very slightly taking successively the values
8.15, 28.22, and 28.22. This is not surprising since viscous resistance to flow does not
ncrease with time.

The time evolution of the shape of the fluid/air interface is illustrated more clearly in
ig. 10 for the two Bn values. The interface of the material with Bn=0.5 retains a nearly
emi-circular profile. Closer examination reveals that it slowly becomes straighter near
he wall and bends more abruptly at a small distance from it. In addition, the distance

tip-zc increases slowly with time. In contrast to this when Bn=3, the triple contact point,
fter a small initial movement, remains stationary while the free surface deforms and
ontinues to advance. Looking more closely, we observe that just ahead of the contact
oint the free surface bents slightly away from the tube wall, and, subsequently, becomes
lmost parallel to it. It seems that the free surface in this part does not expand in the
adial direction at all, keeping constantly the circumference of the material at a tiny
istance from the wall. At an ever-increasing distance from the contact point, this part of
he interface turns slightly toward the wall becoming convex without, however, reaching
t and, finally, sharply turns toward the axis of symmetry. This is the part of the material
hat first became unyielded at its front and its shape is reminiscent of the fountain-type
ow that was taking place there before the yield condition was not satisfied.

In order to examine the mechanism leading to detachment further and see if any
hanges occur in the flow characteristics before and after it, first we examined the veloc-
ty field. For example, we compared the values of the tip velocity vs. the plug velocity of
he upstream flow of a material with Bn=3 at three time instances �one well before, one
lose to, and one after detachment�, but we did not observe anything special happening.

TABLE IV. Comparison of the radius of unyielded domain in a pipe at
various time instants between the analytically predicted value ro and the
calculated one using the present code ro,sim for a material with Bn=3, N
=300, and Ca=1000.

Time t Pressure drop 	P ro ro,sim at z=2

1.38 23.8192 0.5038 0.5199
3.33 23.7466 0.5053 0.5194
8.23 23.7541 0.5052 0.5194
hen, we examined whether the stresses undergo a qualitative change when detachment
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1175INJECTION OF VISCOPLASTIC MATERIALS
ccurs. We focused on the radial normal stress because this is the component that could
nduce detachment from the wall. Indeed, we found out that �rr takes negative values
round the contact point, the magnitude of which is maximized at the contact point
ssuming larger values than any other stress component. This occurs before detachment,
ut it becomes more pronounced during and after it. Near the contact point and in
ewtonian fluids, �rr also takes negative values; but on the contrary to viscoplastic fluids

heir magnitude decreases with time and separation does not take place. Clearly, it is the
ncrease in the plastic contribution to the effective viscosity in viscoplastic materials
nduced by the reduction of �̇ near the contact point, which leads to the increase in the
bsolute values of �rr and finally to detachment.

It would be interesting to see the effect of separation on the flow rate. To this end, we
ave plotted the evolution of the velocity at the tip of the interface Vz,tip for various Bn
alues in Fig. 11. The curve of Vz,tip for the Newtonian fluid is concave starting from
nity and monotonically decaying, showing clearly the decelerating nature of the flow.
or small values of Bn �Bn=0.5 and Bn=1�, this curve is similar to the Newtonian one,
t least for the duration of these simulations. We observe that at early times the smaller
he Bn, the smaller is the rate of deceleration because of the lower material viscosity
enerated by the initially higher rate of strain. However, at time t�2.19 the curve for the
wo viscoplastic fluids clearly falls below the Newtonian curve, which means that the
iscoplastic material starts to decelerate faster than the Newtonian one. Increasing further
he yield stress of the material has a significant effect on the tip velocity. For Bn=2,
nitially, the free surface tip decelerates almost as fast for the Newtonian fluid and, at t

2.48, it has decreased from unity to 0.444. After that instant, the tip velocity remains

IG. 10. Time evolution of the shape of the fluid/air interface for a viscoplastic material with �a� Bn=0.5 and
b� Bn=3. The rest dimensionless parameters are �a� �Ca,N , l , Pin�= �103 ,400,4 ,23.0� and �b� �Ca,N , l , Pin�
�103 ,300,4 ,52.17�.
onstant with time and equal to this value, indicating that the flow rate of the material
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1176 PAPAIOANNOU et al.
ecomes steady. Just before the curve turns to become parallel to the horizontal axis, the
aterial has been detached from the tube wall, as described earlier �see Fig. 9�, and the
ow proceeds with almost constant shear forces exerted on the material. In other words,
fter detachment this pressure driven flow is simultaneously one with constant flow rate
nd, conversely, if a constant flow rate had been imposed, after detachment, it would
equire a constant pressure drop not an increasing one. Similar behavior is observed for
he materials with Bn=3 and Bn=5. It is also shown for these cases that as Bn increases,
he constant velocity attained by the material increases. This occurs because the higher
he yield stress is the earlier detachment of the fluid occurs, leaving a smaller contact area
ith the wall, and, consequently, the higher the velocity that the material retains.
It is interesting to present the deformation of the front by plotting the axial distance

etween the flow front tip and the triple contact point ztip-zc versus the axial position of
he front tip, ztip, for various Bn numbers and compare this variation with the well-
stablished one for Newtonian fluids �see Fig. 6�. This is shown in Fig. 12. Clearly, for a
aterial with low viscoplasticity �Bn=0.5�, the difference of these two positions initially

ncreases, as the free surface starts to deform, reaching, however, a very slowly increas-
ng value after some time above the Newtonian limit. On the other hand, for more
iscoplastic materials, this difference continues to increase indefinitely because as we
ave seen earlier, detachment of the fluid from the tube wall takes place and the fluid-air
nterface continuously lengthens.

Finally, two important questions remain: is there a critical Bingham number above
hich detachment occurs and does the material stop flowing when it does not detach

rom the wall? We tried to answer them by changing �y
�, as before, while keeping the

ame initial amount of fluid. Unfortunately, such attempts were not successful for various
easons. For example, while trying to approach the critical Bn we observed that the
aterial tended to form inclusions in the scale of an element, irrespective of the mesh

ize or the size of the time step. Including such effects would require extensive modifi-
ations of our code. Also, while trying to determine a stopping time, our computations
ould require very long times and the contact point would translate so far that the mesh
e could afford to use would not suffice to accurately calculate the flow field and �̇

IG. 11. Time evolution of the axial component of the velocity at the interface tip Vz,tip for various Bn. The rest
f the dimensionless parameters are �Ca, l�= �103 ,4�.
ould decrease so much that would require a considerable increase of N. Then we
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1177INJECTION OF VISCOPLASTIC MATERIALS
ursued a different route: we kept the material yield stress and the applied pressure the
ame, while we decreased/increased the amount of liquid initially in the control volume.
aturally, this increases/decreases the dimensional velocity and, hence, decreases/

ncreases Bn, considerably whereas the value of Bn remains a constant. Interestingly,
lotting in Fig. 13 the detachment length vs. the initial length for Bn=0.068, we found
ut that all points fall on a line with slope less than 45°. This line intersects the y=x line
t zc,init�5.3, where Bn�17.8. It was not possible to carry out calculations for so large
ingham numbers, even after lowering the value for the exponent at the Papanastasiou
odel to N=100. We anticipate that at this point, the material will detach from the wall
ithout advancing at all. We repeated similar calculations for Bn=0.057 and produced a

ine slightly above and nearly parallel to the previous one intersecting the y=x at some-
hat larger zc,init�6 with similar Bn. Therefore, for the same Bn, the position that the

IG. 12. Variation in the axial distance between the flow front tip and the triple contact point ztip-zc, with the
xial position of the front tip ztip for various Bn numbers in a straight pipe.

IG. 13. Dependence of the location of the triple contact point at detachment on its initial axial position for two
ets of Bn numbers, each corresponding to a single Bn, for pipe flow. The slope of the line with Bn=0.057 is

.915, whereas the slope for Bn=0.068 is 0.918.
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1178 PAPAIOANNOU et al.
uid detaches depends linearly on the initial length. From these calculations, we conclude
hat separation will always take place and that the larger the Bingham number �up to
n=12.8 for the case of Bn=0.068�, the shorter the distance the contact point will

ranslate before separation occurs. On the other hand, when Bn is quite small again
eparation should take place, but after the contact point has translated at very large
istances. Therefore, neither a critical Bingham number nor a stopping time exists. Even
hen the Bingham number is very small, the fluid will advance considerably remaining

n contact with the wall up to the point that it decelerates so much that unyielded material
rises near the contact line leading to detachment.

Apparently, injection flow in a tube of a viscoplastic material is quite different from its
teady 1D motion in a pipe. In the latter, no motion can take place, when the maximum
alue of the shear stress at the tube wall just becomes equal to the yield stress. Then the
orce balance between the pressure difference driving the flow �R�2	P� and the opposing
all stress 2�R�Lstop

� �y
� provides an estimate of the “stopping” length Lstop

� = �R� /2�
�	P�� / ��y

��= �R� /2��1 /Bn�. However, according to our previous predictions, this idea
ill work for injection flow as long as the fluid is not initially moving and will provide

he max pressure gradient that can be applied to a viscoplastic material without initiating
ow. On the contrary, when the fluid is already moving, there is no stopping length, since

he fluid will continue to move with a decreasing velocity until it detaches from the wall
nd then it will assume a constant velocity. This difference is created by the 2D fountain-
ype flow at the front and around the contact point. The fluid deceleration along the axis
f symmetry as it approaches the front tip and its subsequent radial acceleration turns the
ow there to primarily elongational from simple shear away from the front. This has the
etrimental implications we described above in the case of a viscoplastic material. The
istance the contact point will travel decreases when Bn increases, for a given yield stress
nd pressure difference, i.e., the same Bn, indicating that the former definition is also
ore sensitive to the flow characteristics.

. Radial flow between two parallel disks

We continue the discussion by presenting results for fluid injected between two par-
llel disks, first for the limiting case of a Newtonian fluid followed by those for a
iscoplastic material. Setting the inflow boundary at a radial distance from the disks
enter of l1=3, the liquid front at a radial distance from the inflow boundary of l2=5 and
he capillary number at the same high value Ca=103 requires a dimensionless pressure of

Pin=15.70 to give the Newtonian liquid an initial dimensionless velocity at the tip of the
oving front equal to 1. Figure 14 gives the evolution of the pressure, upper half, and of

he radial velocity, lower half, at three time instants. The pressure decreases radially
oward zero, the value of the air pressure ahead of the front, but at a decreasing rate �in
ontrast to the constant rate in pipe flow �Fig. 5�� because the increasing cross section
ere provides a smaller resistance to radial flow. As expected, pressure takes its maxi-
um value at the inflow boundary and remains constant throughout the simulation, since

t is imposed there, whereas it takes its minimum �negative� values in a very small region
f the liquid around the contact point. Finally, it depends only on the radial coordinate in
he major part of the flow field, but on both the radial and axial coordinates in a region
xtending radially about one disks’ gap behind the free surface tip. According to Middle-
an �1977�, who presented an analytical solution for the radial flow of a Newtonian fluid

ased on assumptions of lubrication theory, this dependence is with the natural logarithm
f the radial coordinate. In order to validate once more our numerical code, we have

lotted the pressure along the disk wall versus ln r �not shown here for conciseness� and
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1179INJECTION OF VISCOPLASTIC MATERIALS
ound a straight line in perfect agreement with theoretical predictions. The radial velocity
as its maximum at the intersection of the inflow boundary with the plane of symmetry,
nd this value decreases with time due to the decelerating nature of the flow. Its minimum
zero� values appear on the disks surface, where the no-slip condition is imposed. All its
ontours begin from the inflow boundary and bend either toward the plane of symmetry
r away from it intersecting the free surface. This bending of the primary velocity con-
ours in the disk flow is in contrast to the straight contours of vz in the pipe flow �compare
ith Fig. 4�. This is because in a pipe, the velocity has only one component, which
epends only on the transverse direction away from the liquid/air interface. The vr con-
our line that emerges from the inflow boundary and ends at the free surface tip directly
etermines the decrease in the tip velocity from unity at start up to 0.488, 0.302, and
.214 at the respective times of the three snapshots. Another validation test for our
umerical code is based on the simulation of the Newtonian fluid. For a pressure differ-
nce 	P=7.857 calculated between the radial position r=6 and the inflow boundary, at
=3, at time 10.55, the max vr at r=6, obtained from the analytical solution presented by
iddleman �1977�, is vr,max=0.944. Exactly the same value is predicted by our code at

hat position.
The effect of a relatively small fluid yield stress on the main characteristics of the flow

an be seen in Fig. 15. This figure presents the same two variables as Fig. 14, but for
n=0.5, and N=400 at two time instants. The yield stress increases the fluid resistance to

IG. 14. Contours of the pressure field, upper half, and the radial velocity component, lower half, of a
ewtonian fluid between two parallel disks at �a� t=3.10, �b� t=10.55, and �c� t=21.79 for

Ca,Bn, l1 , l2 , Pin�= �103 ,0 ,3 ,5 ,15.70�. The number of contours for the pressure in each of the three snapshots
s 24. The interval between these two extremes in vr is divided by 20, 26, and 24 contour lines in each of the
hree snapshots, respectively. The M1 mesh was used.
ow and requires a higher inlet pressure Pin=19.86 to reach the same initial dimension-
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1180 PAPAIOANNOU et al.
ess velocity, while keeping the rest of the parameters the same with those in the previous
imulation. It is clear that the contours of pressure are not straight here, as for a New-
onian fluid �compare with Fig. 14�, but vary slightly in the axial direction, even far from
he triple contact point. As for vr, its contours in Fig. 15 resemble those for the Newton-
an fluid. There are of course quantitative differences between the two cases. In the two
napshots, the tip of the interface has reached the positions r=9.929 and 12.629, respec-
ively. The tip of the Newtonian fluid, in each of the first two snapshots of Fig. 14, has
eached radial positions of r=9.959 and 12.736. Even though the Newtonian fluid ex-
ended radially at longer distances, its vr decreased less from its initial value at the tip,
han it did for the viscoplastic material, to 48.8% against 47.6% for the viscoplastic and
o 30.2% against 26.8%, indicating that the latter decelerates faster.

We have seen in the case of pipe flow that higher values of the yield stress affect
ualitatively the wetting of the tube wall by the fluid. A question that arises is whether
his effect takes place also in the case of radial flow between parallel disks. Figure 16
hows the flow field at three different time instants for a viscoplastic fluid with Bn=5 and
=400, which under the same values of the remaining parameters requires a much higher

ressure Pin=53.13 at the inflow boundary. At very early times, first the free surface
eforms and then the triple contact point starts moving from its initial position at rc=8.
t time t=0.49 �see Fig. 16�a��, it is at rc=8.06. Thereafter, the contact point remains

tationary and part of the interface starts to develop parallel to the disk wall without the
uid coming into contact with it. The mechanism is the same as in the pipe flow: after the

nitial front deformation that requires intense fluid flow near it, during which the stress
emains above the yield value, the front does not deform appreciably which—coupled
ith the shear-free condition on it—leads to stress lower than the yield value resulting in
nyielded material there. The same figure also illustrates the contours of vz in its upper
alf and of constant vr in its lower half. The axial velocity varies mainly in the region
ear the triple contact point and the free surface of the fluid. In the first snapshot, we
bserve that the maximum value of the axial velocity, which is equal to 0.147, is near the

IG. 15. Contours of the pressure field, upper half, and the radial velocity component, lower half, of a
iscoplastic material between two parallel disks at �a� t=3.03 and �b� t=10.84 for �Ca,Bn, l1 , l2 , Pin�
�103 ,0.5,400,3 ,5 ,19.86�. The number of contour lines for both variables in each of the two snapshots is 24.
he M1 mesh was used.
ree surface and below the triple contact point, since the fluid there moves toward the
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1181INJECTION OF VISCOPLASTIC MATERIALS
all as the interface becomes deformed. Subsequently, the max vz value decreases sig-
ificantly with time, becoming 8.25�10−2 at time t=2.32 and 8.11�10−2 at time t
7.28, at a location still close to the triple contact point. Moreover, after the fluid has
etached from the wall �see Figs. 16�b� and 16�c��, the velocity field changes signifi-
antly. Near the triple contact point, it rearranges due to the transition from the no-slip
ondition to a shear-free flow. Ahead of it, the axial velocity takes negative values
ndicating that the material is very slowly moving away from the wall. Further down-
tream, vz still takes negative values of the same order of magnitude with the previous
nes, which result in the increasing distance between the fluid and the disk surface. This
s caused by mass conservation, which requires that the radial expansion of the detached
uid is accompanied by an axial contraction. In addition, we observe that vz assumes
mall values near the inflow boundary. One would expect 1D flow to occur in this region
nd, therefore, the axial velocity to be zero. This effect is most probably due to the
ondition that is applied on the pressure at the inflow boundary. As it can be readily
hown from the momentum balance for this kind of flow, the pressure depends strongly
n the radial and weakly on the axial direction �see also Fig. 18�. Unfortunately, it is not
ossible to derive an analytical solution for the pressure without involving the �mislead-
ng� lubrication approximation for this kind of flow and, therefore, we have chosen to
mpose weakly the mean value of the pressure all along the inflow boundary, as described
n Sec. II. We expect that the flow field very close to the inflow boundary will be slightly
ffected by this condition, causing this small variation in the axial velocity. However, this

IG. 16. Contours of the axial, upper half, and the radial, lower half, velocity component of a viscoplastic
aterial between two parallel disks at �a� t=0.49, �b� t=2.32, and �c� t=7.28 for �Ca,Bn,N , l1 , l2 , Pin�
�103 ,5 ,400,3 ,5 ,53.13�. There are 25 contour lines for vz and 18 for vr in each one of the three snapshots.
hould not have a significant effect on the flow away from the entrance and in the region
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1182 PAPAIOANNOU et al.
f the free surface, which is of primary importance in this work. This is also supported by
he fact that even though the pressure takes its mean value all along the inflow boundary,
ts 2D character is restored very close to it. The variation of vr resembles the one for the
ewtonian case in the region defined between the triple contact point and the inflow
oundary. Because of the radial expansion of the material, mass conservation enforces a
ecrease in the radial velocity, which however, remains much larger than the axial com-
onent throughout the material. Ahead of the contact line, the radial velocity drastically
hanges its spatial variation and decreases in the radial direction only, approaching the
ariation of vr in a shear-free extensional flow.

The effect of viscoplasticity can be seen more clearly by examining the development
f the free surface for various Bn, as presented in Fig. 17. For a material with rather low
alues of Bn �Fig. 17�a��, the contact line moves as time passes, while the interface
eforms and its shape turns from a semi-parabolic profile at early times into a semi-
ircular one at later times, resembling the limiting case of a Newtonian fluid. Increasing
he value of the Bingham number to Bn=1.5, the Newtonian-like shape of the interface is
ost at large times, since the contact line remains stationary and the interface deforms
ignificantly. At time t=2.50, part of the free surface becomes almost parallel to the disk
urface. The transition from this part of the free surface to its curved front remains very
mooth and rounded. Increasing further the Bingham number to Bn=2 increases the
eparture of the flattened part of the interface from the wall as it attains a negative slope
t long times. A common feature of the interfaces for intermediate and large Bingham

IG. 17. Time evolution of the shape of the fluid/air interface for a viscoplastic material with �a� Bn=0.5, �b�
n=1.5, �c� Bn=2, and �d� Bn=10.
umbers is that just ahead of the triple contact point, they bent downward, a pattern
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1183INJECTION OF VISCOPLASTIC MATERIALS
hich is retained for all the time instants. Moving further ahead in the radial direction,
he upper flattened part of the interface rises again toward the disk surface and this
ecomes more significant at larger times. The decreased velocity gradients give the ma-
erial behind the curved part of the front an increased effective viscosity as time passes.
s a result, it becomes more difficult for the material to advance in its primary �radial�
irection and easier to move axially toward the disks, where the stress singularity at the
ontact point still generates a smaller viscosity there. At time t=4.68, this part of the
nterface came very close to the disk surface and at the next time step, when an air-
nvelop was created, we decided to stop our simulation. In order to further investigate
his behavior of the viscoplastic materials, we decided to perform a series of simulations
n the range 0.5
Bn
5, which are not presented here for conciseness and we found out
hat the more viscoplastic the material, the longer it takes the envelope of air to form and
he larger it gets. Even further ahead from the triple contact point, the interface turns
ore sharply away from the wall to join with the curved part of the front. A similar

ehavior is observed for the viscoplastic material with Bn=5. Increasing further the
imensionless yield stress to Bn=10, the interface of the material also diverges from the
all. Its shape presents another qualitative change: its part along the wall is nearly

traight and such an envelope of air is not created. The mechanism leading to wall
etachment is the same as for the flow in a pipe: when the front assumes a pseudo-steady
hape, ��=� decreases, increasing the local viscosity. Then, the fluid momentum in a
ountain-type flow is not enough to bring the fluid in contact to the wall. The different
ront shapes are generated here by two effects of the increasing Bn: the viscosity at the
urved front increases faster, almost “freezing” its shape earlier when it is closer to the
all, so that it extends to its larger radial distance, as for Bn=10. Alternatively, the
elocity decreases slower, allowing it to continuously deform and extend radially while
ecreasing axially, by mass conservation, as for Bn=2.

We have seen that the pressure in the Newtonian case changes in the radial direction
nly away from the front �see Fig. 14� and how this picture changes for a viscoplastic
aterial with Bn=0.5. A further increase in the yield stress changes the pressure field

rastically. Figure 18 illustrates the contour lines of pressure at time t=2.06 for the case
f a viscoplastic material with Bn=10 and N=400, which requires Pin=87.39 under the
ame values of the remaining parameters as in the Newtonian case. This plot demon-
trates a more intense dependence of pressure on the axial coordinate. Each contour line
ear the mid-plane is shifted radially in the direction of the flow, while its remaining part
urns away from the front. Again, the maximum values of pressure arise at the inflow
oundary and, then, in the rest of the domain it decreases toward its minimum �negative�
alues at the contact point, where the contour lines are highly distorted due to the

IG. 18. Contours of the pressure field of a viscoplastic material with Bn=10 between two parallel disks at
=2.06. The rest of the dimensionless parameters are �Ca,N , l1 , l2 , Pin�= �103 ,400,3 ,5 ,87.39�. The number of
ontour lines shown is 24. The M1 mesh was used.
ingularity that arises there.
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1184 PAPAIOANNOU et al.
A clearer picture of radial injection can be obtained by examining the velocity field
rom the point of view of an observer moving with the tip of the flow front. The resulting
elocity vectors are presented in Fig. 19�a�. This snapshot was taken at time t=1.00,
hortly after the fluid detaches from the disk, for a viscoplastic material with Bn=5. A
lose-up of this figure for a region near the triple contact point is presented in Fig. 19�b�.
e observe that a line is formed extending from the inflow boundary to a little behind the

adial position of the triple contact point, where the velocity as a vector attains a mini-
um. This line is close to, but it is not parallel to the wall, as it is in axial fountain flow.
he reason for this departure is that in contrast to the pipe flow, the radial flow between

he disks never reaches a fully developed profile, even near the inflow boundary, because
he material elements encounter an ever-increasing cross section as they advance radially.
hus, a fluid element that lies close to the wall and the inflow boundary has the same
elocity with a fluid element, which is located at a lower axial position and downstream.
ow, we return to what the observer at the front tip sees. The fluid elements that reside

t the mid-plane remain there because of their zero vz and decelerate as they approach the
ip where their velocity is zero by definition. The fluid elements between the line of

inimum velocity and the mid-plane move toward the interface, while the ones above
his line move toward the inflow boundary. Proceeding along the front from the tip to the
ontact point we can see, successively, that the vectors first turn toward the wall being

IG. 19. Vectors of the velocity for a viscoplastic material with Bn=5, relative to the tip velocity. �a� The entire
omain where the area of minimum velocity is shown and �b� a close-up in the region of the triple contact point.
ertical to the mid-plane, then they turn backward becoming parallel to the plane of
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1185INJECTION OF VISCOPLASTIC MATERIALS
ymmetry at some point near the rounded edge of the free surface, and finally even closer
o the contact line they are inclined and slightly point away from the wall. The weaker
nd more uniform flow exists closer to the mid-plane and the liquid front. Due to the
eceleration of the flow, the second invariant of the rate of strain decreases with time,
hich means that the effective viscosity increases locally. As the material flows radially

nd rises near the interface to contact the disk, its momentum is not sufficient for it to
ontact the wall causing in this way its detachment from it.

Interestingly, our prediction of material detachment from the wall is in agreement with
he experimental observations by Bates and Bridgwater �2000�. They conducted experi-
ents with radial flow of pastes maintaining a constant flow rate. In order to monitor the

osition of the interface with respect to the disk surface and the force exerted by the disk
n the fluid, they used flow visualization techniques and pressure transducers, respec-
ively. They showed that as the paste flows radially outward, the contact of the material
ith the wall is lost. This is in fact what we predict with our simulations. They further

ttempted to explain this behavior of the fluid based on the relative magnitude and the
irection of the normal stresses that they measured in the interface region. They argued
hat the radial stress �rr takes negative values, while the circumferential one ��� takes
arger and positive values. As a result, the axial stresses �zz has to take negative values,
orcing the interface to diverge from the wall. Since these authors did not give the data
eeded to calculate our dimensionless parameters, we can only compare our predicted
tresses in terms of their order of magnitude and sign. Figure 20 illustrates the stress
omponents we calculate at time t=2.32 for the case of a viscoplastic material with Bn
5. In Fig. 20�a�, the contours of ��� and �rr are depicted in the upper and lower half of

he domain, respectively, while in Fig. 20�b� the contours of �zz and �rz are given in the

IG. 20. Stresses of a viscoplastic material with Bn=5 between parallel disks. �a� Circumferential ��� upper
alf and radial �rr lower half. �b� Axial �zz upper half and the shear stress �rz lower half. The rest of the
imensionless parameters are �Ca,N , l1 , l2 , Pin�= �103 ,400,3 ,5 ,53.13�. The number of contour lines is 12 for

�� and 30 for each one of the other components of the stress tensor.
pper and lower half, respectively. After the triple contact point, which lies at the radial
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osition 8.06, and toward the free surface, the circumferential stresses take positive
alues up to 5.89. In the same area, typical values for the radial normal stresses reach
3.71, while indeed, the axial normal stresses take much larger but negative values
19.48, concurring with the observations reported by these two researchers. The highest

alue of shear stress is located on the contact line, and around it, its contours are highly
istorted. Moving away from the interface and toward the entrance, all isolines tend to
ecome straight and with a small slope with respect to the disk surface. This weakly 2D
haracter of the stress even near the inflow boundary derives mainly from the dependence
f the radial component of the velocity on both spatial coordinates.

In order to examine the effect of Bn on the time evolution of the radial velocity of the
ow front tip in more detail, we plotted in Fig. 21 its radial velocity Vr,tip versus the
imensionless time. We observe that at times smaller than t=1.90, as the Bn number
ncreases the curve of the tip velocity falls more abruptly toward the horizontal axis.
ence, the higher the degree of viscoplasticity is, the more intense the deceleration of the
uid becomes in this time interval. This happens because the externally applied pressure
as to overcome the increase of the effective viscosity, as the velocity gradients decrease
ue to the deceleration of the flow, more so the higher the yield stress. However, at longer
imes, the curves of the velocity tip corresponding to Bn=2 and Bn=5 are above the
urve of Bn=0.5 and even the Newtonian one. This is caused by the fact that, for the first
wo cases, detachment of the material from the disk wall occurs. Thus, the shear forces
xerted by the disk remain constant and this results in a smaller deceleration of the two
iscoplastic materials. Moreover, between these two cases, the one with larger Bingham
umber �Bn=5� flows slower than the other one �Bn=2�. In the case of flow inside a
ipe, discussed in Sec. IV A, the flow rate becomes constant for large values of the
ingham number after a certain time. Clearly, this is not the case for the radial flow
etween parallel disks. As the fluid advances the front moves to larger radial positions
nd, therefore, the same volume of fluid has to go through a larger cross section, resulting
n the significant decrease in the mean velocity. Indeed, these results are in qualitative
greement with findings by Peysson �private communication, 2006�, who performed ex-
eriments using Bentonite mud with varying yield stress levels. We should note here that

IG. 21. Time evolution of the radial component of the velocity at the interface tip Vr,tip for various Bn. The
est of the dimensionless parameters are �Ca, l1 , l2�= �103 ,3 ,5�.
he simulation for Bn=2 was stopped prematurely at time t=4.68 to avoid the formation
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1187INJECTION OF VISCOPLASTIC MATERIALS
f the air inclusion between the material and the disk, mentioned earlier, which cannot be
ccommodated without major changes in the current software and was not pursued. On
he other hand, the curves with Bn=5 and Bn=10 also terminate sooner than the New-
onian case or the one for Bn=0.5, but for a totally different reason, which will be made
lear below.

It would be interesting to examine how the radial distance between the flow front tip
nd the triple contact point rtip-rc depends on the radial position of the front tip rtip for
arious Bn numbers. As we can see in Fig. 22, the difference of these two positions
nitially increases for a Newtonian fluid but eventually levels out as the free surface tends
o assume a cross section of constant shape, just as in the case of pipe flow. From the
imulation, we found that rtip-rc tends to the value of 0.919 in comparison to the corre-
ponding value of 0.830 in the case of pipe flow. For material with low viscoplasticity
Bn=0.5�, the initial variation of rtip-rc is close to the one for a Newtonian fluid. How-
ver, its value seems to be increasing monotonically as the fluid-air interface advances
ithout tending to a limiting value, at least for in the time interval that the simulation was
erformed. Increasing the Bn number further, we observe that because of the detachment
f the fluid from the disk walls, rtip-rc increases linearly with rtip at a larger slope.

Again the same important questions must be examined in this geometry also: does a
ritical Bn exists for detachment and does the fluid stop moving at a particular radial
istance? As in pipe injection, we performed three sets of simulations keeping in each
ne Bn constant, i.e., keeping the same pressure drop for the same material. We then
ncreased/decreased the initial amount of fluid that exists between the disks from the
nflow boundary at l1=3 up to l1+ l2	rc,init, which is the initial radial position of the
ontact point. The results are presented in Fig. 23, which presents the detachment length

c,det, as a function of the initial length rc,init. Clearly, the behavior similar to that in pipe
ow, e.g., for Bn=0.042 all three points fall on the same line, which has a smaller slope

han the y=x line. As the Bn increases, the radial distance that the fluid covers before it
s detached from the disk wall increases. Consequently, all viscoplastic fluids will detach
rom the disks and those with higher Bn will detach earlier. Furthermore, increasing Bn,
he corresponding line approaches the line y=x and its slope tends to unity, which is not

IG. 22. Variation in the radial distance between the flow front tip and the triple contact point rtip-rc, with the
adial position of the front tip rtip for various Bn numbers between two parallel disks.
urprising, because the material becomes more viscoplastic and is detached almost im-
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ediately from the wall. One could expect the line with slope almost unity �Bn
0.094� to coincide with the y=x line. Instead, it is slightly offset upward. This is caused
y the initial intense rearrangement of the material near the front and the contact point,
hich allows a small translation of the contact point. As far as the question for the

topping length is concerned because the radial flow between parallel disks is always
ecelerating, a finite stopping length should exist. However, its precise determination is
ot possible with the Papanastasiou model as explained below.

As we have already seen in Fig. 16, the values of both velocities, radial and axial, have
ather small values and gradients near the front, and they continuously decrease with
ime. As a result, the stresses that the fluid experiences in that area may decrease signifi-
antly as time passes. In order to examine whether unyielded material arises in the flow
omain, we need to examine the contour lines of the second invariant of the stress tensor.
hese are presented in Fig. 24 for Bn=5 at time t=7.28. For clarity, we have plotted
ome contours of ��=� only in the range �5.05,5.07�. Clearly, the values of ��=� decrease in
he radial direction, while at the tip they have their minimum value �101% of the Bn. In
he next time instant, the flow will decelerate further and the value of ��=� at the tip will
et closer or even become equal to the Bn, indicating that unyielded material arises there.
herefore, after this instant the material should stop moving. The material with Bn=10
ehaves similarly. As explained earlier, however, according to the Papanastasiou model,
ven then finite motion of the material at that point is allowed, albeit with very large

IG. 23. Dependence of the location of the triple contact point at detachment on its initial radial position for
hree sets of Bn numbers, each corresponding to a single Bn, for fluid injection between parallel disks. The
lope of the line with Bn=0.042 is 0.871, the slope for Bn=0.054 is 0.959, and that for Bn=0.094 is 0.999.

IG. 24. Contours of the second invariant of the stress tensor of a viscoplastic material with Bn=5. The rest of
3
he dimensionless parameters are �Ca,N , l1 , l2 , Pin�= �10 ,400,3 ,5 ,53.13�.
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1189INJECTION OF VISCOPLASTIC MATERIALS
iscosity and this is due to the fact that the condition for the yield surface given by ���
Bn is not equivalent to �̇=0. Indeed, the rate of deformation at the tip is small and very

low radial flow still exists even there. According to Bates and Bridgwater �2000�, who
onducted experiments for radial flow of viscoplastic materials at constant flow rates,
racks appear at the external edge of the material. This could possibly be attributed to the
act that the flow of the yielded material is obstructed by the surrounding unyielded
egions leading to those cracks. Considering that all these additional physical effects
equire including three dimensional flow and material deformation, we decided to termi-
ate the simulations just before unyielded material could arise at the front tip.

. CONCLUDING REMARKS

We examined the transient injection flow of a viscoplastic material inside a pipe or in
he space between two parallel and coaxial disks. The material is driven by a constant
ressure drop. The transient simulations allow us to determine for each problem �a� the
elocity and pressure fields, �b� the domains of the unyielded material, and �c� the shape
nd the location of the liquid-air interfaces, at each time instant. All the calculations were
erformed using the mixed finite element/Galerkin method coupled with a quasi-elliptic
esh generation scheme for describing the large deformations of the physical domain.
his scheme was combined with a mesh reconstruction procedure and a local mesh

efinement technique to produce an improved discretization near the free surface and to
ccelerate the computations without losing the desired accuracy.

Results from a complete parametric analysis have been presented. We examined
ainly the effect of the yield stress on the basic characteristics of the two flows. In the

ipe flow for a Newtonian fluid, there is complete agreement with previous experimental
ata. At low Bn numbers, the flow is decelerating resembling the one for a Newtonian
uid, while the contact point translates to very long distances, before detachment should
ccur. Unyielded material arises only in the core region and expands both radially and
xially with time. Material detaches from the tube wall more readily for highly visco-
lastic fluids. For these materials, the liquid/air interface is extended with time and
evelops a segment nearly parallel to the wall. The wetting of the tube in this case stops
nd the triple contact point does not move, while the flow assumes a steady flow rate and
pressure distribution that does not change significantly with time. The higher the Bn

umber is, the earlier the detachment occurs, and, therefore, the higher the velocity that
he material attains. Unyielded material arises in the core region of the tube and behind its
ront. However, the former does not expand at all because the flow now is not deceler-
ting, while the latter grows significantly in the axial direction with time. Apparently,
etachment should take place even for arrangements with low Bn, but after the flow has
ecelerated considerably, hence, the flow is not expected to stop in any case.

Wall detachment also occurs in the radial flow of a viscoplastic material between two
arallel disks. In this case, the flow remains decelerating despite the wall detachment
ecause of the increase of the cross section through which a fluid element advances. The
aterials which detach from the wall of the disks start to move faster than a less visco-

lastic material, which does not detach from the wall, or even than the Newtonian fluid,
fter certain time instants. Wall detachment was observed experimentally by Bates and
ridgwater �2000� in radial flow of a paste between two parallel disks. The air/liquid

nterface of a viscoplastic material deviates even more from the Newtonian one as Bn
ncreases. As the material is extended radially outward, the free surface moves parallel to
he disk wall, and there an envelope of air may be created. The more viscoplastic the
aterial is, the longer it takes for such an envelope to form and the greater it gets.
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