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We consider the evaporation of a thin liquid layer which consists of a binary mixture
of volatile liquids. The mixture is on top of a heated substrate and in contact with the gas
phase that consists of the same vapor as the binary mixture. The effects of thermocapil-
larity, solutocapillarity, and the van der Waals interactions are considered. We derive the
long-wave evolution equations for the free interface and the volume fraction that govern
the two-dimensional stability of the layer subject to the above coupled mechanisms and
perform a linear stability analysis. Our results demonstrate two modes of instabilities, a
monotonic instability mode and an oscillatory instability mode. We supplement our results
from stability analysis with transient simulations to examine the dynamics in the nonlinear
regime and analyze how these instabilities evolve with time. More precisely we discuss
how the effect of relative volatility along with the competition between thermal and solutal
Marangoni effect define the mode of instability that develops during the evaporation of the
liquid layer due to preferential evaporation of one of the components.

DOI: 10.1103/PhysRevFluids.5.104007

I. INTRODUCTION

The dynamics of binary films subjected to temperature and solute concentration gradients is
an important problem which has widespread technological applications like coating, wetting, and
cooling processes. The stability of thin liquid films was reviewed by Oron et al. [1] and Craster and
Matar [2].

Pearson [3] was the first to address instabilities in liquid layers driven by surface tension
gradients. He observed that drying paint films often display steady cellular circulatory flow similar
to those examined by Bénard [4] in liquid layers heated from below. In the former case, the
cellular pattern was observed even when the free surface was on the underside of the paint layer
and the gravity vector was effectively inverted. Therefore, Pearson [3] concluded that the density
gradient, as proposed by Rayleigh [5] to explain the Bérnard hexagonal cellular pattern, cannot
be the mechanism causing the instabilities in this case and proposed surface tension forces as the
driving force of the cellular patterns. Pearson [3] performed a stability analysis on a liquid layer
heated from below by means of small-disturbance theory, similar to that developed by Rayleigh [5].
In his analysis surface tension was assumed a linearly decreasing function of temperature, the
interface was nondeformable, and gravity was neglected. Pearson [3] derived critical values of the
Marangoni number corresponding to the case of convective instabilities. Pearson’s stability analysis
was extended by Sternling et al. [6] by accounting for the possibility of shape deformations of
the free surface. They found that there is no critical Marangoni number for the onset of stationary
instability and that the limiting case of “zero wave-number” (i.e., waves of very large wavelengths
as in a thin film) is always unstable. Sternling et al. also provided a criterion to distinguish visually
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whether buoyancy or surface tension dominates cellular convection in liquid pools. While in surface
tension driven instabilities the flow is towards the free surface in shallow sections and away in deeper
sections, this relationship is just the opposite in buoyancy-driven flows, as observed by Jeffreys [7].

Williams and Davis [8] posed a nonlinear stability theory based on the long-wave nature of
the response. They derived a partial differential equation which describes the evolution of the
interface shape subject to surface tension, viscous forces, and the van der Waals attractions. They
found that the nonlinear measure of the rupture time is always smaller than the equivalent measure
given by a linearized theory. Burelbach et al. [9] extended the nonlinear theory developed by
Williams and Davis [8] to include evaporative, thermocapillary, and nonequilibrium effects, in
addition to disjoining pressures induced by van der Waals attractions. They derived long-wave
evolution equations for the interface shapes that govern the stability of the layers subject to the
above coupled mechanisms to investigate film instabilities and rupture. They show that increasing
the degree of thermocapillarity decreases the time for rupture of the film. Goussis and Kelly [10]
analyzed the importance of the layer thickness on thermocapillary instabilities. In sufficiently thick
layers, instabilities can take the form of relatively short wavelengths which are of the order of the
layer’s depth, as Pearson [3] demonstrated. This instability is associated with the interaction of the
basic temperature with the perturbed velocity field and effects of convection are important. For
sufficiently thin films, surface tension stabilizes short wavelengths so the instability takes the form
of large wavelength disturbances. This instability is associated with the modification of the basic
temperature by the deformation of the free surface.

Stability of evaporating films due to solutal effects was also considered by many authors.
Hatziavramidis [11] performed linear stability analysis on evaporating films with soluble surfactant
considering the flow effects arising from surface tension gradients due to temperature and concen-
tration variations, in addition to van der Waals forces and surface tension. Hatziavramidis quantified
the effect of surfactant in terms of its adsorption at the liquid-gas interface. Hatziavramidis found
that flows driven by surface tension gradients originating from surface concentration variations
are in a direction opposite to similar flows originating from surface temperature variations. The
former usually dominate; they are destabilizing for condensing films and stabilizing for evaporating
films. Danov et al. [12] investigated the dynamics of an evaporating film in the presence of
dissolved surfactant using lubrication approximation taking into account interfacial mass loss due
to evaporation, the van der Waals attraction, the Marangoni effect due to thermal and concentration
variations, and the effect of interfacial viscosity on film stability. They found that increasing the
initial surfactant concentration stabilizes the film only up to the moment of reaching tangential
immobility of the interface due to the increase of its interfacial viscosity and elasticity. After that,
the additional increase of surfactant concentration leads only to a decrease of interfacial tension,
lowering the film stability.

Lin et al. [13] investigated the effects of soluble surfactant on the dynamic rupture of thin
liquid films. They adopted a generalized Frumkin model to simulate the adsorption/desorption
kinetics of the soluble surfactant between the surface and the bulk phases. They show by means of
numerical simulations that the liquid film system with soluble surfactant is more unstable than that
with insoluble surfactant. They found that surfactant solubility increases as absorption/desorption
rate, activation energy, and bulk diffusion increase, which causes the film system to become
unstable, and the surfactant solubility decreases as the rate of equilibrium and interaction among
molecules increase, which therefore stabilizes the film. They found that an increase of relative
surface concentration initially results in a decrease of corresponding shear drag forces which
enhance the Marangoni effect and a further increase of relative surface concentration results in an
increase of the corresponding shear drag force which weakens the Marangoni effect and results in a
reduction of the interfacial stability. Yiantsios and Higgins [14] analyzed a mechanism of Marangoni
instability in evaporating films with soluble surfactant. Using linear stability analysis they show that
the instability will manifest itself provided that an appropriate Marangoni number is relatively large
and the surfactant solubility in the bulk is large as well. They found that low solubility in the bulk,
diffusion, and the effect of surfactant on interfacial mobility through the surface viscosity suppress
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disturbance growth. They confirm the results using direct numerical simulations of the nonlinear
evolution equations.

Mikishev and Nepomnyashchy [15,16] studied the stability of an evaporating film with insoluble
surfactant distributed over the free deformable interface. The insoluble surfactant hinders the
evaporation, and mass flux through the interface is a decreasing function of surfactant concentration.
Using a one-sided model and the long-wave approximation under the assumption of a slow time
evolution, linear stability analysis of the base state is performed for long-wave disturbances using
frozen interface approximation. The authors analyzed the cases of quasiequilibrium and nonequilib-
rium evaporation and found monotonic and oscillatory instability modes. Instability thresholds were
determined and critical Marangoni numbers were found for monotonic and oscillatory instabilities
using the one-sided model and linear stability analysis for different values of the kinetic resistance
parameter.

Overdiep [17] developed integrodifferential equations and performed experiments to study the
leveling process in paint films. Overdiep found that the solutal Marangoni effect drives the liquid
from the trough with higher concentration of resin to the crest, leveling the perturbation. Howison
et al. [18] developed a mathematical model based on classical lubrication theory for a drying
paint layer consisting of a nonvolatile resin and a volatile solvent. They considered the effects of
variable surface tension, viscosity, solvent diffusivity, and solvent evaporation rate. They provide
an analytical description of the “reversal” of an initial perturbation to the thickness of the layer and
the appearance of a perturbation to an initially flat layer caused by an initial perturbation to the
concentration of solvent. Eres et al. [19] presented a three-dimensional mathematical and numerical
model based on the lubrication approximation for the flow of drying paint films on horizontal
substrates. They consider the effects of surface tension and gravitational forces as well as surface
tension gradient effects which arise due to solvent evaporation and the dependence of viscosity,
diffusivity, and evaporation rate on resin concentration. Their model demonstrates the effect of
surface tension gradients due to compositional changes in a three-dimensional flow field.

Most of the work on binary films has been focused on the Soret effect. Takashima [20] examined
the onset of instability in a horizontal binary film subjected to a vertical temperature gradient taking
into account the Soret effect using linear stability theory. Takashima [21] extended his previous
work to include the possibility of overstability (oscillatory instability). Joo [22] analyzed the
stability of a binary film heated from above. The heat transfer is driven by the vertical temperature
gradient. The mass flux is induced by the Soret effect. The instability is driven by solutocapillarity
and retarded by thermocapillarity. Small-wave-number and Pearson-type instabilities are studied.
Oscillatory instability can exist when the thermocapillarity is destabilizing and the solutocapillarity
is stabilizing. Podolny et al. [23] investigated the long-wave Marangoni instability in a binary film
in the limit of small Biot number. The surface deformation and the Soret effect are both taken
into account. They characterized the problem by two distinct asymptotic limits for the disturbance
wave number using the Biot number, which are caused by the action of two instability mechanisms,
the thermocapillary and solutocapillary effects. They found a new oscillatory mode for sufficiently
small values of the Galileo number. Podolny et al. [24] investigated the long-wave Marangoni
instability in binary film in the presence of the Soret effect in the case of finite Biot numbers.
Long-wave monotonic and oscillatory instability modes are found in various parameter domains
using linear stability analysis. Stable supercritical patterns are investigated in the limit of low
gravity using weakly nonlinear analysis. Supercritical standing and traveling waves are noted.
Borcia et al. [25] examined long-wave instabilities in binary films accounting for the Soret effect.
Linear stability analysis reveals monotonic and oscillatory instabilities. Typical structures such as
static or solitonlike traveling drops are analyzed using three-dimensional nonlinear simulations.
Zhang et al. [26] examined Marangoni instabilities in binary films in the presence of the Soret
effect and evaporation using NaCl/water mixtures. They investigated the flow pattern formation
using a shadow-graph method for a set of substrate temperatures and solute concentrations in a
nondeformable interface. They found patterns mainly composed of polygons and rolls. They found
that evaporation affects the pattern formation mainly at early stages and the Soret effect becomes
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important at later stages. The strength of convection increases with the initial solute concentration
and the substrate temperature. Machrafi et al. [27] performed linear stability analysis on a horizontal
binary film using water/ethanol mixtures with the evaporation of water being neglected. They
calculated neutral (monotonic) stability curves in terms of solutal/thermal Marangoni/Rayleigh
numbers as a function of the wave number for different values of the ratio of the gas and liquid
layer thicknesses. For a 10-wt.-% water-ethanol mixture they found the solutal Marangoni effect to
be the most important instability mechanism. Bestehorn and Borcia [28] studied film instabilities
in binary films with a deformable interface and an externally applied vertical temperature gradient
using lubrication theory. Using linear stability analysis they showed that the monotonic long-wave
instability may turn into an oscillatory one if the two components have a different surface tension
and if the Soret coefficient establishes a stabilizing vertical concentration gradient. They also
discussed a real system consisting of a water/isopropanol mixture.

Despite the large of volume of work on this subject there are several open questions that
have not been addressed adequately in the literature. One of them concerns the effect of relative
volatility of the components of a binary mixture and its effect on the stability and dynamics of
the evaporating film. This paper aims to address this important question which as will be shown
below might have important implications for the type of instabilities that may be encountered in
the case of water-ethanol and water-butanol mixtures. Below, we present an analytical model to
investigate the stability and dynamics of the evaporation of a horizontal thin liquid layer composed
of a binary mixture of volatile liquids heated from below. The long-wave approximation is used to
derive the evolution equations for the free interface and the volume fraction of the components that
govern the two-dimensional stability of the layer. The effects of evaporation of both components,
thermocapillarity and solutocapillarity, and the van der Waals attraction are considered. Crucially,
we examine the effect of the relative volatility of the components of the binary mixture and relevant
flow maps are produced. A linear stability analysis is performed to derive the growth rate of
the instabilities for the case of quasiequilibrium evaporation and nonequilibrium evaporation. The
developed linear theory describes two different modes of instabilities, i.e., a monotonic instability
mode and an oscillatory instability mode, and a detailed discussion on the mechanisms is given.
Further, by means of transient simulations the dependence of these instabilities on the destabilizing
effects considered is analyzed. The transient simulations also help investigate the dynamics in the
nonlinear regime.

II. PROBLEM FORMULATION

The evaporation of a thin liquid layer which consists of a mixture of volatile liquids A and B is
investigated. The volatilities of the components are dependent on their respective vapor (saturation)
pressures, with the component with highest vapor pressure exhibiting the highest volatility. The
mixture is assumed to be ideal while the liquid layer is considered to be Newtonian, with density
ρ̃, specific heat capacity c̃p, thermal conductivity λ̃, and viscosity μ̃, which depend on the local
volume fraction of the two volatile components; the tildes stand for dimensional quantities. The
surface tension σ̃ also depends on the local volume fraction as well as the local temperature given
by Eqs. (19) and (20). The liquid layer is on the top of a horizontal, uniformly heated solid substrate
and is in contact with the gas phase with average bulk temperature T̃g; the gas consists of the vapor
of the binary mixture. It is assumed that, initially, the liquid layer has thickness H̃o and length L̃o.
In the present paper, it is considered a very thin liquid layer and therefore L̃o greatly exceeds H̃o

so that the ratio, ε = H̃o/L̃o, is assumed to be very small. The latter assumption permits the use of
lubrication theory, which will be employed below to derive a set of evolution equations that govern
the evaporation process.

The Cartesian coordinate system, (x̃, z̃), is used to model the dynamics and solve for the velocity
field, ũ = (ũ, w̃), where ũ and w̃ correspond to the horizontal and vertical components of the
velocity field, respectively. The temperature field is represented by T̃ and the volume fraction of
component A is represented by c; since we deal with a binary mixture the volume fraction of
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FIG. 1. Schematic of the physical system describing an evaporating thin liquid film on top of a horizontal
heated solid substrate in a periodic domain, with periodic boundary condition at x̃ = 0 and L̃o.

component B will be given by 1 − c. The liquid-gas interface is located at z̃ = h̃(x̃, t̃ ) whereas
the liquid-solid interface is located at z̃ = 0. A sketch of the physical system is presented in Fig. 1.

The flow is incompressible and governed by the mass, momentum, energy, and volume fraction
conservation equations given by

ũx̃ + w̃z̃ = 0, (1)

ρ̃(ũt̃ + ũũx̃ + w̃ũz̃ ) = −p̃x̃ + (μ̃ũx̃ )x̃ + (μ̃ũz̃ )z̃, (2)

ρ̃(w̃t̃ + ũw̃x̃ + w̃w̃z̃ ) = −p̃z̃ + (μ̃w̃x̃ )x̃ + (μ̃w̃z̃ )z̃, (3)

ρ̃[(c̃pT̃ )t̃ + ũ(c̃pT̃ )x̃ + w̃(c̃pT̃ )z̃] = (λ̃T̃x̃ )x̃ + (λ̃T̃z̃ )z̃, (4)

ct̃ + ũcx̃ + w̃cz̃ = D̃A(cx̃x̃ + cz̃z̃ ), (5)

where p̃ is the pressure and Di is the diffusion coefficient of component i (i = A, B). The subscripts
x̃ and z̃ and the subscript t̃ denote spatial and temporal partial differentiation, respectively.

The dependence of the properties of the liquid layer on the local volume fraction of the two
components can be evaluated using the following rule of mixtures:

φ̃ = cφ̃A + (1 − c)φ̃B, (6)

where φ̃ = μ̃, λ̃, and c̃p. The density is considered to be constant, ρ ≈ ρA ≈ ρB, under the assump-
tion that the film is very thin, thus the gravitational effects are negligible. We assume that transport
properties obey this linear rule when 0 < c < 0.5. We are aware that the rule is no longer valid at
higher volume fractions of the most volatile components (here, alcohols).

We assume that the density, viscosity, and thermal conductivity in the liquid phase are all much
greater than in the vapor phase. Formally, we take the limits

ρ̃v

ρ̃
→ 0,

μ̃v

μ̃
→ 0,

λ̃v

λ̃
→ 0. (7)

Here, ρ̃v , λ̃v , and μ̃v denote the density, thermal conductivity, and viscosity in the gas phase,
respectively. However, we retain the vapor density in Eq. (9), where it multiplies the vapor velocity,
which may be large.

Along the free surface [z̃ = h̃(x̃, t̃ )], it is necessary to distinguish between the liquid mixture
velocity ũ and the velocity of the interface ũs = (ũs, w̃s). If J̃ denotes the total evaporative flux
defined as J̃ = J̃A + J̃B and n = (−h̃x, 1)/(1 + h̃2

x )1/2 is the outward-pointing unit normal on the
interface then

ũ = ũs + J̃

ρ̃
n, (8)
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whereas the tangential components of both velocities, ũτ = ũ − (ũ · n)n = ũs − (ũs · n)n, are the
same. Moreover, at z̃ = h̃(x̃, t̃ ) the velocity field satisfies the local mass, force, and energy balance
in the liquid and gas phase written as

J̃ = ρ̃(ũ − ũs) · n = ρ̃v (ũv − ũs) · n, (9)

−p̃ + n · τ̃ · n = 2H̃ σ̃ − �̃ − p̃v, (10)

n · τ̃ · t = ∇̃sσ̃ · t, (11)

J̃AL̃v,A + J̃BL̃v,B + λ̃∇̃T̃ · n + J̃
[

1
2 [(ũv − ũs) · n]2 − 1

2 [(ũ − ũs) · n]2
] + (τ̃ · n) · (ũ − ũs) = 0.

(12)

Here ũv and T̃v denote the velocity field and temperature in the gas phase, respectively; τ̃ denotes the

stress tensor; J̃i and L̃v,i denote the evaporation flux and specific internal latent heat of vaporization,
respectively, of component i (i = A, B). Also, t̃ = (1, h̃x )/(1 + h̃2

x )1/2 denotes the unit tangential
vector on the interface, 2H̃ is the mean curvature of the free surface, and ∇̃s is the surface gradient
operator, respectively defined as

2H̃ = −∇̃s · n, ∇̃s = (I − nn) · ∇̃. (13)

�̃ denotes the disjoining pressure, which accounts for the van der Waals attraction, defined as

�̃ = A

6π h̃3
, (14)

where A is the Hamaker constant.
Along the moving interface [z̃ = h̃(x̃, t̃ )] the following boundary condition for the volume

fraction is imposed,

−D̃A[n · ∇̃(ρ̃Ac)]z=h + ρ̃Ac(ũ − ũs) · n = J̃A, (15)

and the kinematic boundary condition is

f̃ (x, z, t ) = z̃ − h̃(x, t ),
D f̃

Dt̃
= 0, (16)

h̃t + ũsh̃x − w̃s = 0. (17)

At the liquid-solid interface (z̃ = 0) wall conditions are imposed:

ũ = w̃ = 0, T̃ = T̃w. (18)

To complete the description, a constitutive equation that describes the dependence of the interfacial
tension on the local volume fraction and interfacial temperature is required. To this end, the
following constitutive equation is employed:

σ̃ = cσ̃A + (1 − c)σ̃B, (19)

which assumes that the surface tension depends on the local volume fraction of the two components.
We also assume the following linear dependence on the temperature:

σ̃i = σ̃i,o − γ̃i(T̃ |h − T̃o). (20)

Here, γ̃i = −∂σ̃i/∂T̃ denotes the temperature coefficient of surface tension for the components i =
A, B, and σ̃i,o is the surface tension of pure component i = A, B at temperature T̃o; we may assume
T̃o = T̃g.
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Finally, we need to employ a constitutive equation for the evaporation fluxes, J̃i. To this end, we
employ the Hertz-Knudsen equation for each species, which takes the following form:

J̃i = ρ̃v,iL̃v,i

(
Mi

2πRgT̃ 3
g

)1/2

(T̃ |h − T̃g). (21)

This constitutive equation relates the mass flux J̃i of component i = A, B at the interface to the local
surface temperature T̃ |h, where Mi is the molecular weight and Rg is the universal gas constant.

Assuming that the gas phase is an ideal gas it is possible to express the vapor density in terms
of the partial pressure, ρ̃v,i = p̃v,iMi/RgT̃g. Moreover, using Raoult’s law the partial pressure can
be related to the volume fraction of each component, p̃v,i = ci p̃o

i , where p̃o
i is the vapor pressure of

component i = A, B. Using these relationships the evaporation fluxes can be expressed as

J̃i = ci p̃
o
i L̃v,i

(
M3

i

2πR3
gT̃ 5

g

)1/2

(T̃ |h − T̃g). (22)

It should be noted that the above expression is a rather simple model based on kinetic theory. Of
course, one could employ more sophisticated and accurate models, such as the modified Hertz-
Knudsen model employing Statistical Rate Theory (SRT) [29–31] at the expense of increased
complexity.

III. SCALING

For nondimensionalizing this problem, length is scaled by the initial mean film thickness H̃o; the
viscous scales are used for velocity, time, and pressure; T̃g is taken as the reference temperature; and
the properties of component A are taken as reference. The resulting scaling reads

(x̃, z̃) = H̃o(x, z), (ũ, w̃) = ν̃A

H̃o
(u,w), t̃ = H̃2

o

ν̃A
t, p̃ = ρ̃Aν̃2

A

H̃2
o

p, h̃ = H̃oh,

T̃ = T̃g + T̃ T, J̃i = λ̃AT̃

H̃oL̃vA
Ji, (τ̃xz, τ̃ii ) = ρ̃Aν̃2

A

H̃2
o

(τxz, τii ), T̃ = T̃w − T̃g,

ρ̃ ≈ ρ̃A ≈ ρ̃B, μ̃ = μ̃Aμ, c̃p = c̃pAcp, λ̃ = λ̃Aλ, σ̃ = σ̃A,oσ,

where ν̃A is the kinematic viscosity of component A.
This scaling renders the following nondimensional system of governing equations:

ux + wz = 0, (23)

ut + uux + wuz = −px + (μux )x + (μuz )z, (24)

wt + uwx + wwz = −pz + (μwx )x + (μwz )z, (25)

Pr[(cpT )t + u(cpT )x + w(cpT )z] = (λTx )x + (λTz )z, (26)

ct + ucx + wcz = Pe−1(cxx + czz ), (27)

where Pr = ν̃A/κ̃A is the Prandtl number and Pe = ν̃A/D̃A is the Péclet number. Here κ̃A is the
thermal diffusivity of component A.

The properties of the liquid are given by

φ = c + (1 − c)φr, (28)

where φ = μ, λ, and cp and φr = μr , λr , and cp,r are the viscosity, thermal conductivity, and heat-
capacity ratios, respectively.
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At the interface z = h(x, t ), the scaled mass, energy, normal stress, and tangential stress balance
are given by

EJ = (−hx(u − us) + w − ws)
(
h2

x + 1
)− 1

2 , (29)

JA + �JB + E2

2LD2
J3 + λ(−hxTx + Tz )(hx + 1)−

1
2 = 0, (30)

p − n · τ · n = pv + A
h3

−
(

δ

Ca
+ Mcc

Pr
− MT

Pr
(γr + (1 − γr )c)T

)
hxx(

h2
x + 1

) 3
2

, (31)

n · τ · t = Ca−1
(
h2

x + 1
) 1

2 (σx + hxσz ), (32)

where J = JA + JB is the total mass flux, E = λ̃AT̃ /ρ̃Aν̃AL̃vA is the so-called nondimensional
evaporation number characterizing the evaporation rate, � = L̃vB/L̃vA is the latent heat ratio of the
components, D = ρ̃v/ρ̃ is the ratio of vapor to liquid densities, Ca = ρ̃Aν̃2

A/σ̃A,oHo is the capillary
number, Mc = (σ̃A − σ̃B)H̃o/ρ̃Aν̃Aκ̃A is the solutal Marangoni number, MT = γ̃AT̃ H̃o/ρ̃Aν̃Aκ̃A is
the thermal Marangoni number, L = H̃2

o L̃vA/ν̃2
A is a measure of the latent heat of component A, and

A = A/6πρ̃Aν̃2
AH̃o is the nondimensional Hamaker constant A.

The scaled boundary condition for the volume fraction reads

1

Pe

⎡
⎣−hxcx + cz(

h2
x + 1

) 1
2

⎤
⎦

z=h

= E (cJ − JA). (33)

The scaled kinematic boundary condition is given by

ht + uhx − ws = 0. (34)

Using the kinematic boundary condition the mass balance at the interface reads

EJ = (w − ht − uhx )
(
h2

x + 1
)− 1

2 . (35)

The scaled constitutive equation for the evaporative flux J is written as

KJA = cT, (36)

KJB = (1 − c)αβ
3
2 �T . (37)

Here, α = p̃o
B/p̃o

A is the relative volatility, where p̃o
i is the vapor pressure of component i = A, B

and β = MB/MA is the molar ratio of the components. The parameter K measures the degree of
nonequilibrium at the evaporating interface and is defined by [9]

K = λ̃A

H̃oL̃2
vA p̃o

A

(
2πR3

gT̃ 5
g

M3
A

) 1
2

. (38)

K = 0 corresponds to the quasiequilibrium limit, where the temperature at the interface is constant
and equal to the average bulk temperature of the gas phase, T̃g. K �= 0 corresponds to the nonequi-
librium case and K−1 = 0 corresponds to the nonvolatile case in which the total evaporation flux J
is equal to zero.

The scaled surface tension coefficient is given by

σ = c + (1 − c)δ − �(c + (1 − c)γr )T |h, (39)

where δ = σ̃B,o/σ̃A,o is the ratio of the reference surface tension, γr = γB/γA is the ratio of the
temperature coefficient of surface tension, and � = γAT/σA.
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TABLE I. Properties for water and ethanol at 80 ◦C.

Water Ethanol

ρ (kg m−3) 971.82 757
μ (N s m−2) 0.351 × 10−3 0.432 × 10−3

λ (W m−1 K−1) 0.669 0.169
cp (J kg−1 K−1) 4.197 × 103 3.030 × 103

Lv (J kg−1) 2.309 × 106 0.960 × 106

σ (N m−1) 62.69 × 10−3 17.3 × 10−3

γ (N m−1 K−1) 0.17 × 10−3 0.09 × 10−3

po (Pa) 47.37 × 103 108.28 × 103

M (kg mol−1) 18.015 × 10−3 46.07 × 10−3

D (m2 s−1) 7.53 × 10−9

Table I shows the properties of water and ethanol at 80 ◦C and Table II shows the corresponding
dimensionless quantities for a 50% water/ethanol mixture at 80 ◦C and layer thicknesses of 1 μm.

IV. BASE STATE

In order to perform a linear stability analysis it is necessary to select a base state which will be
perturbed with infinitesimal disturbances. As such, we select a film which retains its flat interface
as it evaporates slowly, so that it is possible to consider that the base state is quasistatic. Therefore
the base state is time dependent since the heated film is evaporating; the base state quantities will
be denoted by an overbar. As a quasistatic base state with a flat evaporating interface is considered,
there is no dependence on the lateral coordinate x and the base state velocity field is zero. Since
we consider a slowly evaporating film, E is considered to be small and time is rescaled on the

TABLE II. Dimensionless quantities of a 50%
water/ethanol mixture at 80 ◦C and layer thickness
1 μm.

A 1.82 × 10−5

α 2.2858
β 2.5573
Ca 2.02 × 10−3

δ 0.276
E 0.0083
� 0.0271
γr 0.5294
K 0.1543
L 1.77 × 107

� 0.4158
λr 0.2526
MC 7.88 × 102

MT 2.95 × 101

μr 1.2308
Pe 47.96
Pr 2.20
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evaporative scale. Details of the base state are given in Appendix A. After expanding the variables
in powers of E and rescaling time the resulting leading-order base state solution is

h̄ = − λ̄K

�̄2
+ 1

�̄2

√
(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et, (40)

T̄ = 1 − �̄2z√
(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et

, (41)

J̄A = λ̄c̄√
(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et

, (42)

J̄B = λ̄(1 − c̄)αβ
3
2 �√

(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et
, (43)

p̄ = A

[
�̄2

−λ̄K +
√

(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et

]3

, (44)

c̄t = Eλ(�1 − 1)c̄

h̄
√

(λK + �2)2 − 2λ�1�2Et
, (45)

where �̄1 = c̄ + (1 − c̄)αβ3/2� and �̄2 = c̄ + (1 − c̄)αβ3/2�2.
Figure 2 shows the time evolution of the basic state quantities. Figure 2(a) shows that for K = 0

the film thickness goes to zero at tD = �̄2

2λ̄�̄1E
, while for K �= 0 the film disappearance time is

tD = 2λ̄K+�̄2

2λ̄�̄1E
, which is higher than the quasiequilibrium case. The evaporative fluxes of components

A and B are shown in Fig. 2(b). For K = 0 they are initially J̄A = λ̄c̄
�̄2

and J̄B = λ̄(1−c̄)αβ
3
2 �

�̄2
,

respectively, and the most volatile component (component B) has a stronger evaporation flux during
the evaporation process. Both go to infinity at the film disappearance time, tD, since for K = 0
the temperature difference between the interface and the heated substrate is constant during the
evaporation process [see Fig. 2(c)]. For K �= 0 the evaporative flux is initially J̄A = λ̄c̄

λ̄K+�̄2
and

J̄B = λ̄(1−c̄)αβ
3
2 �

λ̄K+�̄2
and increases to J̄A = c̄

K and J̄B = (1−c̄)αβ
3
2 �

K at the disappearance time. Figure 2(c)
shows that the temperature difference between the interface and the solid substrate is constant for
K = 0 and for K �= 0 it is initially TW − T̄ |h = �̄2

λ̄K+�̄2
and decreases to zero as the height of the film

becomes smaller and the temperature at the interface approaches the substrate temperature.

V. LONG-WAVE APPROACH

Assuming that the evaporation is a slow process and that the horizontal extent of the liquid layer
is much larger than the vertical extent, the long-wave approximation can be applied. To that end the
governing system of equations can be rescaled using the small parameter ε = H̃o/L̃o by writing

X = εx, Z = z, τ = εt . (46)

We assume that u, JA, JB, and T are O(1) while w is O(ε) in order to preserve continuity, and p is
of O(ε−1). These dependent variables are expanded in powers of ε:

u = Uo + εU1 + · · · , (47)

w = ε(Wo + εW1 + · · · ), (48)

JA = JAo + εJA1 + · · · , (49)

JB = JBo + εJB1 + · · · , (50)
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(a)

(b)

(c)

FIG. 2. Time evolution of (a) the height of the flat interface, (b) the evaporation flux of components A and
B, and (c) the temperature difference between the solid substrate and the interface of the liquid layer, for K = 0
and K �= 0. Here E = 10−5 and the remaining parameters are shown in Table II.
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T = To + εT1 + · · · , (51)

p = ε−1(Po + εP1 + · · · ). (52)

For the volume fraction profile in the vertical direction we consider the rapid diffusion approxi-
mation [32–34], in which the volume fraction, c, is decomposed into a z-averaged component and a
small perturbation incorporating the z dependence:

c(X, Z, τ ) = Co(X, τ ) + ε2Pe∗C1(X, Z, τ ), (53)

where Pe∗ = ε−1Pe. Since ε2Pe∗ � 1, the decomposition of c allows us to consider a limit in which
the vertical volume fraction gradients are negligible. In the small ε limit, we have the following
leading-order system of governing equations:

Uo,X + Wo,Z = 0, (54)

Po,X = (μUo,Z )Z , (55)

Po,Z = 0, (56)

(λTo,Z )Z = 0, (57)

Co,τ + UoCo,X = 1

Pe∗Co,XX + C1,ZZ . (58)

At the wall (Z = 0), we have

Uo = Wo = 0, To = 1. (59)

Along the interface [Z = h(X, τ )], the boundary conditions become

E∗Jo = Wo − hτ − UohX , (60)

Jo,A + �Jo,B = −λTo,Z , (61)

Po = pv − δ

Ca∗ hXX + A∗

h3
, (62)

μUo,Z = M∗
c Co,X

Pr
− MT

Pr

∗
[(1 − γr )Co,X T |h + (Co + (1 − Co)γr )TX |h]], (63)

C1,Z |Z=h = E∗(CoJo − Jo,A) + hXCo,X

Pe∗ . (64)

Since E is considered to be small we assume E∗ = ε−1E to include mass loss in the kinematic
boundary condition. The kinetic energy in the energy balance is neglected by assuming L = O(ε5).
We assume M∗

T = ε−1MT and M∗
c = ε−1Mc to retain the thermocapillary and solutal effect in the

tangential stress balance. We also assume Ca∗ = ε−3Ca and A∗ = εA to retain the effect of surface
tension and disjoining pressure in the normal stress balance, respectively.

The constitutive equation for evaporation flux at the leading order reads

KJo,A = CoTo|h, (65)

KJo,B = (1 − Co)αβ
3
2 �To|h. (66)

The leading-order surface tension coefficient is given by

σ = Co + (1 − Co)δ − �A(Co + (1 − Co)γr )To|h. (67)
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First, we solve the energy conservation Eq. (57), subject to the energy balance Eq. (61) and the wall
boundary conditions Eq. (59), to find the liquid temperature field:

To = 1 − (Jo,A + �Jo,B)
Z

λ
. (68)

To find the velocity, we solve the x component of the conservation of momentum Eq. (55), subject
to the tangential stress balance Eq. (63), and the wall boundary condition Eq. (59):

Uo = Po,X

μ

(
Z2

2
− hZ

)
+ σxZ

μCa
. (69)

From the conservation of mass Eq. (54), subject to the wall boundary conditions Eq. (59), we have

Wo = −Po,XX

μ

(
Z3

6
− hZ2

2

)
+ Po,X hX Z2

2μ
− σXX Z2

2μCa
. (70)

From the kinematic boundary condition Eq. (60) and integrating over z the conservation of species
Eq. (58), together with the boundary condition for the volume fraction Eq. (64), we have the
following evolution equations:

hτ = −E∗Jo +
(

Po,X h3

3μ
− M∗

c Co,X h2

2μPr
+ M∗

T [(1 − γr )Co,X T |h − γoTX |h]h2

2μPr

)
X

, (71)

Co,τ = E∗(CoJo − Jo,A)

h
+ (hCo,X )X

hPe∗ +
(

Po,X h2

3μ
− M∗

c Co,X h

2μPr
+M∗

T [(1−γr )Co,X T |h−γoTX |h]h

2μPr

)
Co,X ,

(72)

where γo = Co + (1 − Co)γr .
Returning to the original scaling the evolution equations take the form

ht = −EJ +
(

pxh3

3μ
− McCxh2

2μPr
+ MT [(1 − γr )CxT |h − γoTx|h]h2

2μPr

)
x

, (73)

Ct = E (CJ − JA)

h
+ (hCx )x

hPe
+

(
pxh2

3μ
− McCxh

2μPr
+ MT [(1 − γr )CxT |h − γoTx|h]h

2μPr

)
Cx. (74)

Writing J , p, and T in terms of C and h and substituting in Eqs. (73) and (74) renders the following
set of evolution equations written in terms of C and h:

ht = − Eλ�1

λK + �2h
+

[
−δh3hxxx

3μCa
− Ahx

μh
− McCxh2

2μPr

− MT h2

2μPr

(
(1 − γr )Cx

(
λK

λK + �2h

)
− γo

(
λK (�2,xh + �2hx )

(λK + �2h)2

))]
x

, (75)

Ct = Eλ(�1 − 1)C

h(λK + �2h)
+

[
− δh2hxxx

3μCa
− Ahx

μh2
− McCxh

2μPr
+ MT h

2μPr

(
(1 − γr )Cx

(
λK

λK + �2h

)

− γo

(
λK (�2,xh + �2hx )

(λK + �2h)2

))]
Cx + (hCx )x

hPe
, (76)

where �1 = C + (1 − C)αβ3/2� and �2 = C + (1 − C)αβ3/2�2.
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TABLE III. The expressions and orders of magnitude of the terms in Eqs. (80) and (81), where μb =
Cb + (1 − Cb)μr and γb = Cb + (1 − Cb)γr .

Physics Jacobian Order

Solutal Marangoni MHC
c = Mch2

b
2μbPr O(102)

Surface tension SHH = δh3
b

3μbCa O(101)

Thermal Marangoni MHH
T = MT h2

bλbKγb�2b

2μbPr(λbK+�2bhb )2 O(10−1)

Thermal Marangoni MHC
T = MT h2

bλbK

2μbPr(λbK+�2bhb ) ((1 − γr ) − γbhb(1−αβ3/2�2 )
(λbK+�2bhb ) ) O(10−1)

Diffusion volume fraction DCC = 1
Pe O(10−2 )

Disjoining pressure AHH = A
μbhb

O(10−5)

Evaporation EHH = Eλb�1b�2b
(λbK+�2bhb )2 O(10−5)

Evaporation EHC = Eλb(1−αβ3/2�)
(λbK+�2bhb ) + E�1bhb((1−λr )�2b−λb(1−αβ3/2�2 ))

(λbK+�2bhb )2 O(10−6)

Evaporation ECH = Eλb(�1b−1)Cb
hb(λbK+�2bhb ) ( 1

hb
+ �2b

λbK+�2bhb
) O(10−6)

Evaporation ECC = E ((1−λr )(�1b−1)Cb+λb(1−αβ3/2�)Cb+λb(�1b−1))
hb(λbK+�2bhb )

− Eλb(�1b−1)Cb((1−λr )K+(1−αβ3/2�2 )hb )
hb(λbK+�2bhb )2 O(10−6)

VI. LINEAR STABILITY ANALYSIS

Considering the linear stability of this state, we perturb the base state in the following form:

h(x, τ ) = hb(τ ) + H (τ )eikx, (77)

C(x, τ ) = Cb + C1(τ )eikx, (78)

where k is the wave number. The base solutions for h and C are given by Eqs. (A28) and (A33), and
their time derivatives at t = 0 can be written as

ḣb = − Eλb�1b

λbK + �2bhb
, Ċb = Eλb(�1b − 1)Cb

hb(λbK + �2b)
, (79)

where λb = Cb + (1 − Cb)λr , �1b = Cb + (1 − Cb)αβ3/2�, and �2b = Cb + (1 − Cb)αβ3/2�2.
Substituting the perturbed solution Eqs. (77) and (78) into the system of equations Eqs. (75)

and (76) and linearizing these with respect to H and C1, we obtain the following linear system:

Ḣ + [ − EHH − (
AHH + MHH

T

)
k2 + SHH k4

]
H + [ − EHC + (

MHC
T − MHC

c

)
k2

]
C1 = 0, (80)

Ċ1 + [ECH ]H + [−ECC + DCCk2]C1 = 0, (81)

where the Jacobian terms, �i j , and their orders of magnitude are given in Table III. In the Jacobian
terms, the superscript i = H,C refers to the terms in the interfacial and volume fraction equations,
respectively, and the superscript j = H,C indicates if the Jacobian term is multiplying H or C,
respectively.

Below we use the “frozen” interface approximation [9,15], which assumes that the characteristic
time of the change of the layer thickness is large compared to the development of the disturbances.
This allows us to disregard the dependence of hb on τ considering it as a constant parameter. In that
case, we consider the following disturbances:

H (τ ) = H (0)erτ , C1(τ ) = C1(0)erτ , (82)
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FIG. 3. The growth rates r± vs wave number k, for K = 0 and E = 0. The remaining parameters are shown
in Table II.

where r denotes the growth rate of the disturbances and H (0) and C1(0) denote the imposed
disturbance. With that we obtain the following set of equations:

[
r − EHH − (

AHH + MHH
T

)
k2 + SHH k4

]
H + [−EHC + (

MHC
T − MHC

c

)
k2

]
C1 = 0, (83)

[ECH ]H + [r − ECC + DCCk2]C1 = 0. (84)

Next, we will solve Eqs. (83) and (84) to get an expression for the growth rate r±, as a function of
the wave number k for different cases. The solution of r± has two possibilities.

(a) Two real roots correspond to the monotonic damping or growth (depending on the sign of the
root) of the disturbances. The two roots correspond to the growth rate of the two different modes,
i.e., the interfacial and the volume fraction mode.

(b) Two complex roots correspond to an oscillatory mode of instability. The real part of r gives
the growth rate while the imaginary part gives the frequency of the instability.

A. Quasiequilibrium evaporation (K = 0)

We consider first the quasiequilibrium case, where the interfacial temperature is constant and
equal to the equilibrium temperature. Under this condition, the thermocapillary effect is absent. For
the case without evaporation the growth rate is given by the interfacial and volume fraction modes,
respectively:

r+ = AHH k2 − SHH k4, (85)

r− = −DCCk2. (86)

Figure 3 shows that without evaporation the interfacial mode is unstable while the volume
fraction mode is stable. In this case the dominant effects in the interfacial mode are the van der
Waals attractions that destabilize the layer at very small wave numbers and the surface tension that
stabilizes the layer at large wave numbers, while for the volume fraction mode the diffusion of
components of the mixture has a stabilizing effect.
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FIG. 4. The growth rates r± vs wave number k, for K = 0 and E = 10−5. The remaining parameters are
shown in Table II.

Next we consider the case with evaporation. For this case the expression for the growth rate, r±,
as a function of the wave number, k, is given by

r± = 1
2 [EHH + ECC + (AHH − DCC )k2 − SHH k4] ± 1

2

√
d1, (87)

where

d1 = (−EHH + ECC − (AHH + DCC )k2 + SHH k4)2 + 4(ECH )
(
EHC − MHC

c k2
)
. (88)

With evaporation, as seen in Fig. 4, the system has real eigenvalues for very small wave numbers
indicating a monotonic instability and complex eigenvalues for moderate wave numbers indicating
an oscillatory instability. As shown in Fig. 4 the real part of the complex eigenvalues is of magnitude
comparable to and lower than the evaporation parameter E , thereby suggesting that this oscillatory
mode will eventually be overhauled by the long-wave monotonic mode due to the evaporation of
the film. A decay of the amplitude of the oscillations was also seen in the experiments performed
by Overdiep [17]. For this case, evaporation destabilizes the liquid layer at small wave numbers
while the diffusion of the mixture components and the surface tension stabilize the liquid layer at
high wave numbers. We can see in the discriminant d1 that the evaporation will make the system
monotonic (d1 > 0) at k = 0 while the solutal Marangoni effect will make the system oscillatory
(d1 < 0) at small wave numbers. The presence of the solutal Marangoni effect due to evaporation
reverses the initial perturbation, leading the system to an oscillatory instability mode. This case
is similar to those described by Overdiep [17], Howison et al. [18], and Eres et al. [19] analyzing
drying of painting layers, where the increase of resin in the troughs due to evaporation of the solvent
increases the surface tension at the troughs and reverses an initial perturbation. In the case of 50%
water-ethanol studied in our paper, the difference in volatility is the mechanism that will increase
the surface tension at the troughs due to the faster evaporation of the most volatile component that
has lower surface tension.

B. Nonequilibrium evaporation (K �= 0)

We now consider the nonequilibrium evaporation, where the interfacial temperature is not
constant and depends on the evaporation fluxes. This means that the thermal Marangoni effect is
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FIG. 5. The growth rates r+ and r− vs wave number k, for E = 0. The remaining parameters are shown in
Table II.

present. For the case without evaporation the interfacial and volume fraction modes are given by,
respectively,

r+ = (
AHH + MHH

T

)
k2 − SHH k4, (89)

r− = −DCCk2. (90)

Without evaporation, Fig. 5 shows that the growth rate has real eigenvalues and the system
is unstable for small wave numbers. In this case the increase in the temperature at the trough
lowers the local surface tension and the thermal Marangoni effect drives the liquid to the crest,
promoting the initial perturbation, leading to a monotonic instability mode. For small wave numbers
the thermal Marangoni effect dominates the instability, while for large wave numbers the surface
tension dominates and stabilizes the liquid layer.

Next we consider the case with evaporation where the growth rate r as a function of the wave
number k is given by

r± = 1
2

[
EHH + ECC + (

AHH + MHH
T − DCC

)
k2 − SHH k4

] ± 1
2

√
d1, (91)

where

d1 = (−EHH+ECC−(
AHH+MHH

T + DCC
)
k2 + SHH k4

)2 + 4(ECH )
(
EHC + (

MHC
T − MHC

c

)
k2

)
.

(92)

With evaporation, the system has real eigenvalues for very small wave numbers and complex
eigenvalues for moderate wave numbers, as shown in Fig. 6. Here, the thermal Marangoni effect
destabilizes the liquid layer for small wave numbers while the surface tension stabilizes the liquid
layer for high wave numbers. In the discriminant d1 we can see that the evaporation will lead the
system to a monotonic instability at k = 0 while for small wave numbers there is a competition
between the thermal and solutal Marangoni numbers. If the thermal Marangoni effect dominates,
the system will go through a monotonic instability while if the solutal Marangoni number dominates
the instability will be oscillatory. In this case, the growth rate of the oscillatory mode is much higher
than the evaporation rate and therefore we expect that the oscillatory mode will not decay as in the
cases described by Overdiep [17], Howison et al. [18], and Eres et al. [19].
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FIG. 6. The growth rates r+ and r− vs wave number k, for E = 10−5. The remaining parameters are shown
in Table II.

C. Parametric analysis

A parametric analysis on the stability of the evaporating thin liquid layer is performed for the case
of nonequilibrium evaporation (K �= 0) in the limit of small evaporation number, E = 10−5. In this
limit, the main mechanisms of instability during the evaporation are the thermocapillarity (thermal
Marangoni effect) and the solutocapillarity (solutal Marangoni effect). Therefore, the effects of
the thermal Marangoni number and the solutal Marangoni number as well as the volatility of the
components on the instabilities are analyzed.

Figure 7 presents the effect of the thermal Marangoni number on the instability. For small thermal
Marangoni numbers the solutal Marangoni effect dominates, reversing the initial perturbation, and
the evaporation process goes through an oscillatory instability mode, as seen in Fig. 7(a). However,
for high thermal Marangoni numbers the solutal Marangoni effect is not strong enough to reverse
the initial perturbation. In this case the thermal Marangoni effect dominates, promoting the initial
perturbation, and the evaporation process goes through a monotonic instability mode, as shown in
Fig. 7(b). Moreover, instabilities with shorter lengthscales are observed. It can be seen in Fig. 7 that
as the thermal Marangoni number increases both the growth rate and the wave number of the most
unstable mode increase.

The effect of the solutal Marangoni number on the instability is presented in Fig. 8. For lower
solutal Marangoni numbers, the thermal Marangoni effect dominates, promoting the initial perturba-
tion, and the evaporation process goes through a monotonic instability mode for the most unstable
wave number while the oscillatory mode is also unstable for short- and long-wave disturbances.
For higher solutal Marangoni numbers, the solutocapillarity dominates over the thermocapillarity,
reversing the initial perturbation, and the evaporation process undergoes an oscillatory instability
mode. It can be seen in Fig. 8 that the growth rate and wave numbers are of the same order of
magnitude for both cases. This shows that the growth rate and the wave number of the most unstable
mode are stronger functions of thermal Marangoni number (as seen from Fig. 7). We can also see
that the growth rate of the monotonic instability is higher than the oscillatory instability for the most
unstable wave number.

Figure 9 presents the effect of volatility of the components on the instability. For α = 0.5 the
volatility of component A is higher, so it evaporates faster at the trough, increasing the volume
fraction of component B. As the component B has lower surface tension (δ = 0.276) the surface
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(a)

(b)

FIG. 7. Dependence on MT : Growth rates r+ and r− vs wave number k for K �= 0 and E = 10−5.
(a) Oscillatory instability mode for MT = 100. (b) Monotonic instability mode for MT = 1000. The remaining
parameters are shown in Table II.

tension at the trough is reduced and the solutal Marangoni effect drives the liquid away from
the trough in the direction of the crest that has a higher volume fraction of component A, assisting
the thermal Marangoni effect to promote the initial perturbation. In this case the evaporation process
goes through a monotonic instability mode as shown in Fig. 9(a). For α = 2, where component B is
the most volatile, this component will evaporate first at the trough, increasing the volume fraction of
component A. This will increase the surface tension at the trough and the solutal Marangoni effect
will reverse the initial perturbation, leading to an oscillatory instability mode, [Fig. 9(b)]. It can be
seen from Fig. 9 that as the relative volatility increases the growth rate of the most unstable wave
number decreases as well as the most unstable wave number.

To determine the critical conditions for each mode of instability, we also present in Fig. 10 the
neutral curves for the same two different values of relative volatility. At this point, it is instructive to
recollect that our quasisteady state assumption considers that disturbances should have a much larger
growth rate in comparison to evaporation rate. Thus, to derive our expressions for neutral stability,
we assume that critical conditions arise when the real part of the eigenvalue is at least equal to the
evaporation number E . The analytical expressions are presented in Appendix B. Figure 10(a) shows
the neutral curves for the critical value of MT as a function of the wave number, Eq. (B1), while
keeping the rest of the parameters constant. For α = 0.5 (monotonic case), it is shown that at small
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FIG. 8. Dependence on Mc: Growth rates r+ and r− vs wave number k for K �= 0 and E = 10−5. The
monotonic instability mode for Mc = 10 and oscillatory instability mode for Mc = 100 are also shown. The
remaining parameters are shown in Table II.

values of the wave number critical MT becomes negative; here, the solutal Marangoni number is
Mc = 788. Clearly, here, solutal gradients are able to destabilize the flow even without the presence
of a thermal gradient. In fact, it is shown that in order to stabilize the flow the thermal gradient
should be reversed, i.e., corresponding to negative values of MT . At increasing values of the wave
number, the lengthscale of the disturbance increases and therefore diffusion is able to smoothen out
the solutal gradients, which results in significant increase of the critical MT . Turning our attention to
α = 2, which corresponds to an oscillatory mode of instability, we note that according to Eq. (B4)
the critical value of MT does not depend on Mc. However, the value of Mc affects significantly the
imaginary part of the most unstable eigenvalue and, therefore, the frequency of the instability as
depicted in Fig. 10(b). Increasing MC leads to increase in the frequency of the instability.

D. Flow maps

Figure 11 presents maps with the regions of monotonic and oscillatory instability modes in
the parameter space of the relative volatility, α, and the ratio of solutal and thermal Marangoni
numbers, Mc/MT . We choose the ratio between the solutal and thermal Marangoni numbers in
order to compare solutocapillarity with thermocapillarity. The contours in Figs. 11(a)–11(c) show
the growth rate rm, wave number km, and frequency f , respectively, of the most unstable mode.

In Fig. 11 component A has higher surface tension (δ = 0.27), therefore solutocapillarity drives
the liquid in the direction of regions with higher volume fraction of component A. It can be seen
in Fig. 11 that for the case where component A is less volatile, α > 1, a smaller ratio between the
solutal and thermal Marangoni numbers is needed to achieve the oscillatory instability mode as α

increases. This is because the solutocapillarity is proportional to how fast the lower surface tension
component evaporates compared to the one with higher surface tension. Therefore increasing
relative volatility requires a lower ratio between the solutal and thermal Marangoni number for
solutocapillarity to overcome the thermocapillarity, leading the system to an oscillatory instability
mode. For α > 10 the oscillatory mode is overhauled by the long-wave monotonic mode due to
evaporation.

From Figs. 11(a) and 11(b) it can be seen that the growth rate and the wave number of the
most unstable mode decrease as the relative volatility increases and for α < 1 they increase as the
ratio of the solutal and thermal Marangoni numbers increases. In Fig. 11(b) we can see that for
α > 10 the most unstable instability become monotonic and km = 0 because the growth rate of the
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(a)

(b)

FIG. 9. Dependence on volatility: Growth rates r+ and r− vs wave number k for K �= 0 and E = 10−5.
(a) Monotonic instability mode for α = 0.5. (b) Oscillatory instability mode for α = 2. The remaining
parameters are shown in Table II.

oscillatory instability decreases with α as shown in Fig. 9. Figure 11(c) shows that the frequency of
the oscillations increases with the solutal and thermal Marangoni numbers ratio and has a maximum
around α ≈ 3.

We have plotted in Fig. 11 the experimental parameters for a water-ethanol mixture (in green)
and a water-butanol mixture (in blue). We chose to compare a water-ethanol mixture (parameters
from Table II) with a water-butanol mixture because butanol has lower vapor pressure than water.
In that case the most volatile component (water) has higher surface tension and the solutocapillarity
will drive the liquid from regions with lower concentration of water (trough) to regions with
higher concentration of water (crest), promoting the initial perturbation and leading the system to a
monotonic instability mode.

E. Mechanisms of the instability

A schematic of the main mechanisms of instability is shown in Fig. 12. First we discuss the
instability for the case of the standard parameters present in Table II where the component A has
lower volatility and higher surface tension than component B. When an initial perturbation is applied
to the system the temperature of the interface becomes hotter at the trough due to the proximity to
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(a)

(b)

FIG. 10. (a) Neutral curves for two different values of relative volatility leading to either a monotonic or
an oscillatory mode of instability. (b) Imaginary part of the most unstable eigenvalue for the oscillatory mode.

the hot substrate. Therefore, the thermal Marangoni effect drives the liquid from the hotter trough
in the direction of the colder crest, promoting the perturbation. However, due to the higher volatility
of component B, it evaporates faster at the trough, increasing the volume fraction of component
A that has higher surface tension. As the volume fraction of component A increases at the trough,
the solutal Marangoni effect becomes stronger and at some point it may overcome the thermal
Marangoni effect and start to drive the liquid in the direction of the trough, as shown in Fig. 12(a).
As a consequence, the interface starts to level until the trough become a crest and the previous
crests become troughs. This process repeats at the new troughs, causing oscillations at the interface,
and the evaporation goes through an oscillatory instability mode. However, when component A
has higher volatility and higher surface tension than component B the solutal Marangoni effect
has the opposite behavior. The volume fraction of component B increases at the trough due to
the higher volatility of component A and the solutal Marangoni effect drives the liquid from the
trough in the direction of the crest, promoting the thermal Marangoni effect, as shown in Fig. 12(b).
In this case the evaporation goes through a monotonic instability mode. Thus, when there is a
competition between thermal and solutal Marangoni effects the oscillatory instability is possible
only when solutocapillarity overcomes thermocapillarity. On the other hand, when the thermal and
solutal Marangoni effects enhance each other, driving the flow in the same direction, the instability
is always monotonic.
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FIG. 11. Maps showing the regions of the monotonic instability mode (crosses) and oscillatory instability
mode (squares) in the parameter space of Mc/MT vs α. (a) Contour lines of the growth rate of the most unstable
wave number. (b) Contour lines of the most unstable wave number. (c) Contour lines of the frequency of the
oscillations. Here E = 10−5 and the remaining parameters are shown in Table II. The experimental points for
water-ethanol (parameters from Table II) and water-butanol are plotted in green and blue bullets, respectively.
The parameters used for butanol are po = 22 × 103 (α = 0.46) and σ = 19.45 × 10−3.
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(a)

(b)

FIG. 12. (a) Schematic of the oscillatory instability for the case where component A is less volatile than
B and has higher surface tension. (b) Schematic of the monotonic instability for the case where component A
is more volatile than B and has higher surface tension. Here FTC is the thermocapillary force and FSC is the
solutocapillary force.

VII. NONLINEAR REGIME

A. Validation against linear theory

We examine the nonlinear dynamics by solving the evolution Eqs. (75) and (76), dynamically.
The dynamic solution so generated represents transient simulations of the problem. Cross validation
against linear stability analysis is presented in Sec. VII B. The growth rates derived from the linear
stability analysis and from the transient simulations are compared for the cases of monotonic
instability mode and oscillatory instability mode. The growth rate of the initial perturbation in the
transient simulations is calculated using the following expression for the monotonic and oscillatory
case, respectively:

rmon = Ȧ

A
, (93)

rosc = Ȧmax

Amax
. (94)

Here, in the monotonic case, A is the amplitude of the instability and Ȧ is its time derivative, and,
in the oscillatory case, Amax is the maximum amplitude of the oscillations and Ȧmax is its time
derivative.

The evolution of the system is solved numerically with a bespoke code using the finite element
method and the weak formulation of the equations. The computational domain is discretized in
space using 100 elements and the solution is advanced in time using the implicit Euler method. The
resulting set of nonlinear algebraic equations is solved in each time step using the Newton-Raphson
method. Convergence was achieved upon mesh refinement. The size of the domain comprises the
interval 0 < X < π/kM , where kM is the most unstable wave number. Periodic boundary conditions
are applied on the lateral endings and we use the following initial condition:

h(X, 0) = 1 + 5 × 10−7cos(kMX ), (95)

C(X, 0) = 0.5 + 5 × 10−7cos(kMX ). (96)
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FIG. 13. Growth rate of the amplitude of the initial perturbation over time derived from the transient
simulation. Inset: Growth rate vs wave number derived from the linear stability analysis for the case of the
monotonic instability mode with α = 0.5. The solid and dashed line, respectively, show r+ and r−. Here
E = 10−5 and the remaining parameters are shown in Table II.

First, we consider a case which exhibits an monotonic instability. In the inset of Fig. 13 we
depict the dispersion curve where it is shown that the most unstable wave number is at k = 0.082
corresponding to a growth rate of r = 1.85 × 10−3. We perform a transient simulation for a domain
with size that is equal to the wavelength of the most unstable mode and evaluate the growth rate. The
transient simulation shows a good agreement in growth rate for early times when the linear regime
is still valid, as shown in Fig. 13. At later times, when waves become nonsinusoidal the numerical
growth rate demonstrates a strong nonlinear growth.

In Fig. 14 we compare the growth rates for the oscillatory instability mode. From linear stability
analysis (inset of Fig. 14), the most unstable mode at k = 0.058 corresponds to a growth rate of
r = 2.35 × 10−4. Again, as seen in the case for monotonic instability above, Fig. 14 demonstrates

FIG. 14. Growth rate of the maximum amplitude of the oscillations over time derived from the transient
simulation. Inset: Growth rate vs wave number derived from the linear stability analysis for the case of the
oscillatory instability mode with α = 2.28. The solid and dashed line, respectively, show r+ and r−. Here
E = 10−5 and the remaining parameters are shown in Table II.
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FIG. 15. Time evolution of the interface for α = 0.5 and E = 10−5 showing the monotonic instability
mode. The remaining parameters are shown in Table II.

that the growth rate predicted by the transient simulation agrees with that predicted from the linear
stability analysis at early times. Both Figs. 14 and 13 also show that the nonlinear behavior begins
approximately when the perturbation amplitude is approximately an order of magnitude higher than
the initial value.

B. Numerical simulations

The time evolution of the interface of a thin liquid layer composed of a binary mixture heated
from below using the set of base parameters presented in Table II, E = 10−5 and α = 0.5 (Fig. 13),
is presented in Fig. 15. For this set of parameters the component A has higher volatility and higher
surface tension than component B. Initially a small perturbation, O(10−6), is applied and it grows
exponentially as the interface evaporates. When the perturbation is applied the temperature of the
interface at the trough becomes hotter. The perturbation is then promoted by the thermocapillarity
that drives the liquid away from the hotter trough, and by solutocapillarity due to the higher
evaporation rate of component A at the trough, which decreases the surface tension at that location.
In this case, the evaporation process presents a monotonic instability. The time taken for the rupture
of the liquid layer was tR = 5.99 × 103.

Figure 16 presents the time evolution of the interface for the set of base parameters present in
Table II and E = 10−5 that corresponds to the oscillatory instability mode (Fig. 14). For this set
of parameters the component A has lower volatility and higher surface tension than component
B. In this case, the initial perturbation, O(10−6), is initially promoted by the thermal Marangoni
effect due to the higher temperature at the trough. However, as the volume fraction of component
A increases at the trough due to the higher volatility of component B, the solutocapillarity becomes
stronger and starts to drive the liquid in the direction of the trough, reversing the amplitude of the
initial perturbation. This process repeats at the new trough, causing oscillations at the interface. The
computed rupture time was tR = 3.15 × 104. In order to test the effect of the size of the domain,
we considered this case with a double size domain. The evolution of the interface presents the
development of the same structures in both cases showing no dependence on the size of the domain.

Figures 17(a)–17(c) show the evolution of higher-order modes obtained by the Fourier transform
of the interfacial height, interfacial temperature, and interfacial volume fraction predicted by the
numerical simulations for the case with oscillatory instability presented in Fig. 16(a). Each subse-
quent mode that appears has a higher slope than the previous one. The ratios between the slopes of
the modes for interface deformation are s2/s1 = 3.23 and s3/s1 = 4.49. For temperature these are
s2/s1 = 3.01 and s3/s1 = 4.24, and for the volume fraction these are s2/s1 = 2.88 and s3/s1 = 4.16.
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FIG. 16. Time evolution of the interface for α = 2.28 and E = 10−5 showing the oscillatory instability
mode. The remaining parameters are shown in Table II.

(a) (b)

(c) (d)

FIG. 17. Evolution of higher-order Fourier modes for transient simulations presented for oscillatory insta-
bility in Fig. 16: (a) the interface (s1 = 2.21 × 10−4, s2 = 7.20 × 10−4, s3 = 9.92 × 10−4), (b) the temperature
(s1 = 2.44 × 10−4, s2 = 7.36 × 10−4, s3 = 1.04 × 10−3), and (c) the volume fraction (s1 = 2.57 × 10−4,
s2 = 7.40 × 10−4, s3 = 1.07 × 10−3). (d) First mode of the Fourier transform of the interface (H), temperature
(T), and volume fraction (C).
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In Fig. 17(d) it can be seen that the first or the primary modes of the interface and temperature are
in phase, while that of the volume fraction is out of phase. This means that the temperature changes
instantaneously with the interface, increasing at the trough and decreasing at the crest. However, the
volume fraction is significantly out of phase. This means that as the interface is enriched by the less
volatile component evaporation ensures local cooling of the interface, thereby leading us to conclude
that the interfacial and thermal fluctuations are enslaved to the soluto-Marangoni instability.

VIII. CONCLUSIONS

The stability of the evaporation of a horizontal thin liquid layer comprising a binary mixture
of volatile liquids heated from below has been investigated by means of linear stability analysis
and transient simulations. To that effect, long-wave approximation has been employed to derive the
evolution equations for the free interface and the volume fraction of the components. The linear
stability analysis has been cross validated by comparing the solution for the growth rate of the
instabilities against the transient simulations.

Two modes of instabilities have been described by the linear theory, i.e., a monotonic instability
mode and an oscillatory instability mode. By performing a parametric analysis it was possible to
identify how these modes depend on the ratio between the thermal and solutal Marangoni number
and on the relative volatility. When the most volatile component has the lower surface tension the
thermal and solutal Marangoni effects compete with each other. In this case, when the solutal
Marangoni effect dominates, the system presents an oscillatory instability mode. However, when
the thermal Marangoni effect dominates, the system presents a monotonic instability mode. On the
other hand, when the most volatile component has the higher surface tension both the thermal and
the solutal Marangoni effects assist each other, promoting the initial perturbation and leading to a
monotonic instability mode.
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APPENDIX A: BASE STATE

Here we derive the base state solution. Under the assumptions stated in Sec. IV the momentum,
energy, and volume fraction conservation equations become

p̄z = 0, (A1)

Pr(cpT̄ )t = (λT̄z )z, (A2)

c̄t = c̄zz

Pe
. (A3)

At the interface z = h(t ) the energy and the normal stress balance become

J̄A + �J̄B + E2

2LD2
J̄3 = −λT̄z, (A4)

p̄ = pv + E2J̄2

D
+ A

h̄3
, (A5)
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and there is no shear stress in the base state. The volume fraction boundary condition becomes

c̄z|z=h̄

Pe
= E (c̄J − JA). (A6)

The kinematic boundary condition becomes
EJ̄ = −h̄t , (A7)

while the constitutive equation for the evaporation flux is given by

KJ̄A = c̄T̄ , (A8)

KJ̄B = (1 − c̄)αβ
3
2 �T̄ . (A9)

At the solid boundary z = 0, the boundary condition is
T̄ = 1. (A10)

Since we consider a slowly evaporating film E is considered to be small and to retain the effect of
mass loss in the kinematic boundary condition time is rescaled on the evaporative scale:

t ′ = Et, z′ = z. (A11)

The total mass flux J̄ (t ′) and the liquid temperature T̄ (z′, t ′) are considered to be of order unity,
while pressure p̄(t ′) is of order E−1. These dependent variables are expanded in powers of E ,

c̄ = co + Ec1 + E2c2 + · · · , (A12)

J̄A = JAo + EJA1 + E2JA2 + · · · , (A13)

J̄B = JBo + EJB1 + E2JB2 + · · · , (A14)

T̄ = To + ET1 + E2T2 + · · · , (A15)

p̄ = E−1(po + E p1 + E2 p2 + · · · ), (A16)

while the film thickness h̄(t ′) is considered an unspecified order-1 function.
We assume L 
 1 in order to neglect the kinetic energy in the energy balance. Let us assume

A = ĀE−1 in order to keep the disjoining pressure in the normal-stress balance, where Ā is an
order-1 quantity.

Applying the time rescaling and substituting the expansions on the base state, in the small E limit
the leading-order base state system becomes

po,z′ = 0, (A17)

(λTo,z′ )z′ = 0, (A18)

c̄o,t ′ = c̄1,z′ |z′=h̄

h̄
; (A19)

at z′ = h(t ′) Jo = −h̄t ′ , (A20)

Jo,A + �Jo,B = −λTo,z′ , (A21)

po

E
= A

h̄3
, (A22)

KJo,A = c̄To, (A23)

KJo,B = (1 − c̄)αβ
3
2 �To, (A24)

104007-29



R. K. NAZARETH et al.

c̄1,z′ |z′=h̄ = c̄oJo − JA,o; (A25)

at z′ = 0 To = 1, (A26)

along with the initial condition

t ′ = 0, h̄ = 1. (A27)

The resulting leading-order base state solution is

h̄ = − λ̄K

�̄2
+ 1

�̄2

√
(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et, (A28)

T̄ = 1 − �̄2z√
(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et

, (A29)

J̄A = λ̄c̄√
(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et

, (A30)

J̄B = λ̄(1 − c̄)αβ
3
2 �√

(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et
, (A31)

p̄ = A

[
�̄2

−λ̄K +
√

(λ̄K + �̄2)2 − 2λ̄�̄1�̄2Et

]3

, (A32)

c̄t = Eλ(�1 − 1)c̄

h̄
√

(λK + �2)2 − 2λ�1�2Et
, (A33)

where �̄1 = c̄ + (1 − c̄)αβ3/2� and �̄2 = c̄ + (1 − c̄)αβ3/2�2.

APPENDIX B: NEUTRAL CURVES

Here we present the expressions of the neutral curves for the monotonic and oscillatory case. For
the monotonic case the neutral curve is given by

MT = μbPr(λbK + �2bhb)2

2h2
bλbK

[
M

N

]
, (B1)

where

M = −[−2E + EHH + ECC + (AHH − DCC )k2 − SHH k4]2

+ [−EHH + ECC − (AHH + DCC )k2 + SHH k4]2 + 4ECH
(
EHC − MHC

c k2
)
, (B2)

N = γb�2b(−E + ECC − DCCk2)k2 − ECH ((1 − γr )(λbK + �2bhb) − γbhb(1 − αβ3/2�2))k2.

(B3)

For the oscillatory case the neutral curve is given by

MT = 2μbPr(λbK + �2bhb)2

h2
bλbKγb�2b

[
2E

k2
− EHH

k2
− ECC

k2
− AHH + DCC + SHH k2

]
, (B4)

and the imaginary part of the eigenvalue where the real part is equal to E is given by

rI = 2
[ − (−E + ECC − DCCk2)2 − ECH

(
EHC + (

MHC∗
T − MHC

c

)
k2

)]1/2
, (B5)
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where

MCH∗
T = 1

γb�2b

[
2E

k2
− EHH

k2
− ECC

k2
− AHH + DCC + SHH k2

]

× ((1 − γr )(λbK + �2bhb) − γbhb(1 − αβ3/2�2)). (B6)

[1] A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69,
931 (1997).

[2] R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys. 81, 1131
(2009).

[3] J. R. A. Pearson, On convection cells induced by surface tension, J. Fluid Mech. 4, 489 (1958).
[4] H. Bénard, The cellular whirlpools in a liquid sheet transporting heat by convection in a permanent regime,

Ann. Chim. Phys. 23, 62 (1901).
[5] L. Rayleigh, On convection currents in a horizontal layer of fluid, when the higher temperature is on the

under side, Philos. Mag. 32, 529 (1916).
[6] C. V. Sternling, L. E. Scriven, and C. V. Sternling, On cellular convection driven by surface-tension

gradients: Effects of mean surface tension and surface viscosity, J. Fluid Mech. 19, 321 (1964).
[7] H. Jeffreys, The surface elevation in cellular convection, Q. J. Mech. Appl. Math. 4, 283 (1951).
[8] M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Colloid Interface Sci. 90, 220 (1982).
[9] J. P. Burelbach, S. G. Bankoff, and S. H. Davis, Nonlinear stability of evaporating/condensing liquid films,

J. Fluid Mech. 195, 463 (1988).
[10] D. A. Goussis and R. E. Kelly, On the thermocapillary instabilities in a liquid layer heated from below,

Int. J. Heat Mass Transf. 33, 2237 (1990).
[11] D. Hatziavramidis, Stability of thin evaporating/condensing films in the presence of surfactants, Int. J.

Multiphase Flow 18, 517 (1992).
[12] K. D. Danov, N. Alleborn, H. Raszillier, and F. Durst, The stability of evaporating thin liquid films in the

presence of surfactant. I. Lubrication approximation and linear analysis, Phys. Fluids 10, 131 (1998).
[13] C.-K. Lin, C.-C. Hwang, and W.-Y. Uen, A nonlinear rupture theory of thin liquid films with soluble

surfactant, J. Colloid Interface Sci. 231, 379 (2000).
[14] S. G. Yiantsios and B. G. Higgins, A mechanism of Marangoni instability in evaporating thin liquid films

due to soluble surfactant, Phys. Fluids 22, 022102 (2010).
[15] A. B. Mikishev and A. A. Nepomnyashchy, Instabilities in evaporating liquid layer with insoluble

surfactant, Phys. Fluids 25, 054109 (2013).
[16] A. Mikishev and A. A. Nepomnyashchy, The influence of evaporation on long-wavelength instabilities in

liquid layer with insoluble surfactant, Fluid Dyn. Res. 46, 041420 (2014).
[17] W. S. Overdiep, The levelling of paints, Prog. Org. Coat. 14, 159 (1986).
[18] S. D. Howison, J. A. Moriarty, J. R. Ockendon, E. L. Terrill, and S. K. Wilson, A mathematical model for

drying paint layers, J. Eng. Math. 32, 377 (1997).
[19] M. H. Eres, D. E. Weidner, and L. W. Schwartz, Three-dimensional direct numerical simulation of

surface-tension-gradient effects on the leveling of an evaporating multicomponent fluid, Langmuir 15,
1859 (1999).

[20] M. Takashima, Surface tension driven instability in a horizontal layer of binary liquid mixture in the
presence of the Soret effect, J. Phys. Soc. Jpn. 47, 1321 (1979).

[21] Masaki Takashima, Surface tension driven instability in a horizontal layer of binary liquid mixture in the
presence of the Soret effect. II. Overstability, J. Phys. Soc. Jpn. 49, 802 (1980).

[22] S. W. Joo, Marangoni instabilities in liquid mixtures with Soret effects, J. Fluid Mech. 293, 127 (1995).
[23] A. Podolny, A. Oron, and A. A. Nepomnyashchy, Long-wave Marangoni instability in a binary-liquid

layer with deformable interface in the presence of Soret effect: Linear theory, Phys. Fluids 17, 104104
(2005).

104007-31

https://doi.org/10.1103/RevModPhys.69.931
https://doi.org/10.1103/RevModPhys.81.1131
https://doi.org/10.1017/S0022112058000616
https://doi.org/10.1080/14786441608635602
https://doi.org/10.1017/S0022112064000751
https://doi.org/10.1093/qjmam/4.3.283
https://doi.org/10.1016/0021-9797(82)90415-5
https://doi.org/10.1017/S0022112088002484
https://doi.org/10.1016/0017-9310(90)90123-C
https://doi.org/10.1016/0301-9322(92)90049-M
https://doi.org/10.1063/1.869555
https://doi.org/10.1006/jcis.2000.7155
https://doi.org/10.1063/1.3316785
https://doi.org/10.1063/1.4807161
https://doi.org/10.1088/0169-5983/46/4/041420
https://doi.org/10.1016/0033-0655(86)80010-3
https://doi.org/10.1023/A:1004224014291
https://doi.org/10.1021/la980414u
https://doi.org/10.1143/JPSJ.47.1321
https://doi.org/10.1143/JPSJ.49.802
https://doi.org/10.1017/S0022112095001662
https://doi.org/10.1063/1.2075287


R. K. NAZARETH et al.

[24] A. Podolny, A. Oron, and A. A. Nepomnyashchy, Linear and nonlinear theory of long-wave Marangoni
instability with the Soret effect at finite Biot numbers, Phys. Fluids 18, 054104 (2006).

[25] I. D. Borcia, R. Borcia, and M. Bestehorn, Long wave instabilities in binary mixture thin liquid films,
J. Optoelectron. Adv. Mater. 8, 1033 (2006).

[26] J. Zhang, R. P. Behringer, and A. Oron, Marangoni convection in binary mixtures, Phys. Rev. E 76, 016306
(2007).

[27] H. Machrafi, A. Rednikov, P. Colinet, and P. C. Dauby, Bénard instabilities in a binary-liquid layer
evaporating into an inert gas, J. Colloid Interface Sci. 349, 331 (2010).

[28] M. Bestehorn and I. D. Borcia, Thin film lubrication dynamics of a binary mixture: Example of an
oscillatory instability, Phys. Fluids 22, 104102 (2010).

[29] A. H. Persad, K. Sefiane, and C. A. Ward, Source of temperature and pressure pulsations during sessile
droplet evaporation into multicomponent atmospheres, Langmuir 29, 13239 (2013).

[30] A. H. Persad and C. A. Ward, Expressions for the evaporation and condensation coefficients in the Hertz-
Knudsen relation, Chem. Rev. 116, 7727 (2016).

[31] A. Kapoor and J. A. W. Elliott, Statistical rate theory insight into evaporation and condensation in
multicomponent systems, J. Phys. Chem. B 114, 15052 (2010).

[32] O. E. Jensen and J. B. Grotberg, The spreading of heat or soluble surfactant along a thin liquid film,
Phys. Fluids A 5, 58 (1993).

[33] M. R. E. Warner, R. V. Craster, and O. K. Matar, Surface patterning via evaporation of ultrathin films
containing nanoparticles, J. Colloid Interface Sci. 267, 92 (2003).

[34] R. V. Craster, O. K. Matar, and K. Sefiane, Pinning, retraction, and terracing of evaporating droplets
containing nanoparticles, Langmuir 25, 3601 (2009).

104007-32

https://doi.org/10.1063/1.2196047
https://doi.org/10.1103/PhysRevE.76.016306
https://doi.org/10.1016/j.jcis.2010.04.043
https://doi.org/10.1063/1.3489434
https://doi.org/10.1021/la403177r
https://doi.org/10.1021/acs.chemrev.5b00511
https://doi.org/10.1021/jp106715v
https://doi.org/10.1063/1.858789
https://doi.org/10.1016/S0021-9797(03)00640-4
https://doi.org/10.1021/la8037704

