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We consider the hydrodynamic stability of viscoelastic films flowing over inclined
structured substrates with rectangular trenches. This topography allows investigating
independently the effects of trench unit length, depth, width and inclination angle and
complements the earlier work by Pettas et al. (Phys. Rev. Fluids, vol. 4, 2019, 33). We
account for material rheology by employing the ePTT model. We perform a parametric
study of the steady flow and its linear stability, assuming two-dimensional perturbations
along the streamwise direction of arbitrary wavelength via the Floquet–Bloch theory. Our
predictions for Newtonian liquids are in excellent agreement with previous results. We
demonstrate that even for Newtonian liquids, the trench depth has a non-trivial effect on
the flow stability. In viscoelastic solutions, the interaction of fluid elasticity with substrate
morphology may have a significant impact on the flow dynamics, leading to either the
enhancement or suppression of instabilities. Topography characteristics combined with
enough material elasticity stabilize the flow. However, beyond a specific trench depth, this
effect saturates by eddy formation inside the cavity. Moreover, the stability is also affected
by the aspect ratio and shape of the trenches: flows over substrates with a pillar-like
configuration are stabilized significantly. On the other hand, flows are destabilized by
material shear-thinning. This study helps identifying the shape of the substrate that
maximizes/minimizes the viscoelastic mechanisms. This is impossible when considering
substrates with sinusoidal topography, but could be of utmost importance for several
technological applications, by providing the potential for instability control through the
development of appropriately tailored substrates.
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A. Marousis and others

1. Introduction

The film flow along an inclined substrate is a hydrodynamic configuration encountered
in numerous environmental and technological applications. Characteristic examples of the
former may involve the motion of lava flows (Balmforth et al. 2006), debris flow (Allouche
et al. 2017) and biofilms (Kumar et al. 2013). Regarding technological applications,
they typically involve coating in microelectronics (Stillwagon & Larson 1990; Kistler
& Schweizer 1997), industrial heat and mass transfer applications (Sisoev, Matar &
Lawrence 2005; Guichet & Jouhara 2020), distillation columns (Battisti, Machado &
Marangoni 2020) and falling film reactors (Yeong et al. 2006). In practice, the substrates
are frequently rough, either intentionally or accidentally, due to the presence of cavities,
pillars, corrugations, or arrested particles and drops on them. The interaction between the
irregularities of the topography and the fluid layer often results in a complicated nonlinear
dynamical behaviour. Another significant aspect of the dynamics of the flow is the
rheology of the material since, in such types of flows, the liquid may be a polymer solution
or a suspension of particles which, in principle, exhibit non-Newtonian properties. The
rheology of the material may considerably affect the flow, introducing interesting effects
on the flow arrangement and the film shape, especially when the film exhibits viscoelastic
properties. However, elastic phenomena are often overlooked since most of the existing
studies consider the flow of Newtonian liquids. The understanding of the associated
mechanisms and interplay of viscoelastic properties with geometrical characteristics of
the substrate is of great importance since it may increase the process quality in many
industrial applications.

An early attempt to study the dynamics of film flow over a variable topography was made
by Pozrikidis (1988). He studied the two-dimensional (2-D) flow of a Newtonian liquid
over a wavy wall using the boundary integral method. Moreover, Stillwagon & Larson
(1990) and Kalliadasis, Bielarz & Homsy (2000) determined the thickness variation of
the film over a trench during the spin coating process using lubrication theory and the
longwave approximation, respectively. In the limit of low viscosity liquids, they found
that the dynamics of the film depends on the characteristics of the obstacle, while the
free surface develops a capillary ridge just before the step-down and depression before
the step-up region. Later, Gaskell et al. (2004) and Veremieiev et al. (2010) extended
the latter study to moderate values of fluid viscosity and surface tension by solving the
inertialess 2-D Navier–Stokes equations for a film flowing over a trench. The transition to
the inertia-dominated regime was studied by Bontozoglou & Serifi (2008) for a Newtonian
film flowing along a vertical substrate with isolated steps. They showed that the capillary
ridge and depression before the step-down and step-up change their streamwise length
scale when inertia is introduced in the flow. Primarily, their analysis showed that the
computed streamwise length decreases with increasing flow rate. Next, Wierschem et al.
(2008) and Nguyen & Bontozoglou (2011) solved the steady film flow over corrugated
substrates with small and finite wall amplitudes, respectively. They demonstrated that
resonance is possible between the undulations of the substrate and the free surface. In all
the aforementioned studies, the film was considered to wet the solid structure completely.
We should mention, however, that a complete wetting state cannot always be achieved,
especially when the substrate is deep and aligned with the gravitational force; hence, air
may be entrapped inside the topographical features (Giacomello et al. 2012; Karapetsas
et al. 2017; Pettas et al. 2017; Pettas, Dimakopoulos & Tsamopoulos 2020).

Most of the studies in the literature have focused on Newtonian fluids over uneven
surfaces. The first attempt to address the interaction between fluid elasticity and inertia
was made by Saprykin, Koopmans & Kalliadasis (2007), who studied the flow over
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Stability analysis of viscoelastic film flows

a variable topography of an Oldroyd-B fluid using lubrication theory and assuming
very weak fluid elasticity. Later on, Pavlidis, Dimakopoulos & Tsamopoulos (2010) and
Pavlidis et al. (2016) solved the 2-D momentum equations for a viscoelastic film flowing
over a topography featuring rectangular trenches employing the exponential Phan-Thien
Tanner (ePTT) model (Phan-Thien 1978), which introduces the most common viscoelastic
properties. Recently, Pettas, Dimakopoulos & Tsamopoulos (2020) investigated the steady
flow of a polymer solution over a partially coated substrate.

However, a typical characteristic of film flows, either Newtonian or non-Newtonian, is
the spontaneous appearance of wavy interfacial instabilities at the free surface if a critical
volume flux is exceeded (Haar 1965). Early efforts to investigate the flow instabilities of
film over flat substrates were reported by Benjamin (1957) and Yih (1963). They showed
that the flow first becomes unstable to longwave disturbances above a critical value of the
flow rate, which depends only on the angle of inclination and fluid viscosity. Subsequent
studies examined various aspects of the flow stability in both the linear and nonlinear
regimes (Larson 1992; Salamon, Armstrong & Brown 1994; Kalliadasis et al. 2012),
while some works also considered the case of surfactant-laden films (Scheid et al 2002;
Bull & Grotberg 2003; Karapetsas & Bontozoglou 2013, 2014). Interfacial instabilities,
however, can be enhanced or mitigated by the topography of the substrate. Experimental
studies on the stability of liquid films flowing over weak, periodical, rectangular trenches
have demonstrated that the critical value of the flow rate is shifted to higher values as
the steepness of the substrate increases (Vlachogiannis & Bontozoglou 2002; Argyriadi,
Vlachogiannis & Bontozoglou 2006). More recently, D’Alessio, Pascal & Jasmine (2009)
examined the effects of surface tension and the presence of the bottom wall on the stability
of the flow over an uneven surface. They showed that for weak to moderate surface tension,
the presence of the topography tends to stabilize the flow. Trifonov (2014) performed a
theoretical study by directly solving the Navier–Stokes equations while employing the
Bloch–Floquet theory to account for disturbances of arbitrary wavelengths. In contrast to
film flow over an inclined plane, he found that the flow is stabilized, especially under
longwave disturbances. Consequently, the most critical disturbance appears to be for
moderate wavenumbers.

An attempt to summarize all the above results was made by Schörner et al. (2018)
by presenting stability maps (comparing experimental observations and theoretical
predictions) in the parameter space of the inclination angle, viscosity, and corrugation
amplitude and wavelength of the topography. The linear stability analysis presented
by these authors also confirmed the existence of short-wave instabilities under specific
values of the flow rate, in line with the experimental evidence provided earlier by Cao,
Vlachogiannis & Bontozoglou (2013). Schörner & Aksel (2018) were able to identify
six characteristic stability map patterns that unify the linear instability of Newtonian
films flowing over undulated inclines, reporting that the flow stability follows a universal
pathway, which they called the ‘stability cycle’. Finally, Dauth & Aksel (2018) studied the
nonlinear evolution of waves and reported wave breaking and the route to chaos (Dauth &
Aksel 2019).

Although a significant number of applications may involve liquids, which may be
either a polymeric solution or a suspension of particles (in general, both exhibit
non-Newtonian properties), all the aforementioned studies refer to Newtonian liquids.
An attempt to consider non-Newtonian effects was made by Millet et al. (2008) and
Ruyer-Quil, Chakraborty & Dandapat (2012), who examined the case of a liquid following
a generalized Newtonian law flowing over a flat surface using the Carreau model and
a modified power-law model, respectively. These studies show that shear-thinning has a
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destabilizing effect on the flow, while shear-thickening has the opposite effect. Recently,
Allouche et al. (2017) confirmed the previous theoretical predictions experimentally.
When it comes to the stability analysis of viscoelastic liquids, most of the studies in
the literature are restricted to flows over a flat surface (Gupta 1967; Lai 1967; Shaqfeh,
Larson & Fredrickson 1989). The effect of substrate topography was taken into account
by Davalos-Orozco (2013), who examined the flow over a shallow corrugated wall of a
viscoelastic fluid following the Oldroyd-B model. According to this study, the deformation
of the free surface due to the presence of the substrate undulations may lead to stabilization
by fluid elasticity. Very recently, Sharma, Ray & Papageorgiou (2019), also employing
lubrication theory, showed that the impact of elasticity on the stability of the inertialess
flow is profoundly affected by the geometrical characteristics of the substrate. They found
that as the wavelength of the periodic wall increases, the topography initially exerts a
destabilizing influence, while for shorter wall-wavelengths, the topography may stabilize
the flow. More recently, Pettas et al. (2019b) were able to examine the flow of a viscoelastic
film (following the ePTT model) over a wavy substrate of arbitrary, but single amplitude,
wavelength and inclination angle by solving the 2-D momentum conservation equations
directly while employing the Bloch–Floquet theory to account for disturbances of arbitrary
wavelengths. They considered both 2-D and three-dimensional (3-D) disturbances and
examined the impact of the elasticity, inertia and surface tension on the stability of the
flow, demonstrating the stabilizing effect of fluid elasticity. This work also demonstrated
that shear-thinning, often encountered in viscoelastic liquids, has a destabilizing effect in
qualitative agreement with the study of Allouche et al. (2017).

The main objective of the present study is to examine the dynamics and the stability of
viscoelastic films flowing over a substrate featuring a periodic array of sharp rectangular
trenches. This configuration has a clear advantage over previous configurations studied
in the literature since, by independently varying the unit length, depth, width and
inclination angle, it is possible to examine substrates with very different types of
structures, i.e. ranging from substrates with wide trenches to pillared surfaces. These
types of substrates are extensively studied nowadays for two main reasons: (a) they appear
in electronic components, such as memory boards Stillwagon & Larson (1990), and
(b) they induce superhydrophobic properties to otherwise inert solid surfaces, reducing
drag and, hence, promoting flow and surface cleaning, Cottin-Bizonne et al. (2009),
Crowdy (2017) and Erbil (2020). As will be shown below, the shape of the substrate
topography, in combination with the effect of fluid elasticity, may considerably influence
the stability of the flow; interestingly, it is also demonstrated that the topography shape
has a non-trivial effect even on the stability of Newtonian film flows. Below, we present
a detailed discussion on the mechanisms which affect the flow and provide detailed
flow maps that cover a wide range of the parameter space both in terms of the liquid
properties and geometrical characteristics of the substrate. To do so, we solve the 2-D
steady state momentum balance equations, employing the ePTT constitutive model to
account for the viscoelastic properties of the liquid, and perform a linear stability analysis
of the flow subjected to 2-D disturbances; by employing the Bloch–Floquet theory,
disturbances of arbitrary wavelengths (not necessarily matching the periodicity of the
substrate topography) are considered.

The structure of the study is as follows: in § 2, we present the problem formulation
along with the governing equations, while in § 3 we briefly describe the numerical
implementation. In § 4, we initially proceed with validating our in-house model results
against previous experimental observations and theoretical predictions. Next, in § 5 we
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x
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H ∗

Viscoelasticliquid

W∗

L∗ D∗
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α

Figure 1. Schematic of the gravity-driven, free-surface flow over a substrate with rectangular trenches inclined
with respect to the horizontal by an angle α. Here, L* is the length of the unit cell of the periodic substrate,
while L∗

1 and L∗
2 depict the inflow and outflow lengths of the corresponding unit cell. The topographical feature

is characterized by a width W∗ and depth D∗ while the film height at the entrance of the domain is denoted by
H∗.

present and discuss our results relating to the steady state flow patterns and the stability of
the flow. Finally, we summarize our results in § 6.

2. Problem formulation

We consider the steady free-surface flow of a viscoelastic liquid over a substrate with
a periodic array of rectangular trenches; a schematic is presented in figure 1. The flow
is driven by gravity, while the substrate is inclined by an angle α. In what follows, the
symbol ‘*’ and the bold variables will indicate a dimensional and a tensorial quantity,
respectively. The liquid is incompressible, with constant density, ρ∗, surface tension, σ ∗,
relaxation time, λ∗e and total zero-shear viscosity, μ∗ = μ∗

p + μ∗
s where μ∗

p and μ∗
s are

the polymer and the solvent viscosities, respectively. The primitive flow variable is the
volumetric flow rate per unit length in the transverse direction, q∗. For the base state flow,
we consider a periodic domain that consists of a single unit cell. The viscoelastic film
thickness at the entrance of the periodic domain is denoted by H∗. At distance L∗

1 from
the entrance of the unit cell, the film encounters a rectangular cavity with a width W∗ and
depth, D∗, while the distance from the right end of the trench to the exit of the flow domain
is denoted by L∗

2. The origins of the cartesian coordinate system are located at the entrance
of the flow domain, with the x-axis and y-axis in the directions parallel and normal to the
wall at x = 0, respectively.

Traditionally in film flows, all the lengths are scaled with the flat film thickness, H∗
N ,

and all the velocity components with the mean Nusselt film velocity, U∗
N , defined as

H∗
N = q∗1/3

(
3μ∗

ρ∗g∗ sin(a)

)1/3

, U∗
N = q∗2/3

(
ρ∗g∗ sin(a)

3μ∗

)1/3

. (2.1a,b)
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Dimensionless quantity Symbol Definition Representative value

Reynolds Re ρ∗q∗/μ∗ 0–30
Kapitza Ka = (l∗c/l∗v)2 σ ∗ρ∗1/3g∗−1/3μ∗−4/3 2
Elasticity El λ∗eρ1/3g∗2/3μ∗−1/3 0–3
Geometric lengths L1, W, L2, D L∗

1/l∗c , W∗/l∗c , L∗
2/l∗c , D∗/l∗c

Viscosity ratio β μ∗
s /μ

∗ 0.1
Inclination angle α 10◦–40◦

Table 1. Dimensionless parameters and their representative values.

This scaling, for example, has been used by Pavlidis, Dimakopoulos & Tsamopoulos
(2010) and Pavlidis et al. (2016) for the study of the steady viscoelastic film flow over
topography. It is apparent, however, that with the above scaling both the length and velocity
scales are affected by the flowrate, see (2.1a,b). Such a dependence introduces difficulties
in the interpretation of the results and, therefore, it is preferable to use an alternative
scaling involving quantities that are independent of the flow rate. To do so, we introduce
the capillary and viscous length scales of the liquid, respectively, defined as

l∗c =
(

σ ∗

ρ∗g∗

)1/2

, l∗v =
(

μ∗2

ρ∗2g∗

)1/3

. (2.2a,b)

Note that these lengths depend on the liquid properties, such as density, zero-shear
viscosity and surface tension. The viscous length varies over a much broader range than
the capillary length due to the broader variation of μ∗, while surface tension and density
of most common polymeric solutions vary over a much shorter range.

Hereafter, we scale all lengths by l∗c ; the same choice was also made by (Trifonov 2014;
Pettas et al. 2019a; Pettas, Dimakopoulos & Tsamopoulos 2020). By scaling all lengths
by the capillary length, l∗c , the dimensionless lengths of the substrate geometry become
independent of the primitive flow rate. Moreover, velocities are scaled by U∗

N , time is
scaled by l∗c/U∗

N , while the pressure and stress components are scaled by the following
viscous scale: μ∗U∗

N/l∗c . Introducing the above characteristic scales, the dimensionless
numbers that arise in the governing equations are the Reynolds number Re, Kapitza
number Ka, elasticity number El, viscosity ratio β and inclination angle α; their definition
is given in table 1. Since the main objective of the paper is to study the impact of the
topographical irregularities on the stability of the flow, we examine cases for a constant
value of the Kapitza number, i.e. Ka = 2. This particular choice of Ka corresponds
to a typical value for liquids that have been used in experiments of coating flows,
e.g. solutions of polyethylene oxide (PEO) or Poly-methyl-methacrylate (PMMA) (see
Bornside, Macosko & Scriven 1991; Borkar et al. 1994; Becerra & Carvalho 2011). Note
that this value of Ka corresponds to a case for which the capillary and viscous lengths are
constant and equal to l∗c = 1.45 mm and l∗v = 1.02 mm, respectively.

At this point, it is also convenient to define an additional parameter that compares the
geometric characteristics of the inflow and outflow region of the unit cell with the width
of the groove, named Tr:

Tr = L∗
1 + L∗

2
W∗ . (2.3)

By changing the aspect ratio, Tr, while keeping constant the total length of the unit cell,
we can study the effect of the topographical structures on the formation of the steady
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Stability analysis of viscoelastic film flows

free surface. Two limits arise either for large or small values of Tr. Note that for Tr → ∞
the inflow and outflow region of the domain is much larger than the trench width (L1 +
L2 � W), and the substrate is almost flat. On the contrary, as Tr → 0 the inflow and
outflow regions are much smaller than the width of the groove (L1 + L2 � W), and the
substrate tends to have a pillar-like structure.

2.1. Governing equations and boundary conditions
The governing equations of the flow are the momentum and mass conservation equations,
which in the time-dependent dimensionless form are

Re Ca−1/2
(

sin a
3

)1/2 (
∂u
∂t

+ (u − um) · ∇u
)

+ ∇P − ∇ · τ − Ca−1g = 0, (2.4)

∇ · u = 0. (2.5)

Here, u = (ux, uy)
T, P, τ denote the velocity, pressure and stress fields on the flow domain,

respectively; ∇ = (∂x, ∂y)
T denotes the gradient operator for a cartesian coordinate system,

while um = ∂x/∂t denotes the velocity of the mesh nodes, and g = (sin α, −cos α)T is the
unit vector in the direction of gravity. The capillary number, Ca = μ∗U∗

N/σ , which arises
in the above equation is not an independent variable, but is related to the previously defined
dimensionless quantities via the expression

Ca = Ka−1Re2/3
(

sin a
3

)1/3

. (2.6)

The extra stress tensor, τ , is split into a purely Newtonian part and a polymeric
contribution, τ p, defined as

τ = 2βγ̇ + τ p, (2.7)

where γ̇ = (∇u + ∇uT)/2 is the rate of strain.
To account for the viscoelasticity of the material, we use the affine exponential model

by Phan-Thien and Tanner (ePTT) (Phan-Thien 1978):

Y(τ p)τ p + Wi
∇
τ p − 2(1 − β)γ̇ = 0, Y(τ p) := exp

(
ε

1 − β
Wi trace(τ p)

)
, (2.8)

∇
τ p := ∂τ p

∂t
+ (u − um) · ∇τ p − [τ p · ∇u + (τ p · ∇u)T], (2.9)

where Wi = λ∗eUN/l∗c is the Weissenberg number. Wi can be expressed as a function of
the elasticity number El, i.e. Wi = El Ka1/2Ca. Note that the elasticity number, El, as
defined in table 1, denotes the ratio of the relaxation time of the polymeric solution with
the viscous timescale, t∗v = (μ∗/ρ∗g∗2)1/3. For our parametric study, it is preferable to
use the elasticity number, instead of Wi, since El depends only on material properties
– the relaxation time, zero-shear viscosity and liquid density – which facilitates direct
comparison with experiments; whereas Wi depends on the volumetric flow rate and, hence,
on Re, see relevant discussion in Pettas et al. (2019b). Finite values of the parameter ε set
an upper limit to the elongational viscosity, which increases as the parameter decreases,
while it introduces elongational and shear thinning to the fluid model. The ePTT model is
reduced to the Oldroyd-B model by setting the value of the parameter ε equal to zero and
to the Upper Convective Maxwell model by additionally setting β equal to zero.
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A. Marousis and others

Accounting for the boundary conditions, along the free surface of the film, a local
interface force balance is imposed between the normal stress and capillary forces,

n · (−PI + τ ) = −Pairn + Ca−1 dt
ds

, (2.10)

where n is the outward unit vector to the free surfaces and t is the unit tangent vector
pointing in the clockwise direction (see Ruschak 1980). Note that the air in contact with
the interface is at the ambient air pressure, which is set equal to zero, Pair = 0. Also, the
interfaces obey the kinematic condition

n · (u − um) = 0, (2.11)

while along the walls of the substrate, we impose the usual no-slip, no-penetration
boundary conditions. Moreover, at the inflow and the outflow of the unit cell, periodic
boundary conditions are employed. Note that for the purposes of the present study, we
assume that the steady flow has the same periodicity as the substrate structure (i.e. we
assume that the steady solution is L-periodic),

u|x=0 = u|x=L, (2.12)

n · (−PI + τ )|x=0 = n · (−PI + τ )|x=L, (2.13)

The remaining degree of freedom, the film height at the entrance of the unit cell H∗, is
determined by requiring that the dimensionless flow rate is equal to unity:

q :=
∫ H∗/l∗c

0
ux dy = 1. (2.14)

3. Numerical Implementation

3.1. Base state – steady state solution
The base flow is steady, 2-D and is assumed to be L-periodic. In order to solve the above
set of equations at steady state numerically, we employ the mixed finite element/Galerkin
method (Pettas et al. 2015; Pavlidis et al. 2016) along with an elliptic grid generation
scheme (Dimakopoulos & Tsamopoulos 2003; Chatzidai et al. 2009) to account for the
free surface deformation. The corresponding weak formulation of the governing equations
is presented in detail in the Appendix of Pettas et al. (2019a). Moreover, to trace the
steady-state solution in parameter space, a pseudo-arc-length continuation is incorporated
as part of the solution of the finite element code (see Pettas et al. 2017; Varchanis,
Dimakopoulos & Tsamopoulos 2017).

3.2. Linear stability analysis
We consider the stability of this steady flow subjected to infinitesimal 2-D perturbations.
To account for the perturbed physical domain (x, y), we map it to a known reference domain
(η, ξ ). The variables are written in the computational domain and are decomposed into a
part which corresponds to the base state solution and an infinitesimal disturbance using
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the following ansatz:⎡
⎢⎢⎢⎣

u
P
G
τ p
x

⎤
⎥⎥⎥⎦ (η, ξ, t) =

⎡
⎢⎢⎢⎣

ub
Pb
Gb
τ p,b
xb

⎤
⎥⎥⎥⎦ (η, ξ) + δ

⎡
⎢⎢⎢⎣

ud
Pd
Gd
τ p,d
xd

⎤
⎥⎥⎥⎦ (η, ξ) eλt. (3.1)

The first terms on the right-hand side of these equations represent the steady state solution,
indicated by the subscript ‘b’, while the second ones are the perturbation. The subscript
‘d’ corresponds to the spatial variation of the disturbance while δ � 1; the xd is the
disturbance of the position vector. According to our ansatz, an exponential dependence
on time is assumed; here, λ denotes the growth rate. If the calculated λ turns out to have a
positive real part, the disturbance grows with time, and therefore the corresponding steady
state is considered unstable. Introducing the expression (3.1) in the weak formulation
of the time-dependent governing equations and the corresponding boundary conditions
(2.4)–(2.11), and neglecting terms of order higher than the first in the perturbation
parameter δ, the linearized equations are derived; a detailed description is provided in
appendix A of Pettas et al. (2019b).

3.3. Periodic boundary conditions and implementation of Floquet–Bloch theory
For flows over periodically structured surfaces, the most unstable disturbance may
have a wavelength that exceeds the period of the domain. Thus, it becomes evident
that if one assumes periodic conditions for the disturbances between the inflow and
outflow boundaries, the overall linear stability of the system cannot be captured unless
a sufficiently long computational domain is considered. This would imply a formidable
computational cost in the case where longwave disturbances are the most unstable ones, as
is typical for thin-film flows. As we will discuss below, the most appropriate and efficient
way to deal with this issue is to employ the Floquet–Bloch theory, which allows us to
model the flow over a structured surface by considering the small periodic domain of
the topography. This accomplishes a considerable reduction to the computational cost,
while examining disturbances with wavelengths that may extend over multiple trenches
or fractions thereof. According to Bloch’s theorem (Pain 2008), it is sufficient to look for
solutions such that the disturbances between the inflow and outflow of the unit cell are
related to each other with the following expression:⎡

⎢⎢⎢⎣
ud
Pd
Gd
τ p,d
yd

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
x=0

=

⎡
⎢⎢⎢⎣

ud
Pd
Gd
τ p,d
yd

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
x=L

e2πQi. (3.2)

Using this formulation, the unknown disturbances (ud, Pd, Gd, τ p,d, yd) will be
determined by imposing (3.2) at the edges of the periodic domain, ensuring that for
finite real values of Q, the disturbances will not be L-periodic. It may be shown that it
is sufficient to examine the values of Q ∈ [0, 0.5] (Pettas et al. 2019b). For example, when
Q = 0.5, the imposed perturbation has a wavelength that is twice the size of the physical
domain, whereas Q → 0 corresponds to disturbances with wavelength much larger than
the size of the periodic domain. Disturbances with Q = 0 should be distinguished, since in
that case (3.2) reduces to typical periodic boundary conditions. Thus, this case corresponds
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to disturbances that have the same period or aliquots of the basic solution, i.e. correspond
to superharmonic instabilities.

3.4. The Arnoldi algorithm
After we discretize the linearized set of equations, we end up with a generalized eigenvalue
problem of the form

Aw = λMw, (3.3)

where A and M are the Jacobian and the mass matrix, respectively, with λ the eigenvalues
and w the corresponding eigenvectors. This eigenvalue problem is solved using Arnoldi’s
method combined with the shift-and-invert transformation, which allows us to locate
only the eigenvalues of interest; for determining critical conditions, we need those
eigenvalues with the smallest real part (Christodoulou 1990; Natarajan 1992; Karapetsas
& Tsamopoulos 2013; Pettas et al. 2015). According to our framework, the solution is
stable if the real parts of all eigenvalues are less than or equal to zero for all values of Q.
To implement Arnoldi’s algorithm, we use the public domain code ARPACK (Lehoucq,
Sorensen & Yang 1997), while the accuracy of the converged eigenpairs is independently
checked by evaluating the residual |Aw − λMw|, and this quantity is always less than
10−12 for the reported results.

4. Validation

The accuracy of our numerical results is verified by examining their convergence with
mesh refinement. Since the sharp changes of the topography and particularly the sharp
corners in viscoelastic flows may give rise to singularities (see Karapetsas & Tsamopoulos
2013; Pettas et al. 2015), they may strongly influence the flow. Hence, we have performed
a detailed mesh convergence study focusing on these areas to identify the most suitable
mesh to use in our calculations. Moreover, although we had no numerical difficulties with
keeping the corners sharp, we have examined the possible influence on the flow of turning
them to circular sections, because this is often reported in the literature (see Schörner
et al. 2018). When the local radius of curvature was up to dimensionless 0.1, we observed
no effect on the solution. All these tests are reported in the Appendix.

Before we proceed with the discussion of our results, we present a series of validation
tests of our in-house code with experimental observations and theoretical predictions
for relevant flows found in the literature. To this end, we have examined the stability of
Newtonian films over substrates with rectangular trenches subjected to 2-D disturbances,
and we present in figure 2 the theoretical and experimental data for two different liquids,
Elbesil 100 and Elbesil 145, the properties of which are given in table 2.

In figure 2 we present the dependence of the critical Rec on the frequency of the
instability. According to our formulation, the dimensional frequency is related to the
imaginary part of the eigenmode via the following expression:

f ∗ = Imag(λ)

2π

U∗
N

l∗c
= Imag(λ)

2π
Ka1/2Ca t∗−1

v . (4.1)

By scaling the dimensional frequency with t∗−1
v the dimensionless frequency is given by

the following expression:

f = Imag(λ)

2π
Ka1/2Ca. (4.2)
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Figure 2. Comparison of the predicted neutral curves with previous numerical and experimental studies. The
liquids that have been used are (a) Elbesil 100 and (b) Elbesil 145 (see table 2); the inclination angle is a = 10◦
and the geometric parameters are Tr = 0.05, D = 5.506. In panels (a) and (b), the length of the unit cell is
L = 13.765 and 20.648 (L1 = L2 = 0.05), respectively. The orange dashed lines and the cyan dots indicate the
theoretical analysis and the experimental data, respectively, of Schörner et al. (2018). Finally, the continuous
black lines correspond to our study.

Notation Viscosity (mPa s) Density (kg m−3) Surface tension (mN m−1) Kapitza number

ELBESIL 100 96.6 963.2 20.07 2.090
ELBESIL 145 139.1 964.8 20.01 1.227

Table 2. Newtonian fluids and their properties that are used for validation.

We present in figure 2 the stability maps obtained both theoretically and experimentally by
Schörner et al. (2018) along with our numerical predictions (shown with the continuous
black line) for Elbesil 100 (see figure 2a) and Elbesil 145 (see figure 2b) for L = 13.765
and 20.648, respectively. In both cases, our predictions are in excellent agreement with
theoretical and experimental results found in the literature. We note, though, that there
is a slight deviation between our theoretical analysis and that of Schörner et al. (2018)
(which is more obvious in figure 2b) due to the different details of the considered
substrate. In our case, we have used a topography with sharp edges, as in the experimental
structure, while Schörner et al. (2018) considered smoothed rectangular trenches for
their theoretical analysis. Interestingly, our predictions are closer to the experimental
observations, underlining the relative importance of the different shape of the topography
on the stability of the film.

Interestingly, above a specific value of Re, the experimental observations deviate from
the theoretical results, see figure 2(b) for Re > 12. At this point, we should mention that
there is no guarantee that all base flow formations in this particular experiment correspond
to the steady state solution considered in the theoretical model. We speculate though that
thick films may have different flow arrangements (i.e. L-periodicity of the steady fluid
flow may have broken down). Our hypothesis is reinforced by the study of Tseluiko, Blyth
& Papageorgiou (2013), who observed that the film flow might experience a sequence of
multiple steady states where the solution may, in general, not be L-periodic.

5. Results and discussion

Numerical solutions were obtained over a wide range of parameter values. The ‘base’ case,
however, has typical dimensional values of L = 20, L1 = L2 = 5, W = 10 and D = 5;
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from (2.3), assuming the above geometrical characteristics, it is also derived that Tr = 1.
This set of parameters will be kept constant throughout the paper unless stated otherwise.

5.1. Steady state
We start with a brief discussion of the steady state solution. As mentioned above, a detailed
discussion of this problem has been presented by Pavlidis, Dimakopoulos & Tsamopoulos
(2010) and Pavlidis et al. (2016). It is important to note, though, that these authors have
used a different scaling (i.e. based on the film thickness); therefore, we find that it will
be useful to briefly discuss the results in the light of the scaling employed herein (i.e.
based on the capillary length scale), which may also provide new insight. Moreover, we
will focus on cases with unit cells of considerably smaller length than the ones examined
by Pavlidis, Dimakopoulos & Tsamopoulos (2010) and Pavlidis et al. (2016), making the
surface tension effects more prominent.

In figure 3, we consider a substrate with L = 20, Tr = 1 and D = 5 and present the
streamline pattern for an Oldroyd-B liquid (ε = 0). As representative values, we choose
Ka = 2 and El = 3 since in coating applications, the flowing materials typically have a
high viscosity (Ka < 6) and short relaxation time (Borkar et al. 1994; Becerra & Carvalho
2011); the ratio of the Newtonian solvent viscosity over the total zero shear viscosity is
β = 0.10, and the angle of inclination is α = 10◦. Moreover, figure 3(a–d) shows the
streamline pattern of the flow for different values of Re = 3, 8, 12, 30, respectively. As
Nguyen & Bontozoglou (2011) described in a Newtonian liquid, many characteristics of
the flow field can be explained by considering the flow as ballistic flow, where the ejection
platform for the fluid is the flat part of the substrate at the inflow. The magnitude of
Re determines the distance the fluid can travel before it ‘lands’ somewhere inside the
cavity.

Starting with figure 3(a), low values of Re correspond to thin films, while the streamlines
and the film shape depict that the fluid lands closer to the upstream wall. Hence, a local
minimum is formed at the free surface while a vortex arises at the upstream concave corner
of the substrate. Increasing the flow rate to moderate values, see figure 3(b,c), the injected
liquid impacts the liquid ahead and with the aid of elasticity, causing the formation of a
cusp. This is clearly a non-Newtonian effect since in the case of Newtonian liquids, the
interface remains smooth for all values of Re and can be attributed to the fluid elasticity.
With increasing inertia, the two recirculation regions expand and merge into one large
eddy inside the cavity. For very large values of Re, inertia prevails, and the film surpasses
the trench without significant redirection of the flow, figure 3(d). After that point, the free
surface deformations decrease due to the increased film thickness, while the eddy expands
and occupies the entire area of the groove.

5.1.1. Effect of elasticity
The impact of the elasticity in the flow arrangement is apparent when we examine its effect
on the amplitude of the free-surface deformation, A, which can be defined as

A = H∗
max−H∗

min
2

. (5.1)

In figure 4(a), we present the dependence of A on Re for polymer solutions that
exhibit various relaxation times (El changes). For low values of the flowrate (Re → 0),
the deformation of the free surface was calculated to be A ≈ 0.57 for all values of
El. Hence, in the absence of inertia, the film closely follows the shape of the wall,
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Figure 3. Steady states of the film flow over the substrate for (a) Re = 3, (b) Re = 8, (c) Re = 12 and
(d) Re = 30. The liquid parameters are Ka = 2, El = 3, β = 0.10, for an Oldroyd-B fluid while the geometrical
characteristics of the substrate are L = 20, Tr = 1 and D = 5. The inclination angle is α = 10◦.

whereas the viscoelastic effects become negligible. In the opposite limit, at high values
of the Reynolds number, the film succeeds in surpassing the topographical structures,
and the shape of the steady free surface tends to acquire a planar shape, since the
liquid near the interface does not feel the presence of the substrate topography. However,
at moderate values of Re (3 < Re < 20), the presence of the substrate structure along
with the interplay between the inertia, gravity and surface tension causes a prominent
rise in the amplitude of the free surface deformation. This effect is often referred to
as ‘resonance’ in the literature (Bontozoglou & Papapolymerou 1998; Wierschem &
Aksel 2004), while it was experimentally validated by Vlachogiannis and Bontozoglou
(2002) and Argyriadi, Vlachogiannis & Bontozoglou (2006). This is an outcome of the
interaction between the reflected wave of the free surface and the capillary waves that
travel in the upstream direction of the flow. The point of resonance corresponds to a
specific value of the Reynolds number, Reres, for which the surface velocity of the fluid
is equal to the phase velocity of the capillary waves. In the case of a Newtonian liquid,
which is depicted by the black dashed line in figure 4(a), the resonance point arises at
Re = 10.4, where the amplitude of the free surface deformation obtains its maximum
value, 0.98.

Increasing the elasticity number, the amplitude of the free surface is not affected either
for Re → 0 or high values of Re. Nevertheless, for small values of Re even a small
amount of elasticity leads to the decrease of A since the bulk elasticity of the fluid resists
the deformation imposed by the solid wall. Therefore, the amplitude of the free surface
decreases up to Re ≈ 3.5. For moderate values of Re, the elasticity has the opposite effect
and tends to amplify the free surface deformation. As shown in figure 4(a), on increasing
El, the maximum amplitude of the free surface increases considerably (for El = 1, 2, 3 the
maximum value of A is 0.98, 1.38, 1.67, respectively).

915 A98-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

ri
st

ot
le

 U
ni

ve
rs

ity
 o

f T
he

ss
al

on
ik

i, 
on

 2
5 

M
ar

 2
02

1 
at

 1
7:

43
:4

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2021.163
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


A. Marousis and others

0 5 10 15 20

Newtonian

El = 1

El = 1

El = 2

El = 2
El = 3

25 30

0.5

1.0A

y

Re x

1.5

2.0

(c)

(b)
–10

–10 –5 0 5 10

0 10 20 30 40

0

10

20

y

–10
0 10 20 30 40

0

10

20

(b)(a)

(c)

Figure 4. (a) Amplitude of the free surface, A, as a function of the Reynolds number for various values of El
while the dashed black line indicates the case of a Newtonian liquid. (b,c) Film shape and spatial variation of
normal stress component, τp,xx, for El = 1 and El = 2, respectively, and the same Reynolds number, Re = 14.
The remaining parameters are Ka = 2, ε = 0 and β = 0.10. The inclination angle α = 10◦.
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Figure 5. Film shape and spatial variation of the normal stress component, τp,yy, for (a) El = 1 and
(b) El = 2.0 at Re = 14. The remaining parameters are Ka = 2, ε = 0, and β = 0.10. The inclination angle
α = 10◦.

We note, though, that elasticity shifts Reres to higher values, which can be attributed
to some extent to fluid elasticity generating a force that opposes the effect of inertia. To
rationalize this mechanism, it is convenient to describe the relevant mechanisms in terms
of a single viscoelastic fluid parcel of constant volume. Note that a viscoelastic fluid parcel
can undergo all rearrangements of a Newtonian one – translation, rotation and stretching
– but exhibits stronger resistance to the last of these, which is dictated by the presence of
the viscoelastic stresses. Besides, the presence of the stress gradients that are generated
by the substrate morphology force it to be extended or compressed in the direction of
the flow, while the value of τp,xx is a measure of that stretching. Consequently, the fluid
parcel is stretched in the upstream corner (τp,xx > 0) and compressed at the downstream
corner (τp,xx < 0), see figure 4(b,c). For moderate values of Re it undergoes a ballistic
trajectory, while the magnitude of Re determines the distance it can travel before it ‘lands’
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Figure 6. (a) Relative amplitude of the free surface, A, as a function of the Reynolds number for D = 1 (red),
D = 2 (green), D = 5 (blue) and D = 7 (orange). (b,c) Spatial variation of normal stress component, τp,xx and
the streamline pattern for D = 1 (Re = 11.8) and D = 7 (Re = 13.8), respectively. The remaining parameters
are Ka = 2, El = 3, ε = 0.0, β = 0.10 and α = 10◦.

somewhere inside the cavity. Simultaneously, the build-up of viscoelastic stress gradients
at the upstream convex corner tries to prevent this movement.

The elongation of the fluid parcel in the x-direction by the xx-stress gradients causes
additional shrinkage in the y-direction, via volume preservation. As a result, τp,yy obtains
negative values in the upstream convex corner of the trench, see figure 5(a,b). The stress
variation in the y-direction will decrease the height of the free surface locally. On the
contrary, at the downstream convex corner, the fluid parcel is squeezed, resulting in
positive values of τp,yy with the additional pushing the free surface to increase the hump,
as shown in figure 3.

5.1.2. Effect of the topography
Next, we examine the impact of the geometrical characteristics of the substrate on the
deformation of the free surface. In figure 6(a) we present the amplitude of the steady
free-surface distortions as a function of Re for various values of D. For shallow trenches
(D = 1), the free surface acquires a smoother shape since the film easily surpasses the
cavities of the periodic topography, see figure 6(b). With increasing depth of the trench,
the amplitude of the free-surface deformation increases considerably, since it becomes
more difficult for the film to surpass the step-up region and therefore gives rise to a more
prominent static hump near the downstream wall, see figure 6(c). Interestingly, for large
trench depths (D ≥ 3) the dependence of A on Re remains unaffected; in figure 6(a), the
curves for D = 5 and 7 are almost identical. Clearly, beyond some critical value of D the
amplitude of the free surface deformations is independent of the depth of the topographical
features. When the structures are deep, the mainstream region of the film does not feel the
presence of the bottom wall, i.e. the generation of the eddy in the midplane smooths out
the wall structure. Thus, the existence of the recirculation also provides a limitation, to
some extent, to the effect of elasticity for trenches with large depths.

Another significant factor that affects the steady film formation is the shape and the
size of the topographical structure. In figure 7(a), we present the amplitude of the free
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Figure 7. (a) Relative amplitude of the free surface, A, as a function of the Reynolds number for various values
of Tr . (b,c) Film shape and spatial variation of normal stress component, τp,xx, for Tr = 4 and Tr = 0.10 for
Re = 11.8 and Re = 17.6, respectively. The remaining parameters are Ka = 2, El = 3, ε = 0.0, β = 0.10 and
α = 10◦.

surface deformation as a function of Re for different types of topographical features.
To this end, we keep the length of the unit cell (L = 20) constant, and vary the
aspect ratio, Tr, as defined in (2.3). High values of Tr correspond to cases where the
inflow and outflow region of the domain is much larger than the trench width (e.g.
see figure 7b), whereas low values of Tr correspond to cases with pillar-like structures
(e.g. see figure 7c). As shown in figure 7(a), for Tr = 4, the free surface is relatively
smooth even at the peak of the resonance. For such high values of Tr, the size of
the trench is relatively small with respect to the rest of the substrate, and the film
flow tends to the simple Nusselt flow limit. Figure 7(b) depicts the film shape and
the spatial variation of the normal stress component for Tr = 4 and Re = 11.8; this
value of Re corresponds to the case with maximum deformation. Clearly, the film
surpasses the cavity easily with very little interfacial deformation and a low level
of stresses in the cavity; the picture remains almost the same over the entire range
of Re.

On decreasing the value of Tr, the relative width of the cavity increases. As a result,
the redirection of the flow is inevitable, with more fluid going through the cavity.
Therefore, the resonance of the free surface with the bottom undulations becomes stronger,
resulting in a considerable increase of the maximum interfacial deformation. As depicted
in figure 7(a), the amplitude of the free surface deformation at the resonance point is
inversely proportional to Tr. For Tr = 0.10, A is found to be equal to 2.23. Also, for this
particular case, we observe a change in the slope of A for Re ≈ 11. As showed by Pettas
et al. (2019a), the latter phenomenon is connected with a new resonance point related to
the cusp formation at the steady free surface. For Tr = 0.1 (see figure 7c), the maximum
normal polymeric stress field arises at the inflow and outflow regions of the unit cell
where the polymeric chains are squeezed to conform with the fluid flow arrangement,
while residual stresses are convected from one unit cell to the other producing a stronger
polymeric stress field. Therefore, the elastic phenomena are more prominent, resulting in
amplification of the free-surface deformation.
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Figure 8. (a) Critical Re as a function of depth for Q = 10−2 and (b) penetrated volume as a function of depth
calculated at Re = 5 for El = 0, 1, 2. The marks represent the analytical predictions of (5.2). The
remaining parameters are Ka = 2, ε = 0 and β = 0.10. The inclination angle is α = 10◦.

5.2. Linear stability
So far, we have investigated the impact of non-Newtonian properties on the steady
free-surface formation. In this section, we will discuss the stability of the steady flow
subjected to infinitesimal, 2-D disturbances. Since much of the work in the literature
has focused on the stability of flow under longwave disturbances and to provide the
proper context, we will briefly discuss the predictions of our model for Q → 0. Then
we will proceed with the discussion of the linear stability for disturbances with arbitrary
wavelengths. Our analysis is focused mainly on the stability of an Oldroyd-B fluid, whereas
in the last subsection, we will investigate the effect of varying shear and extensional
viscosity in the flow stability by employing the ePTT constitutive model.

5.2.1. Longwave disturbances
We begin our discussion by examining the stability of the steady flow when subjected
to longwave disturbances. To this end, we focus on disturbances with Bloch wave number
Q = 10−2. In figure 8(a), we depict the critical value of the Reynolds number as a function
of the trench depth, D, for three different values of the elasticity number, El. The black
dashed line corresponds to the case of a Newtonian liquid (El = 0), while the dashed blue
and the solid red lines represent the critical conditions for El = 1 and 2, respectively; the
shaded area corresponds to the unstable flow regime, where at least one eigenmode has a
positive real part. All curves in this figure exhibit two limits, one for D → 0 and another
for D � 1. In the former case, the topography approaches the case of a flat plane and the
flow field resembles the Nusselt type of flow, while the critical value of Re for instability
can be derived from the following expression in the case of an Oldroyd-B fluid (Lai 1967):

Rec = 5
6 cot α − 5

2 Wi(1 − β). (5.2)

Clearly, for D → 0, both elasticity and inertia are destabilizing. The predicted values
from (5.2) appear in figure 8(a) as points ( ) and are in perfect agreement with
our calculations. As discussed by Sharma, Ray & Papageorgiou (2019) and Huang &
Khomami (2001) for viscoelastic film flow over flat substrates, due to the effect of normal
stresses in the disturbed flow, elasticity ‘pushes’ the fluid in the streamwise direction
towards local maxima of the film thickness and away from local minima.
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As depicted in figure 8(a), for Newtonian liquids and relatively shallow structures (for
D < 3), the flow field deviates from the typical Nusselt limit and the topography appears to
stabilize the flow; the stabilizing effect of shallow structures on the film flow is well known
and has been reported in previous works for the case of Newtonian flows (Kalliadasis
& Homsy 2001). Interestingly, though, deeper structures result in the decrease of Rec
indicating destabilization of the flow. A critical point of depth, D ≈ 3, arises at which
Rec reaches a maximum value.

In order to rationalize this behaviour (i.e. the non-monotonic dependence of Rec on the
trench depth even for Newtonian liquids), it is important to understand how the depth of
the trench may affect the flow inside the cavity. To this end, we evaluate in figure 8(b) the
surface area of the groove that is occupied by the mainstream flowing liquid (see inset in
figure 8b). This surface area is denoted by Vp, and we evaluate it as a function of the depth
of the trench for a fixed value of the flowrate (Re = 5). To evaluate the Vp, we exploit the
fact that in this flow regime, the flow can be split into two regions by the separatrix. For a
given substrate with known geometrical characteristics, the calculation of the Vp is simply
reduced to calculating the separatrix line (the streamline with stream function  = 0).
Then, we calculate the area occupied by the entrapped fluid, which we subtract from the
total area of the groove to find the fluid volume inside the trench that flows along with the
outer film.

Note that the curves have a clear non-monotonic dependence, and the maximum arises
approximately for the same values of D as in figure 8(a). Due to the non-existence of
any recirculating vortices in the grooves, the mainstream flowing liquid covers the entire
groove for shallow trenches. As a result, Vp starts from zero and monotonically increases
with increasing depth of the trenches. However, beyond a certain value of D, small eddies
arise at the concave corners of the substrate, see inset in figure 8(b), and the mainstream
flowing liquid can no longer enter the areas where recirculation takes place. Therefore, the
area covered by the mainstream flowing liquid is restricted by these recirculations, which
affect both the outer velocity field and the film shape. With increasing D, the recirculations
increase further in size, the flow rearranges, and the eddies are merged into one single
recirculation covering most of the cavity. Such a large recirculation vortex considerably
affects the effective penetration of the outer film region in the cavity, which obtains an
almost constant area for deeper trenches. In this state, the shape of the free surface is
independent of the depth of the structures and so is the critical value of Rec, figure 8(a).

Returning back to figure 8(a), in the case of viscoelastic liquids, we observe that
elasticity tends on the one hand to destabilize the flow for shallow trenches, but on the
other hand provides strong stabilization of the flow for substrates with very deep structures.
As discussed in the energy analysis of Pettas et al. (2019b) for viscoelastic film flows
over wavy structures, the two most important mechanisms that affect the stability of the
flow are the following: (a) coupling of the stress gradient perturbation with the base state
velocity and (b) coupling of the base state stress gradients with the velocity perturbations.
The former destabilizes the flow, whereas the latter provides a strong stabilizing effect.
For substrates with shallow structures, the base state stress gradients are rather weak
(non-existent for the case of flat substrates) and, therefore, the only acting mechanism
(caused by the coupling of the stress gradient perturbation with the base state velocity)
destabilizes the flow. On the other hand, the elastic phenomena and base state stress
gradients increase with the morphological variations, producing a force that opposes
inertia, resulting in overall stabilization of the flow.
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5.2.2. Disturbances with an arbitrary wavelength
So far, we have discussed the stability of an Oldroyd-B liquid for steady flows allowing
only longwave disturbances, i.e. for Q � 1. To investigate the effect of disturbances with
any wavelength, in this section, we present stability maps considering values of the Bloch
wavenumber Q in the range [0, 0.5]. The stability maps are presented in the (Re, f ) plane.
The latter representation is preferable (as compared to stability maps in the (Re, Q) plane
often found in the literature), having the advantage that the theoretical predictions can be
directly compared with experimental observations (e.g. see figure 2).

5.2.2.1. Effect of elasticity In figure 9(a–d), we present stability maps for viscoelastic
liquids with El = 1, 1.5, 2, 3, respectively. In this figure, the neutral stability curve is
indicated by the continuous black line, while the white and light blue areas represent
the stable and unstable regimes, respectively. Note that in figure 8(a), the black dashed
line corresponds to the neutral curve of a Newtonian liquid for the same geometrical
characteristics of the substrate. We notice that as in the case of substrates with wavy
structures (see Pettas et al. 2019b), the flow becomes first unstable for a finite value of
the disturbance frequency, i.e. for f = 0.027 (which corresponds to Q = 0.215) and Rec =
5.98. With increasing fluid elasticity, the flow progressively deviates from the Newtonian
case. For El = 1, the most unstable state is encountered for longwave disturbances
( f → 0) and Rec = 6.55, which is higher than in the case of Newtonian liquids. We can
observe that for disturbances of any frequency, the neutral curve shifts to higher values of
Re. Therefore, the flow appears to be more stable for a viscoelastic liquid under all types
of disturbances for structures with D = 5, see figure 9.

On increasing the elasticity to El = 1.50, fluid elasticity further stabilizes the flow, while
an island of stability arises at supercritical conditions for low-frequency disturbances;
Re lies in the range 8.70 < Re < 10.30. The presence of finite normal stress gradients
impedes the film flow passing the cavities of the substrate, inducing a distorted free
surface. In this case, the steady free surface distortions generate a window where the
longwave disturbances are damped. For El = 2, the previously mentioned island expands
in size and crosses the primary neutral curve, producing another unstable island for
low-frequency disturbances at 6.97 ≤ Re ≤ 8.18. For higher values of Re, longwave
disturbances are no longer the most unstable ones, since the most unstable mode has
frequency f = 0.03 (which corresponds to Q = 0.20) and arises at Re = 8.45. With
further increase of El, see figure 8(d), at supercritical conditions, due to fluid elasticity,
an island of stability arises for 10.27 < Re < 14.10; as mentioned, the latter behaviour can
be attributed to the resonance of the interface with the substrate, which results in large
interfacial deformations (see figure 5), producing in turn a more intense polymeric stress
field in the base state. Eventually, though, for higher values of Re, inertia manages to
destabilize the flow despite the stabilizing effect of elasticity.

5.2.2.2. Effect of geometrical characteristics of the trench In figure 10(a–d), we
focus on the effect of the substrate on the stability of the flow by varying the depth to
D = 0.5, 1, 2, 3, respectively. We note that for D = 0.5, which corresponds to the case
of a rather shallow structure, the most critical conditions for the onset of instability arises
for longwave disturbances. The shaded area in figure 10(a) corresponds to the unstable
regime of a viscoelastic film over a flat substrate. It can be seen that in the case of substrates
with shallow topography, viscoelasticity destabilizes the flow since the calculated Rec
(∼3.23) is smaller than the Newtonian case (Rec,Newt = 4.73), as shown in figure 8(a),
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Figure 9. Stability diagrams for El = 1.00, 1.50, 2.00 and 3.00 using the Oldroyd-B model. The black dashed
line depicts the neutral curve for a Newtonian liquid. The remaining parameters are Ka = 2, ε = 0 and β =
0.10. The inclination angle is α = 10◦.

while for D = 0.5 the flow is mildly stabilized not only for longwave disturbances but also
for disturbances of any frequency.

In figure 10(b), we examine the case of D = 1. The two neutral curves, i.e. for the
structured and flat substrate, are quite close, as one might have expected since the
structures are still rather shallow. The increase of the critical value of Re for instability
for all types of disturbances (most critical conditions arise for longwave disturbances at
Rec = 5.29 for the structured substrate) indicates the stabilizing effect of viscoelasticity
even for moderately deep structures.

As discussed above, this can clearly be attributed to the stabilizing effect of the base
polymeric stress field that arises due to the substrate topography. The stabilization becomes
stronger with increasing depth of the trench, as can be seen in figure 10(c,d) depicting
unstable regions with increasing values of D. For deeper trenches (D > 3), though, the
stability of the flow is not affected significantly. We note that the stability maps for D = 3
and D = 7 look almost identical; the latter is not shown here for conciseness. As already
mentioned in the discussion of figure 8, the appearance of a recirculating vortex inside
the cavity separates the flow between the mainstream flow and the recirculating fluid that
resides in the trench, resulting in film shapes and flow conditions that are not affected
significantly for deeper trenches, i.e. D > 3.

Apart from the trench depth, it is also important to examine the effect of its aspect
ratio on the hydrodynamic stability of the flow. In figure 11, we consider substrates with
different values of the aspect ratio, Tr. To this end, we vary the trench width, W, and
the total length of the inflow and outflow regions of the unit cell is L1 + L2 = L − W;
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Figure 10. Stability diagrams for D = 0.5, D = 1, D = 2 and D = 3 using the Oldroyd-B model. The black
dashed line depicts the neutral curve for the case of viscoelastic Nusselt flow. The remaining parameters are
Ka = 2, ε = 0 and β = 0.10. The inclination angle is α = 10◦.

the size of the unit cell is kept constant (L = 20) while for all cases examined here, we take
L1 = L2. Figure 11(a–d) depicts the stability maps for Tr = 4, 1, 0.5, 0.1, respectively;
the black dashed line in figure 11(a) represents the critical conditions for the onset of the
instability in the case of flat film. High values of Tr correspond to cases that the inflow
and outflow region of the domain is much larger than the trench width (e.g. see figure 7b),
and as we have seen in figure 7(a), the film flow tends to the simple Nusselt flow limit
with very little deformation. It is no surprise that the stability of the film flow for Tr =
4 resembles that for a flat wall, as can be seen by the coincidence of the two neutral
curves in figure 11(a). For substrates with lower values of Tr, though, the trench occupies
more space in the unit cell, while the amplitude of interfacial deformation, as well as the
level of polymeric stresses, increases with decreasing values of Tr (see figure 7). As is
clearly shown in figure 11(c,d), a decrease in Tr has a stabilizing effect, with maximum
stabilization arising for pillar-like structures.

For Tr = 0.1, the polymeric chains are subjected to large extensions at the inflow and
outflow regions of the unit cell, where the polymeric chains are squeezed to conform with
the fluid flow arrangement producing a large hump at the interface (see figure 7c). The
small lengths of the inflow and outflow regions do not allow the polymeric chains to relax,
giving rise to an extensional flow field that strongly stabilizes the flow (see figure 11d).
Therefore, the first unstable island decreases considerably in size (and vanishes for even
lower values of Tr), while the second one (for 14.36 < Re < 18.36) moves to higher values
of Re and also decreases in size.
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Figure 11. Stability diagrams for Tr = 4 (L1 = L2 = 8), Tr = 1 (L1 = L2 = 5), Tr = 0.5 (L1 = L2 = 3.33)
and Tr = 0.1 (L1 = L2 = 0.90). The total length of the unit cell is constant and equal to L = 20. The black
dashed line depicts the neutral curve for the case of viscoelastic Nusselt flow. The remaining parameters are
Ka = 2, ε = 0 and β = 0.10. The inclination angle is α = 10◦.

5.2.2.3. Effect of unit length size Next, in figure 12(a–d), we present the stability
diagrams for four different sizes of the periodic unit cell, L = 5, 10, 15 and 20,
respectively, while keeping constant the scales of the other geometrical characteristics.
For short wall wavelengths, see figure 12(a), the film is relatively thick compared to the
substrate variations resulting in an almost planar film shape (Sharma, Ray & Papageorgiou
2019). Hence, the neutral curve resembles that of the Nusselt flow, see the black dashed
line in figure 12(a). As the length increases, linear stability calculations show a much
higher sensitivity to wall deformation. The latter is in qualitative agreement with the
results of Sharma, Ray & Papageorgiou (2019), while for L = 10 a stable isle appears
at supercritical conditions in the range 6.66 < Re < 7.40. Increasing further the size of
the unit cell, the impact of the topography on the free surface is more prominent. For
L = 15, Rec = 5.43, a slight stabilization of the flow can be observed in high frequencies at
supercritical conditions. Furthermore, the stable island expands in size, indicating a more
intense resonance due to the presence of the substrate, see figure 12(c). Finally, for L = 20,
the intense elastic phenomena along with the surface tension stabilize the high-frequency
disturbances. It seems that the flow will continue to become more stable with increasing L.

5.2.2.4. Effect of the inclination angle To complete our parametric study for liquids
governed by the Oldroyd-B model in figure 12(a–d), we present the effect of the
inclination angle on the stability of the flow for α = 5◦, 10◦, 15◦, 20◦. Note that the black
dashed lines represent the corresponding neutral curves for the case of a flat substrate.
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Figure 12. Stability diagrams for L = 5 (D = 1.25), L = 10 (D = 2.5), L = 15 (D = 3.75), L = 20 (D =
5.00). The black dashed line depicts the neutral curve for the case of viscoelastic Nusselt flow. The remaining
parameters are Ka = 2, ε = 0 and β = 10◦. The inclination angle is α = 10◦.

Clearly, for the latter case the flow destabilizes with increasing inclination angles, while
the most unstable conditions arise for longwave disturbances. For α = 5◦, the presence
of topography in combination with the fluid elasticity results in significant stabilization
of the flow for longwave disturbances. In fact, in this case, the most unstable conditions
for instability arise for disturbances with f = 0.018 (Q = 0.12) and for Rec = 11.79. It
is also noteworthy that the two neutral curves (i.e. for flat and structured substrates)
almost coincide for high-frequency disturbances. On the other hand, on increasing the
inclination angle, the corresponding stability maps deviate significantly from the flat film
case, see figure 13(b–d), exhibiting the formation of an unstable island and considerable
stabilization of the flow for all types of disturbances. We note that for α = 15◦ in the
case of viscoelastic Nusselt flow, critical conditions arise at Rec,flat = 1.58, while for the
case of a structured substrate, the flow first becomes unstable at Rec = 6.21; in both
cases, the most unstable conditions arise for longwave disturbances. The stabilization
becomes stronger for α = 20◦ since Rec,flat is 0.81, while the corresponding Rec is
approximately the same with the case of α = 15◦, see figure 13(d). The strong stabilization
of the flow for increasing inclination angles can be understood as follows. By increasing
the inclination angle, the gravity component in the x-direction increases, and therefore
the film is accelerated more by gravity. The latter affects the flow in the following ways:
(a) the effect of inertia becomes more important and (b) faster flow reduces the film
thickness. So far, it has been demonstrated that elasticity provides a stabilizing effect for
structured substrates, which becomes more prominent for deeper or pillar-like structures.
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Figure 13. Stability diagrams for α = 5◦, α = 10◦, α = 15◦ and α = 20◦ using the Oldroyd-B model. The
geometrical characteristics of the substrate are L = 20, L1 = L2 = 5 and W = D = 5. The black dashed line
depicts the neutral curves for the case of viscoelastic Nusselt flow. The remaining parameters are Ka = 2,
El = 3, ε = 0 and β = 0.10.

–20
0 10 20

x

y

30 40

–10

0

10

–20
–10

–5

0

5

10

0 10 20
x

30 40

–10

0

10

(b)(a)

Figure 14. Film shape and spatial variation of the normal stress component, τp,xx, for (a) α = 5◦ and
(b) α = 20◦ at Re = 12. The remaining parameters are Ka = 2, ε = 0, El = 3 and β = 0.10.

It is also true that elastic phenomena intensify with film velocity (and hence increasing
inertia), and therefore increase in the inclination angle intensifies the effect of elasticity.

This is depicted in figure 14(a,b), where we present contour plots of τp,xx for α = 5◦ and
a = 20◦, respectively. In fact, by increasing the inclination angle due to inertia, polymeric
chains become stretched in the streamwise direction, resulting in the formation of an
intense normal polymeric stress field which is responsible for the stabilization of the flow.
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Figure 15. Stability diagrams for (a) for four different values of ε under the constant value of Tr = 1.0 and
(b) for various values of Tr for ε = 0.15. The remaining parameters are Ka = 2, El = 3 and β = 0.10. The
inclination angle is α = 10◦.

5.2.2.5. Effect of shear-thinning Up to now, we have examined the effect of elasticity
of a film following the Oldroyd-B model. In this section, we are going to study the
effect of shear-thinning via the ePTT model. As previously mentioned, by increasing the
rheological parameter ε, the effect of shear-thinning becomes increasingly important. In
figure 15(a) we present the stability diagrams for four different values of the rheological
parameter (i.e. ε = 0, 0.05, 0.10, 0.15, respectively). As shown in figure 15(a), even
a small extent of shear-thinning brings substantial changes in the stability diagrams.
Shear-thinning clearly has a destabilizing effect on the flow, since the most critical value
of Re is inversely proportional to ε, in line with previous works (Allouche et al. 2017;
Pettas et al. 2019b; Mogilevskiy 2020); for ε = 0.05 the instability arises under longwave
disturbances (Q → 0) for Rec = 5.45, while for ε = 0.10 and 0.15 the critical value of Re
decreases to 4.39 and 3.78, respectively. We note, though, that in the case of flow over
corrugated surfaces, Pettas et al. (2019b) reported that shear-thinning might also promote
the appearance of short-wave instabilities. No short-wave instabilities are observed in this
study, which could be attributed to the fact that the dimensionless parameters represent
a liquid with rather high viscosity in the present simulations. The destabilizing effect
of shear-thinning can be rationalized as follows. Due to the shear-thinning, viscosity
decreases locally and, therefore, the surface velocity of the film is higher than its nominal
value. Consequently, the flow disturbances can propagate more easily on the free surface
of the film resulting in the reduction of the critical flowrate. In figure 16(a,b), we present
the spatial variation of τp,yx at Re = 10 for ε = 0.05 and 0.15, respectively. In both cases,
polymeric shear stresses obtain higher values in the mainstream region (i.e. outside the
cavity). In addition to the liquid–wall interface, where the highest shear stresses typically
arise, the film forms a band of shear stresses at the midplane of the unit cell. Due to the
local reduction of the liquid viscosity, the film is facilitated to surpass the trenches. As a
result, the fluid mobility increases, while the static hump at the free surface decreases its
magnitude and the elastic phenomena become less intense.

Apart from shear-thinning, the rheological parameter ε also controls the elongational
viscosity. As noted, in this particular flow, normal stress gradients are triggered by
topographical variations of the substrate, while the wall shape can mitigate shear-thinning.
The former mechanism stabilizes the flow while the latter destabilizes it. In this manner,
the morphology of the substrate may provide the potential for instability control through
the development of appropriately tailored substrates. This is shown in figure 14(b), where
we consider a liquid with ε = 0.15 (strong shear-thinning); we present in this figure
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Figure 16. Film shape and spatial variation of the normal stress component, τp,yx, for (a) ε = 0.05 and
(b) ε = 0.15 at Re = 10. The remaining parameters are Ka = 2, El = 3 and β = 0.10.

stability diagrams for substrates with different values of the aspect ratio, Tr. As noted
above, small values of Tr correspond to pillar-like structures (see figure 7c). Therefore,
in such cases the inflow and outflow regions of the unit cell are somewhat smaller,
limiting, on the one hand, the region where most of the shear-thinning takes place in the
flow domain. On the other hand, elongational stresses become intensified for pillar-like
structures (see figure 11 and relative discussion), which is responsible for the overall
stabilization of the flow shown in figure 15(b).

6. Conclusions

In this study, we examined the flow of a viscoelastic film over topography with sharp
rectangular trenches. We solve numerically, employing the finite element method, the
2-D momentum and mass conservation equations while considering the exponential
Phan-Thien and Tanner constitutive model to account for the rheology of the material. We
first compute the steady viscoelastic film flow and then perform a linear stability analysis
around this base state when subjected to infinitesimal 2-D disturbances in the streamwise
direction. By employing the Floquet–Bloch theory, we account for disturbances of
arbitrary wavelengths, i.e. not necessarily matching the periodicity of the substrate
structure. We end up with an eigenvalue problem, which is solved to determine the critical
conditions for the onset of the interfacial instabilities. The results of our code have been
successfully validated for limiting cases against previous experimental and theoretical
studies that exist in the literature.

We present an extensive parametric study to elucidate the interplay of the substrate
structure with the complex rheology of the material on the flow stability. Our simulations
reveal that even for Newtonian liquid films, the topography shape has a non-trivial effect
on the stability of the flow, i.e. exhibiting a non-monotonic dependence of Rec with
trench depth. Although it is already known that fluid elasticity has an overall stabilizing
effect on the film flow over structured surfaces (Pettas et al. 2019b; Sharma, Ray &
Papageorgiou 2019), we demonstrate that the shape of the substrate topography may also
affect the intensity of the elastic phenomena considerably and in turn have an impact on
the stability of the viscoelastic film. Moreover, when the depth of the trenches exceeds
a critical threshold, the overall stability of the flow remains unaffected. Finally, our
results concerning the effect of shear-thinning indicate the destabilization of the flow, in
accordance with the study of Pettas et al. (2019b), albeit it is shown that this effect could
be mitigated to some extent for substrates with a pillar-like structure. The latter findings
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give the potential for instability control through the development of appropriately tailored
substrates. This may assist in the construction of superhydrophobic surfaces, particularly
when air gets entrapped inside the cavity.

The present study provides a theoretical analysis of the effect of viscoelasticity and
shear-thinning on the stability of film flow over a fully wetted undulated topography. We
note, though, that such a fully coated state is not the only possible state. Recent studies
indicate that the wetting state of the substrate depends both on its geometrical and liquid
properties, while air inclusions can be formed during the coating process of these surfaces,
resulting in products of inferior quality (see e.g. Giacomello et al. 2012; Lampropoulos,
Dimakopoulos & Tsamopoulos 2016; Karapetsas et al. 2017; Varchanis, Dimakopoulos
& Tsamopoulos 2017). The interaction between the primary free surface and another
liquid–air interface that lies inside the cavity of the substrate, however, may affect the
flow stability significantly, while it may provide an additional stabilization mechanism for
the flow. The latter study is already underway.

Finally, it is important to note that experimental studies for the stability of viscoelastic
films with different polymeric solutions are currently lacking and would be extremely
beneficial for verifying the findings of the present work.
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Appendix

We present a mesh convergence study to verify that the reported results have converged
and are not affected by the sharp corners of the topography, which are known to induce
singularities, particularly in the viscoelastic stresses. The mesh properties used in the mesh
convergence test are presented in table 3.

In figure 17, we depict the result of our mesh convergence study for the value of critical
Reynolds number, Rec, for various trench depths. This figure corresponds to figure 8(a) of
the paper. We note that Rec is the most sensitive parameter to evaluate in this problem. It
is evident that Rec is independent of the mesh discretization even in the region of sharp
corners. This can be attributed to the fact that the reported instabilities are for moderate
values of Ka and El (given the fluids we examined) and are generated near the liquid–air
interface. Hence, the discretization close to the edges of the trench does not appear to
affect in any way the critical conditions for instability for this particular flow and fluids.

We have also tested whether the same results are affected when smooth edges are
considered. In figure 18, we present Rec as a function of the trench depth computed with
three different meshes and for radii of the edges 0, 0.05 and 0.10, respectively; zero radii
correspond to the case of a sharp edge. As shown in figure 18, in the limit of small radii,
the presence of the smoothed edges does not significantly affect the stability of the flow.
However, the presence of even smoother edges (radii values typically larger than 0.5, see
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Mesh �xmin �ymin Number of refinement levels Number of unknowns

M0 0.050 0.050 0 175 711
M1 0.025 0.025 1 214 367
M2 0.015 0.012 2 253 023

Table 3. Properties of the meshes used for mesh convergence.
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Figure 17. (a) Critical Re as a function of depth for Q = 10−2 for different meshes. The properties of each
mesh are given in table 3. The remaining parameters are Ka = 2, El = 1, ε = 0, and β = 0.10. The inclination
angle is α = 10◦. (b) A blow-up of the mesh with 2 refinement levels close to the upstream convex corner.
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Figure 18. (a) Critical Re as a function of depth for Q = 10−2 for meshes with differently smoothed corners.
The properties of each mesh are given in table 3. The remaining parameters are Ka = 2, El = 1, ε = 0, and
β = 0.10. The inclination angle is α = 10◦. (b) A blow-up of the mesh close to the upstream convex corner
presenting the curvature of the edge.

Schörner et al. 2018) affects the stability of the flow considerably. This can be seen in
figure 2(b) of our study.
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