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ABSTRACT: We examine the thermocapillary-driven flow of a
droplet on a nonuniformly heated patterned surface. Using a sharp-
interface scheme, capable of efficiently modeling the flow over
complex surfaces, we perform 2D and 3D finite element simulations
for a wide range of substrate wettabilities, i.e., from hydrophilic to
superhydrophobic surfaces. Our results demonstrate that the contact
angle hysteresis, due to the presence of the solid structures, is
responsible for the appearance of a critical thermal gradient beyond
which droplet migration is possible; the latter has been reported by
experimental observations. The migration velocity as well as the
direction of motion strongly depend on the combined action of the net mechanical force along the contact line and the
thermocapillary induced flow at the liquid−air interface. We also show that through proper control and design of the substrate
wettability, contact angle hysteresis, and induced flow field it is possible to manipulate the droplet dynamics: in particular,
controlling its motion along a predefined track or entrapping by a wetting defect a droplet based on its size, as well as providing
appropriate conditions for enhanced mixing inside the droplet.

1. INDRODUCTION

The application of a body force or external gradient can be used
as a mechanism for the actuation of liquid droplets, and the
ability to control these properties can play a key role in many
technological applications that involve microfluidics.1−3 Lately,
a range of microfluidic devices based on the thermocapillary
effect have been proposed and developed for different purposes
such as actuation, sensing, trapping, sorting, mixing, chemical
reaction, and biological assays.4

Thermocapillary actuation is typically induced by the
presence of a temperature gradient along the substrate which
causes a temperature gradient along the interface giving rise to
surface tension gradients. The latter induce Marangoni stresses
which drive liquid flow from warmer to colder regions. In
practice, however, the substrates encountered are never
completely flat or perfectly smooth, exhibiting finite roughness
or even well-defined features in the form of stripes or pillars.
The scope of the present work is to provide a model and
investigate the thermocapillary droplet actuation on patterned
solid substrates.
Early experimental work by Bouasse5 has shown that the

thermocapillary effect can be used to force a drop to climb a
tilted wire, against gravity, by heating its lower end; the drop
moves toward the cold region of the wire. Similar experiments
have been conducted by Yarin et al.6 using various liquids on
glass fibers and copper wires, whereas other research groups
have conducted experiments on horizontal smooth or rough
surfaces to investigate systematically the migration of thin liquid
drops.7−10

More specifically, Brzoska et al.7 performed experiments
using polydimethylsiloxane (PDMS) oil drops on silanized
silicon flat surfaces and showed that it was possible to get a
steady migration of droplets with a fixed shape toward the cold
region, while for a temperature gradient below a certain
threshold, the drop may not move due to the effect of contact
angle hysteresis. These findings were also confirmed by more
recent studies.8,10 Pratap et al.,9 on the other hand, performed
experiments using decane drops on PDMS-coated substrates
and showed that in their case there was a significant
dependence of the contact angle on temperature, which was
demonstrated by the significant distortion of the footprint of
the drop from a circular shape. In contrast to previous
experiments the migration velocity was shown to decrease as
the drop moves toward colder regions, and this was attributed
to either the presence of a temperature dependent viscosity or
the effect of evaporation, which was non-negligible.9 It has been
suggested recently though that the decrease of the migration
velocity could also be due to some extent to the dependence of
the contact angle on temperature due to the change of material
wettability as the slender drop moves toward colder regions.11

The thermocapillary droplet migration has been the subject
of several theoretical studies in the literature, which were
mainly conducted under the thin film approximation.
Brochard12 examined the motion of droplets in the presence
of chemical or thermal gradients, assuming a thin-edge shape of
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the drop while employing force balance and energy arguments
to deduce the wetting characteristics in terms of the spreading
coefficient. The work of Brochard12 was generalized by Ford
and Nadim13 to allow for arbitrary shapes of the drop and also
allowed the contact angles to be different at the two ends, and
later on by Pratap et al.9 who extended this theory to three-
dimensional drops.
Smith14 was able to derive evolution equations for the

droplet height which were solved numerically to derive quasi-
steady solutions in the presence of thermal gradients. To this
end, he employed a dynamic boundary condition at the contact
line, which relates the velocity of the contact line to the
dynamic contact angle, also taking into account the effect of
contact angle hysteresis. According to his analysis, only two
possible steady states exist: either a motionless drop or a steady
migration of the droplet with a fixed shape toward colder
regions. Very recently, though, Gomba and Homsy15 revisited
this problem using lubrication theory in combination with a
precursor model to relieve the contact line singularity and they
identified three different regimes with increasing wettability of
the solid surface which range from a droplet regime to a
transitional regime with rather complex dynamics involving
breakup of the drop into smaller droplets, and a film regime.
Karapetsas et al.11 considered the variation of contact angle
with temperature along the solid surface, and observed rich
droplet dynamics including a stick−slip behavior. Later on,
Karapetsas et al.16 examined the effect of a non-monotonic
dependence of surface tension on temperature, a typical
characteristic of self-rewetting fluids, and found under certain
conditions the existence of very high spreading rates. In a
slightly different context, the effect of thermal Marangoni
stresses on droplets attached on a heated solid substrate has
also been studied by Ehrhard and Davis17 who employed
lubrication theory to describe the spreading of a droplet on a
uniformely heated plate, and Anderson and Davis18 who also
took into account the effect of evaporation. The latter effect was
also studied recently by Karapetsas et al.,19 while Chen et al.20

studied the phenomenon of thermocapillary nonwetting.
The case of a droplet with large contact angles was not

examined until very recently by Sui.21 Earlier efforts in this
direction were also done by Tseng et al.,22 the model of which
lacks sufficient detail and does not obtain agreement with
experiments, and by Nguyen and Chen23 who apparently
neglected the surface tension gradient term from the interfacial
stress balance equation, significantly affecting their results since
Marangoni is the driving force for this flow. Sui21 employed the
level-set method and considered droplets with large contact
angles also taking into account the viscous effects of the fluid
outside the droplet. Interestingly, it was shown that the
direction of migration depends on the wettability of the solid
surface. For small contact angles the droplet migrates toward
the cold side, whereas for large contact angles the droplet
migrates toward the hot region, and for intermediate contact
angles the droplet may even fall in a motionless state. As
shown, the direction of motion is also affected by the viscosity
ratio between the droplet and the ambient fluid. These results
have been confirmed and extended to 3D drops by Fath and
Bothe.24 Additionally, the flow field inside a stationary water
droplet on a hydrophobic surface was recently visualized by
Pradhan and Panigrahi.25

All of the aforementioned theoretical studies consider
substrates that are macroscopically smooth. Experimental
observations, though, seem to indicate that the presence of

patterned solid surfaces may affect significantly the migration of
liquid droplets. Recently, Dai et al.10 investigated the influence
of surface roughness and surface topography orientation and it
was shown that the orientation of grinding scars may guide the
direction of movement of drops. On the other hand,
experiments on surfaces with microdimples suggest that the
morphology of the substrate can be used for inhibiting
thermocapillary migration. To the best of our knowledge, the
effect of the substrate topography has not been addressed
theoretically in the literature, and this will be the main objective
of this paper. To this end, we use a recently proposed sharp-
interface scheme which treats the liquid−gas and the liquid−
solid interfaces in a unified context (one equation for both
interfaces) by introducing a Lennard-Jones type of potential to
model the microscale liquid−solid interactions.26−29

This model has been shown to be particularly efficient in the
case of patterned surfaces since its main advantage is that it
avoids the implementation of an explicit boundary condition at
the contact line and there is no requirement for the
predefinition of the number and position of the contact lines.
As will be shown below, our model favorably compares against
other works in the literature and can be used for a wide range of
wettabilities, i.e., from hydrophilic to superhydrophobic
surfaces. It is also demonstrated that the presence of surface
structure gives rise to a finite static contact angle hysteresis
which is responsible for the fact that droplet migration becomes
possible beyond a critical thermal gradient. Moreover, we
examine how this effect can be exploited to manipulate droplets
(e.g., sorting, passive control of motion direction) or to
produce efficient micromixers.
The remainder of the paper is organized as follows. In

Section 2, we describe the system of governing equations and
outline the numerical scheme that is used for the simulations.
The results are presented and discussed in Section 3. Finally,
the concluding remarks are given in Section 4.

2. PROBLEM FORMULATION

We consider the dynamics of a drop of an incompressible,
nonvolatile Newtonian fluid with constant density ρ, viscosity,
μ, specific heat capacity Cp, and thermal conductivity λ, which
has been deposited on a rigid and impermeable patterned solid
substrate subjected to a constant temperature gradient (see
Figure 1). In the most general case that will be examined in the
present work, we consider that the wall temperature is given by

Figure 1. Schematic of a droplet sliding on a patterned solid substrate
inclined under the influence of an applied temperature gradient. The
origin of the coordinate system is placed atop the solid surface and at
the position of the center of mass of the droplet at t = 0.
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Tw = To + γ(x cos α − z sin α), where α denotes the angle of
the temperature gradient with respect to the x-axis along the
xz-plane. In the limiting case of a 2D droplet shown in Figure 1,
we assume α = 0 and thus Tw is simply given by Tw = To + γx.
To denotes the temperature of the solid surface at (x,z) = (0,0);
we assume that this is the position on the solid surface of the
center of mass of the droplet at t = 0. We assume that the
droplet has a nominal radius, R, which is defined as π=R A/
for the case of 2D droplets with surface area, A, and as

π=R V3 /43 for axisymmetric or in general 3D droplets with
volume, V. The surface tension of the liquid−gas interface is
denoted with σ and is assumed to vary linearly with
temperature, σ = σo − ψ(T − To); ψ = −(dσ/dT).
We render the governing equations dimensionless by scaling

all lengths with the nominal droplet radius, R. Since a
characteristic velocity is not known a priori, we choose the
following scaling for the velocity field, σ ρ* =V R/o . The
pressure is scaled with σo/R and the stresses with μV*/R.
Finally, time is scaled with R/V*. Substituting this scaling into
the governing equations and boundary conditions, the
dimensionless groups that emerge are the Ohnesorge number,

μ ρσ= ROh / o , the Marangoni number, Ma = ψTo/σo and the
dimensionless thermal gradient Γ = γR/To.
The spreading dynamics is governed by the equations of the

conservation of mass, momentum and energy, given below:

∂
∂

+ ·∇ + ∇ − ∇ =
t

P
v

v v vOh 02
(1)

∇· =v 0i (2)

∂
∂

+ ·∇ − ∇ =⎜ ⎟⎛
⎝

⎞
⎠

T
t

T Tv
Pr
Oh

02

(3)

where ∇ denotes the gradient operator and v is the velocity
vector. Here, P denotes the pressure and I is the identity tensor.
In the present study the effect of gravity has been neglected
since we are mainly interested in the case of small sized
droplets.
2.1. Boundary Conditions. The solution of the above set

of equations is determined subject to the following boundary
conditions. Following the approach of Chamakos et al.28 we
treat the gas and solid phases in a unified context. Along the
liquid−air or liquid−solid interface the flow field satisfies the
local interfacial force balance between the stresses in the liquid
and the ambient phase

τ τ σ σ· = · + + ∇−n n nOh (2 )sext
1

(4)

where n denotes the outward unit normal, τ is the total stress
tensor

τ = − + ∇ + ∇PI v v( )T
(5)

τext denotes the total stress tensor of the ambient phase and 2
is the mean curvature of the interface

= −∇·n2 s (6)

while ∇s is the surface gradient operator, defined as

∇ = − ∇I nn( )s (7)

The dimensionless surface tension is given by

σ = − −T1 Ma( 1) (8)

Taking the tangential and normal to the free surface
components of this force balance, we obtain

τ τ· · = · · +n n n n
2
Ohext (9)

τ τ σ· · = · · + ∇ ·n t n t t
1

Ohext s (10)

where n·τext·n and n·τext·t denote the normal and tangential
stress component of the ambient phase, respectively. Assuming
that the viscosity in the gas phase is negligible, the effect of the
flow in the gas can be neglected. Moreover, following the
approach of refs 28 and 29 we introduce the normal microscale
liquid−solid interactions through a disjoining pressure term, Π,
which accounts for the presence of antagonistic short- and long-
range intermolecular forces

τ· · = − + ΠPn n gext (11)

where

δ δ
Π =

+ ϵ
−

+ ϵ
⎜ ⎟ ⎜ ⎟
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⎣⎢
⎛
⎝

⎞
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⎝
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⎤
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w A A
Oh
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C C1 2

(12)

The wetting parameter, wls, is directly related with the
substrate wettability through the following relation

θ =
−

− −
−

w C C A
C C

cos
( )

( 1)( 1)
1Y

ls 1 2

1 2 (13)

where θY denotes the Young’s equilibrium contact angle and
the exponents C1 and C2 control the range of the microscale
liquid−solid interactions; large values of C1 and C2 reduce the
range within which microscale interactions are active. In eq 12,
δ denotes the euclidean distance of separation between the
solid and the liquid surface. The minimum distance of
separation, δmin (see Figure 1), between the liquid and solid
phases is controlled by the constants A and ϵ, i.e., δmin = A − ϵ;
ϵ is a regularization parameter and typically acquires very small
values.
In order to account for the tangential stresses n·τext·t, that the

liquid experiences along the liquid−solid interface, we employ
the approach of Karapetsas et al.29 by introducing the Navier
slip model

β· · = ·Tn t t v( )ext eff (14)

where βeff denotes the effective slip length or slip coefficient.
Since our formulation treats the gas and solid phases in a
unified context, a continuous function is needed, and to this
end, we employ the following expression

β β α δ
δ

= − −
⎛
⎝
⎜⎜

⎡
⎣⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥⎥
⎞
⎠
⎟⎟1 tanh 1sleff

min (15)

βsl is a parameter which accounts for the adhesion properties of
the liquid droplet on the solid surface. According to eq 15 βeff is
equal to βsl along the liquid−solid interface (for δ ≈ δmin) and
zero everywhere else, implying a shear-free boundary condition
along the liquid−gas interface; this variation is controlled by the
parameter α and takes place at a smaller length scale than the
action of the disjoining pressure. If βsl acquires very large values
we recover the usual no-slip boundary condition along the
liquid−solid interface, whereas for moderate values of this
parameter partial slip is allowed.29
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Finally, we apply along the interface the following
generalized boundary condition for the temperature field

·∇ = − −T h T Tn ( )weff (16)

where heff is an efficient dimensionless heat transfer coefficient
and is given, similarly to βeff, by a continuous function

α δ
δ

= − −
⎛
⎝
⎜⎜

⎡
⎣⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥⎥
⎞
⎠
⎟⎟h h 1 tanh 1weff

min (17)

According to eq 17, heff becomes equal to hw along the
liquid−solid interface (for δ ≈ δmin) and zero everywhere else,
implying a no-flux boundary condition along the liquid−gas
interface. Assuming that the parameter hw acquires large values,
along the liquid−solid interface we recover the usual continuity
boundary condition, i.e., T ≈ Tw.
Along the moving interface we impose the kinematic

boundary condition

− · =v v n( ) 0mesh (18)

where vmesh is the velocity of the mesh at the interface. Finally,
to complete our model we have to set a datum pressure, and as
such, we impose the pressure in the gas phase to be equal to
zero Pg = 0, without loss of generality.
2.2. Model of the Substrate Topography. As noted

above, for the purposes of this study we will consider the cases
of both a macroscopically flat and a structured solid surface.
The model for the former case is quite straightforward and has
been described above. For the case of a patterned solid surface
we will follow two alternative routes.
2.2.1. Explicit Model for Geometrical Pattern. The first

approach is to explicitly consider the topography of the solid
surface (see Figure 1), and this is taken into account by
describing the roughness of the solid using analytical
expressions (see eqs 22 and 23). In this case special
consideration is required on the definition of distance, δ, in
eq 12. Obviously, in the limiting case of a macroscopically flat
substrate, δ can be simply taken to be equal to the vertical
distance from the solid surface. On the other hand, in the case
of a surface with geometric structures of finite size, we follow
the approach of Chamakos et al.26−28 taking δ to be equal to
the minimum distance from the solid which is obtained by
solving the eikonal equation.30 As discussed in Chamakos et
al.26 this choice gives the best agreement with mesoscale
simulations of wetting on structured surfaces, though, with
considerably lower computational demands. This approach will
mainly be used for the 2D simulations presented below.
2.2.2. Emulation of Substrate Pattern with Chemical

Heterogeneity. Despite the efficiency of the explicit method
described above, the computational cost becomes significantly
high when it comes to the study of droplets on surfaces with
3D patterns. Karapetsas et al.29 proposed an alternative route
and applied their method to the study of droplets in “fakir”
state, where the presence of air pockets within the roughness
may act as effective ”shear free” regions. According to this
approach, we may assume that the substrate is macroscopically
flat and the effect of heterogeneity due to the presence of
patterns is introduced simply by taking the wettability,
adhesion, and heat transfer properties along the solid surface
to be a function of the substrate coordinates (i.e., a case similar
to that considering chemical heterogeneity). The method that
will be described below will be used for the 3D simulations
presented below where we will focus on the case of droplets

attached to composite hydrophobic surfaces, with patterns of
different wettabilities, e.g., stripes of a microstructured surface.
When dealing with a heterogeneous hydrophobic surface

with intrinsic wettability, θY, a simple way to take into account
how the apparent contact angle, θa, changes due to the
presence of small air pockets in the material roughness is to
consider the Cassie−Baxter equation

θ ω θ ω= + −cos( ) cos( ) 1a Y (19)

where ω is the fraction of solid surface area wet by the liquid. It
is reasonable to assume that the presence of air pockets also
affects the wall slip and heat transfer coefficients by decreasing
their values, and this is taken into account by considering the
following dependence on ω

β ωβ ω′ = ′ =h handsl sl w w (20)

Finally to model the presence of a composite substrate, we
assume that the value of ω varies in the spatial coordinates (x,
z) and this is modeled by solving the following equation

ω∇ =x z( , ) 02
(21)

subject to the following conditions: to indicate at a certain
position the presence of a microstructured stripe (with
apparent contact angle θa = θa,1) we impose ω to be equal to
ω = [cos (θa,1) + 1]/[cos (θY) + 1)], while we set ω = 1 for a
regular part of the surface (without microstructures), i.e., with
apparent contact angle θa,2 = θY.
Using this method, it is possible to emulate the presence of a

structured solid surface with significantly reduced computa-
tional cost. In Figure 2, we depict examples of patterns which

may exhibit large scale structures either in the form of pillars
(Figure 2a) or in the form of stripes (Figure 2b). The red color
depicts the parts of the solid surface which correspond to the
part of the hydrophobic surface with similar properties to the
intrinsic properties of the surface (i.e., ω = 1, θa,2 = θY = 120°)
whereas the blue color depicts the parts of the solid surface
which correspond to θa,1 = 150° and ω = 0.268. The difference
in the structure of these two cases significantly affects the
overall apparent contact angle of the droplet which in the case
of Figure 2a is ∼142°, whereas in the case of Figure 2b is
∼135°, as well as the eventual coverage of the solid surface by
the liquid droplet; the outer circle in both figures depicts the
footprint of an unstructured surface with θY = 120°.

2.3. Numerical Implementation. The above set of
equations is combined with an elliptic grid generation scheme
capable of following the deformations of the physical
domain.28,19 In order to adequately resolve the flow, the
mesh is refined around the moving liquid−air or liquid−solid

Figure 2. Footprint and sideview of a static droplet that rests on a
solid surface modeled with eq 21: (a) surface with pillars and (b)
surface with stripes. The red color depicts the parts of the solid surface
with θa,2 = θY = 120° and the blue color with θa,1 = 150°. The outer
circle depicts the footprint of an unstructured surface with θY = 120°.
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interface. For all the computations presented in this paper,
numerical checks have shown that the results converge with
mesh refinement. The set of algebraic equations is integrated in
time with the implicit Euler method. The model has been
implemented in COMSOL Multiphysics commercial software.

3. RESULTS

For the simulations that will be presented below we consider
the disjoining pressure constants values in accordance with
previous studies,27−29 namely: C1 = 12, C2 = 10, A = 0.009, ϵ =
0.008, unless noted otherwise.
3.1. Smooth Solid SurfaceModel Validation. In this

section, we present numerical results of a droplet moving on a
smooth solid surface under the influence of a thermal gradient.
In Figure 3a we demonstrate the temporal evolution of the
droplet’s migration velocity for various thermal gradient, Γ,
values. It is observed that the migration velocity reaches a peak
absolute value just after the droplet starts to move (t ≈ 5).
Soon after that ( ⩾t 25), when a steady shape has been
reached, the droplet exhibits a virtually constant migration
velocity (terminal or steady velocity). In order to validate our
model, here we compare the computed terminal velocities (for
various Γ values) with the ones predicted from the theoretical
model of Ford and Nadim.13 In the latter approach, the steady
state value of the droplet’s migration velocity is predicted by
equating the mechanical force, due to the surface tension
difference, at the three-phase contact line and the shear force
on the wall, computed with lubrication approximation.

Moreover, Ford and Nadim have considered a fixed droplet
shape with a relatively large, width to height, aspect ratio (i.e.,
for hydrophilic substrates). In Figure 3b we plot the terminal
migration velocity computed by the proposed model (black
line), as well as the theoretical predictions by Ford and Nadim
(black squares). As shown, without any other fitting, the
proposed model is able to capture the theoretical predictions. It
is important to note here that we do not make any
simplifications regarding the droplet shape in our model. It is
worth noting that in addition to the work of Ford and Nadim,
our formulation can also predict the behavior of a droplet far
from the lubrication limit (e.g., for hydrophobic substrates), as
will be shown below.
The temporal evolution of the droplet’s migration velocity,

for different wettabilities and for Γ = 0.05, is depicted in Figure
4a. Once again, it is shown that after exhibiting some
fluctuations in the migration velocity, finally a steady shape,
with a constant velocity, is reached. An overall picture of the
solid wettability effect on the droplet motion can be obtained
by plotting, in Figure 4b, the terminal migration velocity (when
a steady droplet shape has been reached) as a function of θY, for
various thermal gradient values. It is interesting to observe here
that the steady migration velocity of the droplet has a
nonmonotonic dependence on the Young contact angle, θY,
value. Specifically, our simulations suggest that there is a
maximum migration speed, which appears at θY ≈ 50°, in line
with the predictions made by Sui.21 In addition, as shown, the
migration velocity then reduces with the Young contact angle

Figure 3. (a) Evolution of the migration velocity with time for various values of Γ. (b) Steady migration velocity as a function of Γ and comparison
with theoretical predictions by Ford and Nadim.13 Oh = 0.07, Pr = 10, Ma = 0.5, θY = 30°, α = 0°.

Figure 4. (a) Evolution of the migration velocity with time for various values of θY for Γ = 0.05. (b) Steady migration velocity as a function of θY for
various values of Γ; the insets depict the steady profile of the droplet on a hydrophilic and a hydrophobic surface along with contour plots of the
corresponding temperature field. Oh = 0.07, Pr = 10, Ma = 0.5, α = 0°.
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increment (i.e., when reducing the material wettability).
Interestingly, it is found that below a specific wettability
threshold (for θY ≈ 165°), the droplet moves to the opposite
direction (toward the hot region). The two different motion
regimes (toward and against the cold region) are separated by
the black horizontal line which corresponds to a motionless
case.
These results are in line with the simulations that have been

presented by Sui21 who employed the level-set method taking
into account also the viscous effects of the fluid outside the
droplet. As discussed by Sui, the direction of motion is decided
by the combined action of the mechanical force at the two
contact lines and the thermocapillary flow that is induced along
the interface. The latter always drives the droplet toward the
colder regions whereas the action of the former depends on the
wettability (toward colder and hotter regions for hydrophilic
and hydrophobic surfaces, respectively). The simulations
performed by Sui suggested that with decreasing viscosity
ratios (i.e., ambient fluid becoming less viscous) the critical
value of contact angle for motionless state increases, since the
viscous resistance mitigates the effect of the thermocapillary
flow, and eventually reaches an asymptote at approximately
100°. Our simulations, however, indicate that in the case of an
ambient fluid with negligible viscosity the critical contact angle
arises at approximately 165°. The difference with the findings of
Sui21 could be due to the known inefficiency of the level-set

method to handle flows with very large or small viscosity and
density ratios resulting in a reduced accuracy. The above does
not stand for our sharp-interface scheme.

3.2. Geometrically Structured Solid Surface.
3.2.1. Stripes with Smooth Edges and Shallow Undulations.
In this section, we proceed with our simulations for a droplet
migrating on a geometrically structured solid surface. The
topography of the solid surface, in this case, is given by the
following analytical expression:

=h x p p x( ) sin( )1 2 (22)

where the parameters p1 and p2 regulate the width and height of
the protrusions, respectively. We select a case with rather
shallow structures in order to create a surface that macroscopi-
cally looks smooth. In particular, by setting p1 = 0.001 and p2 =
78.537, we obtain a unit structure height of 0.001 and width of
0.08. Considering a characteristic length, R = 1 mm (nominal
radius of the droplet), the above correspond to a height of 1
μm and width of 80 μm, respectively. The equilibrium
(Young’s) contact angle in this case is set to 60°, where, as
shown in Figure 4b, the droplet’s migration velocity is close to
its maximum value.
According to our previous work,29 the surface roughness can

significantly affect the flow dynamics (inducing contact angle
hysteresis) even if the solid structures are shallow. In particular,
in an analogy to the gravity-driven droplet motion on an

Figure 5. Rough surface: (a) Droplet profiles at t = 0, 14, 28 for various values of Γ. (b) Contour plot of the temperature field at t = 14 and for Γ =
0.1. Oh = 0.07, Pr = 10, Ma = 0.5, θY = 60°, α = 0°.

Figure 6. Rough surface: Evolution of (a) the migration velocity with time for various values of Γ and (b) advancing and receding contact angles for
Γ = 0.1. Oh = 0.07, Pr = 10, Ma = 0.5, θY = 60°, α = 0°.
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inclined substrate, presented in ref 29, it would be expected that
the droplet will not move unless the static hysteresis (the
limiting hysteresis in which the droplet can remain at a
standstill) has been surpassed. Such an argument is shown in
Figure 5a, where the droplet profiles at t = 0, 14, 28 for various
values of Γ are plotted. Initially, for Γ = 0.01, the droplet just
rearranges from its equilibrium shape and then reaches a new
equilibrium state. Specifically, the rear part of the droplet
slightly moves whereas the front part remains pinned. Clearly,
the model predicts the effect of static hysteresis, unlike the case
of a macroscopically flat substrate where no static hysteresis is
predicted. By increasing the thermal gradient (Γ = 0.05), we
observe that both the rear and the front parts of the droplet
have been displaced; however, the droplet soon reaches a new
equilibrium state and remains stationary thereafter. Finally, by
further increasing Γ to the value of 0.1, the droplet starts to
move along the structured substrate and acquires a constant
average velocity. The contour plot of the temperature field in
this case, at t = 14, is demonstrated in Figure 5b. It is important
to note here that in the thermocapillary-driven flow, the rear
part of the droplet is first set in motion, contrary to the gravity-
driven droplet in ref 29.
In Figure 6a we demonstrate the temporal evolution of the

migration velocity for various values of Γ. As also discussed
previously, the droplet starts to migrate after a thermal gradient
limit (Γ ≈ 0.05) is surpassed. Thereafter, the droplet’s speed
increases monotonically with Γ. Predicting the dynamic contact
angle hysteresis is also of great importance for applications
(note that an amount of roughness is always present even in the

molecularly smooth surfaces due to the discrete nature of the
lattice structure of solids31). In particular, in Figure 6b we
present the evolution of the dynamic advancing and receding
contact angles. We observe that the dynamic contact angles
exhibit an oscillatory behavior as the droplet moves on the solid
asperities. The average dynamic contact angle hysteresis in this
case is found to be approximately equal to 3.9° (where the
average advancing and receding contact angles are 62.9° and
59°, respectively).

3.2.2. Sharp Stripes. At this point we turn our attention to
deeper structures which may allow the presence of air pockets
between the drop and the solid surface. This situation is often
encountered in superhydrophobic surfaces (e.g., the lotus
leaf32), for which the effective heat transfer coefficients and
wettability properties attract significant scientific interest in a
variety of applications. There is only a limited number of papers
that deal with thermocapillary phenomena on such surfaces,33

since the droplet, in this case, is almost spherical and hence not
amenable to lubrication approximations. Here, we will consider
a solid structure which is described by the following expression:
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where w and d denote the width of troughs and crests,
respectively, p denotes the height of the protrusions, and s is a
regularization parameter.

Figure 7. Contour plots of the temperature field, T, at t = 17647, for a droplet on a structured substrate with p = 0.04, w = 0.1, d = 0.08, and s =
0.008. The liquid velocity field is presented with the arrow lines. The remaining parameters are Γ = 0.05, Oh = 0.24, Pr = 1, Ma = 0.136, α = 0°.

Figure 8. Contour plots of the dye concentration, c, at t = 0, 17.6, 176.5, 1765, 5294, and 17647, for a droplet on a structured substrate under the
influence of a temperature gradient along the solid surface; the direction of the temperature gradient is indicated in the panel for t = 0 and remains
constant throughout the simulation. The liquid velocity is presented with the arrow lines. Pe = 1.76 × 105, Γ = 0.05, Oh = 0.24, Pr = 1, Ma = 0.136, α
= 0°.
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According to our previous analysis (see Figure 4), it would
be expected, due to the emerging high apparent contact angle
(θa ≈ 154°, for p = 0.04, w = 0.1, d = 0.08, and s = 0.008), that
the droplet would fall into a motionless state in this case. In
particular, in Figure 7 the droplet shape at t = 17647 is
practically identical to the initial state (t = 0). Despite the
absence of net movement, however, we observe a single
rotating vortex which covers the entire volume of the droplet
(see Figure 7) which is clearly due to the effect of the
thermocapillary induced flow along the liquid−air interface.
The contour plot in Figure 7 depicts the temperature field, and
as shown, liquid is driven from the hot to the cold area along
the interface due to the effect of the induced Marangoni
stresses. It should be noted that such flow patterns have been
reported in the recent experimental work by Pradhan and
Panigrahi.25 An interesting application of such a system is the
rapid mixing of reagents (used, e.g., in chemical reactions) in
microfluidic devices.34 Efficient mixing is one of the key
challenges in such miniaturized devices since the flow patterns
are usually laminar (turbulent mixing is prevented due to the
small size of microfluidic devices).35,36 The quality of mixing is
thus very important parameter and is investigated in the
following section.
3.3. Droplet as Micromixer. We initially consider a

droplet, on a structured solid surface, which is partially stained
with dye (see Figure 8 at t = 0). The diffusion and convection
of dye is then described by the following transport equation:

∂
∂
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⎝

⎞
⎠

c
t

c cvPe 02

(24)

where c is the dimensionless dye concentration and Pe = V* R/
Di is the Pećlet number, with Di the diffusivity of the dye. In
Figure 8 we present the mixing patterns (dye concentration)
for various time instances. We observe that the droplet has
finally homogenized (at t = 17647), concluding that such a
technique could prove useful to force a droplet mixing in
microfluidic applications.
The effect of dye diffusivity (embodied in the Pećlet

number) and the thermal gradient, Γ, on the quality of mixing
are quantified in Figure 9 at a specific time instance (t =
17647). In particular, we adopted the criterion that we denote
the droplet as mixed when the maximum concentration value,
cmax, has dropped to 25% of its initial value (the initial dye

concentration value is 1 in the stained region, as observed in
Figure 8). In Figure 9 we observe two distinct regions
corresponding to mixed (blue circles) and unmixed (red
squares) droplets. In addition, the mixing quality is enhanced
by increasing the thermal gradient. The considerably short
mixing time observed here renders the thermocapillary effect as
an efficient method between the existing alternatives (e.g., with
electrowetting-induced droplet oscillations37,38 or with flow
through a serpentine channel39,40). Specifically, by considering
a thermal gradient of 6 °C mm, for a droplet with, e.g., nominal
radius R = 1 × 10−3 m, viscosity μ = 6 × 10−2 Pa s, and Pe =
1.76 × 104, we observe that a complete mixing has been
obtained at t ≈ 20 s. This is comparable with using
electrowetting to oscillate the droplet (the latter requires
approximately 50 s for the specific liquid viscosity).37,38

In order to quantify the degree of mixing, we analyze, in
Figure 10a, the evolution of the maximum concentration of dye,
cmax, in time for Γ = 0.05. The Pećlet number ranges from 1.76
× 103 (green circles) to 1.76 × 106 (magenta circles). It is
interesting here that the time required for achieving mixing
increases logarithmically with the Pećlet number, as observed in
Figure 10b. Such a result is similar to the values obtained by
Stroock et al.39 and by Mugele et al.38 for chaotic mixing in
microchannels and in electrowetting-induced droplet oscilla-
tions, respectively. The above indicates that a chaotic
advection-based mixing regime41 can be achieved as a result
of the thermal Marangoni stresses.

3.4. 3D Droplet on Patterned Substrate. So far we have
examined the simplified case of a 2D droplet. It should be
noted though that the flow inside a droplet due to the presence
the thermal gradient, which sets a preferred direction on the
flow, the structure of the solid surface and the geometrical
restriction of the droplet shape renders the nature of this
problem inherently three-dimensional and the study of the 3D
characteristics of the flow can be important for realistic cases.
To address this problem we have also performed full 3D
simulations which will be presented in this section.
Here we will focus on two different setups. First we will

consider the case of solid that exhibits a striped surface and we
will investigate how the orientation of the temperature gradient
with respect that of the stripes may affect the characteristics of
the flow as well as the droplet droplet motion. Next, we will
consider the case of smooth and uniform solid surface that
exhibits a perforated superhydrophobic defect (see Figure 14a)
and we will examine under which conditions the droplet may
be driven through this defect. It should be noted that the 3D
simulations are computationally demanding and for these
simulations we use different values for the disjoining pressure
constants (C1 = 8, C2 = 6, A = 0.038) since it is easier to be
resolved with coarser grids (the local curvature at the contact
line attains smaller values) without overly affecting the solution
accuracy (see also ref 29).

3.4.1. Orientation of the Temperature Gradient with
Respect to a Striped Surface. In this section we investigate the
effect of the surface topography and how it may influence the
migration behavior of droplets. As noted above, Dai et al.10

have recently investigated experimentally the influence of
surface topography orientation and it was shown that the
relative orientation of the surface structures may guide the
moving direction of drops or under conditions may also act as a
barrier impeding drop movement along the temperature
gradient.

Figure 9. Flow map with mixed (blue circles) and unmixed (red
squares) droplets for various values of the Pe number and Γ. We
consider that the droplet has been mixed when the maximum dye
concentration value, cmax, has dropped at least to 25% of its initial
value, at t = 17647. Oh = 0.24, Pr = 1, Ma = 0.136, α = 0°.
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In a similar setup with Dai et al.,10 we consider a droplet that
rests on a striped surface and we apply a temperature gradient
at a varying angle with respect to the stripes; in our case the
solid is considered to be hydrophobic, θY = 120°, and the
stripes have apparent contact angles θa,1 = 150° and θa,1 = 120°.
As shown in Figure 11a the stripes are oriented along the x-axis
and the temperature gradient is either oriented parallel to the
stripes or at an angle α = 45°. In this figure, we plot the
footprint of the 3D droplet along with contours of the
temperature field. The greyed areas correspond to θa,2 = 120°
whereas the areas in between have apparent contact angle, θa,1
= 150°. Despite the different direction of the temperature

gradient, in both cases we find that droplet moves along the
direction of the stripes. This result is in line with the
observations of Dai et al.10 who also found that migration
occurred along the grinding scars rather than along the
temperature gradient. Similarly, in our case the stripes guide the
direction of the droplet migration. When the temperature
gradient is not parallel with the stripes, the contact angle
hysteresis acts as a barrier preventing migration over the stripes
and thus the droplet is driven toward the easier route, i.e., along
the stripes.
We also note in Figure 11a that in the case of a 45° angle, the

distance that is covered by the droplet at the same time interval

Figure 10. (a) Maximum concentration of dye, cmax, vs time, for Γ = 0.05 and various Pećlet numbers. The dashed line (cmax = 0.25) defines the
threshold level used to indicate mixing. (b) Logarithmic dependence of the mixing time on the Pećlet number (Γ = 0.05). The remaining parameters
are Oh = 0.24, Pr = 1, Ma = 0.136, α = 0°.

Figure 11. (a) Temperature profiles and positions of the droplet footprint at t = 1.4, 140, for a temperature gradient along the solid surface that is in
parallel (α = 0°) and at an angle α = 45° with the direction of the stripes of the solid surface. (b) Steady migration velocity as a function of the
thermal gradient angle and comparison with a theoretical curve assuming that the migration velocity is given by U∥ cos α. (c) Spatiotemporal
evolution of the footprint center of the droplet for a temperature gradient at an angle α = 75° with hydrophobic stripes of θa,1 = 130° (see movie S1)
and θa,1 = 150°; in both cases θa,2 = θY = 120°. The remaining parameters are Oh = 0.07, Pr = 10, Ma = 0.5, Γ = 0.05, θY = 120°.

Langmuir Article

DOI: 10.1021/acs.langmuir.7b02762
Langmuir 2017, 33, 10838−10850

10846

http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.7b02762/suppl_file/la7b02762_si_001.avi
http://dx.doi.org/10.1021/acs.langmuir.7b02762


is smaller than in the case of parallel thermal gradient. In Figure
11b we have evaluated the migration velocity of the droplet for
different angles of temperature gradient orientation. The
symbols depict the results from our 3D calculations and it is
clearly shown the maximum migration velocity arises for the
parallel case, in direct agreement with Dai et al.10 In the same
figure we have also plotted, with a solid line, a theoretical curve
assuming that the migration velocity is given by U∥ cos α,
where U∥ is the migration velocity for 0°. The agreement is
excellent, indicating clearly that the migration velocity is
determined only by the active Marangoni stress component in
the direction of the stripes. For a vertical temperature gradient
(90°) the droplet remains motionless, not being able to
overcome the barrier that is set by the contact angle hysteresis.
As shown above, by decreasing the contact angle hysteresis or
increasing the induced Marangoni stress by imposing a stronger
thermal gradient it is possible to overcome this barrier. In
Figure 11c, the spatiotemporal evolution of the footprint center
is depicted for θa,2 = 120° and two different values of θa,1. When
the difference between the apparent contact angles is large the
droplet moves along the stripes even though the temperature
gradient is oriented at 75°. By decreasing this difference, and
thus reducing the contact angle hysteresis, the droplet initially
moves along the direction of the temperature gradient
overcoming one stripe before it eventually starts to follow the
easier track along the stripes.
It is also interesting to examine the 3D flow within the drop

which is depicted in Figure 12 by means of streamlines colored
by the local velocity in the z-direction (in the direction toward
the reader) for three different orientation of the temperature
gradient. For all cases the streamlines have been derived by

subtracting the migration velocity from the velocity component
in the x-direction assuming a system of reference that moves
with the droplet. In Figure 12a the gradient is oriented along
the x-direction (the same direction with the stripes) and the
droplet is moving from right to left (toward the colder region).
The flow in this case is dominated by the presence of two main
vortices along the symmetry plane, a large one in the advancing
region of the contact line (cold region) and a smaller one in the
receding region (hot region). The nonsymmetric pattern of the
flow inside the droplet can be clearly attributed to the
directional motion of the droplet along the x-direction. As
expected the flow in the transverse direction is rather weak
except for the regions very close to the solid surface where the
temperature gradients are stronger. On the other hand, in
Figure 12c the gradient is oriented along the z-direction
(vertical to the stripes) and the droplet remains motionless.
Nevertheless, a strong recirculation vortex arises, covering the
entire drop, just like in the case of Figure 7. Flow is driven from
part of the contact line that resides on the hot part of the
droplet (far side with respect to the reader) to the apex along
the interface and to part of the contact line region which is
colder (on the reader’s side) while the flow is recirculated
through the drop core in the direction of the stripes. Finally, the
flow in Figure 12b for 45° angle retains characteristics from
both limiting cases, i.e., the presence of a vortex in the colder
part of the contact line along with a velocity field that also spans
in the z-direction due to the effect of Marangoni stresses in this
direction.
In the discussion of Figure 11 it has been established that

both the direction of motion as well as the migration velocity
can be significantly affected by the orientation of the structure

Figure 12. Three-dimensional flow within the drop for a temperature gradient along the solid surface (along the xz-plane) that is (a) in parallel (α =
0°), (b) at an angle α = 45°, and (c) vertical (α = 90°) to the direction of the stripes of the solid surface. The stripes are oriented along the x-
direction and the z-direction points toward the reader while the dimensionless wall temperature is given by Tw = 1 + Γ(x cos α − z sin α). The
streamlines have been derived subtracting the migration velocity from the velocity component in the x-direction, assuming a system of reference that
moves with the droplet, and are colored by the local vz. The remaining parameters are the same as in Figure 11.
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with respect to the thermal gradient. One question that arises is
whether this effect could be exploited in order to guide a
droplet along a predefined track. In the case shown in Figure
13, two superhydrophobic stripes (θa,1 = 150°) on a smooth

hydrophobic surface (θa,2 = θY = 120°) define such a track. At t
= 0 a droplet is placed inside the track on the hot side. The
Marangoni stresses due to the temperature gradient initially
accelerate the droplet in the x-direction until it reaches the first
corner. At that point, the droplet is unable to overcome the

contact angle hysteresis, decelerates, and the velocity rearranges
as the droplet eventually makes the turn and accelerates in the
z-direction. The droplet under the action of Marangoni stresses
and exploiting the contact angle hysteresis of the solid surface is
driven through the track and even manages to perform almost a
U turn. It is therefore demonstrated that carefully designed
structured surfaces can be used in order to passively move
droplets along a predefined route.

3.4.2. Droplet Motion through a Narrow Passage. In this
section we are interested in a slightly different setup, i.e., a
droplet moving through a perforated superhydrophobic defect,
and examine under which conditions (thermal gradient, Γ) and
hole diameter, D (see Figure 14a) the droplet may pass through
or become entrapped by the defect. Such a system would be
extremely useful for controlling the droplet motion in
microfluidic devices. An obvious application would be to sort
droplets, according to their volume, by using a certain hole
diameter.
In Figure 14b, we present the mean footprint position of a

3D droplet for different values of Γ for a hole normalized
diameter: D/R = 0.85. We observe that, upon reaching the
defect, the drop gets trapped for the lower thermal gradient
value (Γ = 0.02) as the droplet cannot surpass the contact angle
hysteresis. Increasing the thermal gradient (Γ = 0.035), we
observe that although the droplet slows down when it reaches
the hole (see Figure 14c) the induced Marangoni stresses cause
the deformation of the droplet allowing it to eventually pass
through the hole, experiencing limited oscillations which soon
fade, and these are reflected in the migration velocity (see
Figure 14c). For higher values of Γ the droplet becomes even
less obstructed by the defect.
In order to determine the critical conditions for the trapping

of droplets we have produced a flow map (Figure 15) where we

Figure 13. Thermocapillary driven motion along a predefined track.
Bottom panel: Footprint of a droplet, along with contours of the local
temperature, moving along a track that is defined by two super-
hydrophobic stripes (shown in gray). Top panel: Migration velocity of
the footprint center, Uf, and its components in x- and z-directions. α =
0° and the remaining parameters are the same as in Figure 11.

Figure 14. (a) Footprint profiles of a 3D droplet moving on a smooth hydrophobic surface (white area, θa,2 = θY = 120°) passing through a
perforated superhydrophobic defect (gray area, θa,1 = 150°) under the influence of a temperature gradient, Γ = 0.04. (b) Temporal evolution of the
mean footprint position of the 3D droplet for various thermal gradients. The gray ribbon denotes the position of the superhydrophobic defect. (c)
Temporal evolution of the migration velocity of the droplet for different values of Γ. The remaining parameters are Oh = 0.07, Pr = 10, and Ma =
0.5. The hole normalized diameter is D/R = 0.85.
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vary the driving force (here the thermal gradient, Γ) in the x-
axis and the hole normalized diameter, D/R in the y-axis and
indicate whether the droplet becomes trapped or passes
through the hole. It is interesting here that we recognize a
power-law behavior of the trapping limit (the threshold
between the stacking and passing cases) (see the dashed line
in Figure 15). Similar trends have also been observed in the
case of a sliding droplet trapped by a chemical defect42 or by an
electrowetting-induced wettability defect.43

4. CONCLUSIONS
We have carried out a numerical investigation of droplet
dynamics on nonuniformly heated complex solid surfaces; the
droplet is bounded from above by a hydrodynamically passive
gas. An efficient sharp-interface model has been employed,
which treats the liquid−gas and liquid−solid interfaces in a
unified context. The microscale liquid−solid interactions are
taken into account through a type of Lennard-Jones potential.
The robustness of this scheme is due to the fact that an explicit
condition along the contact line is not required and the contact
angles emerge naturally as a result of the liquid−solid
microscale interactions, capillary pressure, viscous stresses,
and thermocapillarity. Crucially, the model has a built-in
capability to predict the effect of contact angle hysteresis and in
the case of structured solid surfaces it is even possible to predict
the effect of static hysteresis for a given substrate structure.
A full parametric study was carried out that focused on the

interplay between the effects of the magnitude of the applied
temperature gradient, Marangoni stresses, wettability, and
geometrical characteristics of the substrate. Our finite element
simulations for a 2D droplet indicate that the static hysteresis of
the substrate sets a barrier in droplet motion which can be
surpassed when the effect of Marangoni stresses becomes
strong enough, i.e., beyond a critical value of the applied
temperature gradient, in line with experimental observations in
the literature. Droplet migration is also impeded by decreasing
wettability of the solid surface. We show that in the case of an
ambient gas with negligible viscosity the critical contact angle
for motionless state in the absence of static hysteresis, i.e., for a
smooth solid surface, is predicted at ≈165°; this result is in
contrast to the previous study by Sui21 which predicted an
asymptote ≈100° with decreasing viscosity ratios using the
level-set method. Clearly the combined effect of static

hysteresis and decreasing wettability can lead to lower values
of critical angle for a motionless state. We also show that when
the droplet is in a motionless state, Marangoni stresses drive a
recirculating flow inside the droplet which could be exploited to
enhance mixing, e.g., in the case of a microreactor. The mixing
time is in fact found to be comparable with other methods such
as electrowetting-induced droplet oscillations.37,38

Since in realistic applications the three-dimensional charac-
teristics of the flow can also be important, we have also
performed 3D simulations. We have focused on the case of
hydrophobic surfaces and examined the effect of the temper-
ature gradient orientation with respect to that of the stripes as
well as the droplet motion through a wetting defect. It is shown
that the barrier due to the static hysteresis plays a determining
role in the resulting droplet migration path by forcing the
droplet move along the easiest path such as the direction of
specific geometrical characteristics of the substrate, e.g., stripes.
We show that this can exploited in order to passively control
the direction of droplet motion.
As a last note, we would like to mention that, for the

purposes of the present study, the effect of evaporation has
been neglected by assuming that the droplet is nonvolatile.
However, in realistic applications it is expected that evaporation
may come into play, provided that the temperature of operation
is sufficiently high or the application of thermal gradients has to
be extended for very long times. The presence of evaporation,
besides the loss of the liquid due to vaporization, may also
affect the temperature field along the liquid−air interface, due
to the latent heat of evaporation, thus affecting the induced
Marangoni stresses and in turn the flow inside the droplet as
well as the droplet motion. We believe that future studies
should also make an attempt to take this effect into account in
our way to provide a better understanding of the various factors
that affect thermocapillary droplet actuation.
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