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ABSTRACT: We study the thermocapillary-driven spreading
of a droplet on a nonuniformly heated substrate for fluids
associated with a non-monotonic dependence of the surface
tension on temperature. We use lubrication theory to derive an
evolution equation for the interface that accounts for capillarity
and thermocapillarity. The contact line singularity is relieved
by using a slip model and a Cox-Voinov relation; the latter
features equilibrium contact angles that vary depending on the
substrate wettability, which, in turn, is linked to the local
temperature. We simulate the spreading of droplets of fluids
whose surface tension−temperature curves exhibit a turning point. For cases wherein these turning points correspond to minima,
and when these minima are located within the droplet, then thermocapillary stresses drive rapid spreading away from the minima.
This gives rise to a significant acceleration of the spreading whose characteristics resemble those associated with the
“superspreading” of droplets on hydrophobic substrates. No such behavior is observed for cases in which the turning point
corresponds to a surface tension maximum.

■ INTRODUCTION

Themotion of sessile droplets over liquids and solids is of central
importance to a number of industrial applications such as coating
flow technology, inkjet printing, microfluidics and micro-
electronics, and medical diagnostics. Despite the apparent
simplicity of the physical setup involved, this motion is rather
complex and some of its aspects remain poorly understood; in
particular, the mechanisms underlying the dynamics of the three-
phase contact line are still the subject of debate. In view of its
complexity1 and its practical importance, droplet motion has
received considerable attention in the literature and has been the
subject of two major reviews.2,3

In this work, we consider the motion of sessile droplets on
non-isothermal solid walls, driven by thermocapillarity. The walls
underlying the droplets are subjected to a temperature gradient
which induces surface tension gradient-driven droplet deforma-
tion and migration from low to high surface tension regions.
Thermocapillary-driven droplet motion was studied by Bouasse4

who demonstrated the possibility of inducing droplet-climbing
on a heated wire, against the action of gravity, by heating its lower
end. Studies involving horizontal substrates have shown that,
unless the magnitude of the imposed temperature gradient is
sufficiently large, no droplet motion is possible due to contact
angle hysteresis, while under certain conditions, steady migration
of droplets has been shown.5,6

A number of studies have examined the thermocapillary
motion of droplets theoretically. Brochard7 determined the
spreading characteristics of a wedge-shaped drop in the presence

of chemical or thermal gradients via local force and energy
balances. This work was generalized by Ford and Nadim8 to
arbitrary, two-dimensional droplet shapes and different contact
angles at the two contact lines. Lubrication theory was used to
describe the spreading of a droplet on a uniformly heated wall,9,10

and Anderson and Davis11 accounted for evaporative effects.
These effects were also considered by Karapetsas et al.12 who
showed that the flow is accompanied by the formation of
hydrothermal waves. Thermocapillary nonwetting was studied
by Chen et al.,13 while buoyancy-driven convection was also
examined by Nguyen et al.14

Quasi-steady solutions of the lubrication equations in the
presence of thermal gradients were determined by Smith15 to
correspond to two states: a motionless drop, or a steadily
migrating drop, deformed toward the cooler region of the
substrate. More recently, Gomba and Homsy16 relieved the
contact line singularity with a precursor model and solved the
lubrication equations with the contact angle varying parameteri-
cally. Their results showed that spreading is accompanied by
ridge-formation at the contact line for small contact angles, while
for large contact angles, drop translation with fixed shape was
observed. These authors also demonstrated the existence of a
regime at intermediate values of the contact angle characterized
by drop breakup.

Received: January 21, 2014
Revised: March 25, 2014
Published: April 2, 2014

Article

pubs.acs.org/Langmuir

© 2014 American Chemical Society 4310 dx.doi.org/10.1021/la5002682 | Langmuir 2014, 30, 4310−4321

pubs.acs.org/Langmuir


The contact angle depends on temperature through its
dependence on the vapor−liquid, liquid−solid, and vapor−
solid surface tensions. The work of Pratap et al.,17 who performed
experiments using decane drops on polydimethylsiloxane
(PDMS)-coated substrates, has demonstrated this fact clearly
through the significant departure of the contact line from a
circular shape and the variable droplet migration velocity; the
latter was shown to decrease with increasing proximity to the
colder substrate regions. Although Pratap et al.17 have ascribed
their observations to the reduction in droplet size due to
evaporation and an increase in its viscosity due to substrate
cooling, they did not consider local variations in the wettability to
play a role. This is surprising since wettability gradients have been
shown experimentally to drive rapid droplet motion effi-
ciently18,19 via the imposition of substrate temperature gradients.
The work on droplet migration in the presence of thermal

gradients described in the foregoing review16−19 elucidates the
importance of the contact angle on the dynamics and its
dependence on temperature. The theoretical work of Gomba and
Homsy,16 however, considers a constant contact angle. This was
realized by Karapetsas et al.20 who accounted for temperature-
induced varying substrate wettability which allowed them to
incorporate dynamically varying contact angles in their
lubrication equations. This, in turn, permitted them to study
the delicate interplay between contact line dynamics and
thermocapillarity on non-isothermal substrates. Their results
demonstrate that the droplet motion is accompanied by complex
dynamics which includes enhanced spreading rates, non-
monotonic dependence of the contact line speed on the applied
substrate temperature gradient, and “stick−slip”-type behavior.
In the present paper, we extend the work of Karapetsas et al.20

to fluids that have a non-monotonic dependence of the surface
tension on temperature. In particular, these so-called “self-
rewetting” fluids,21−26 which are non-azeotropic, high carbon
alcohol solutions, have parabolic surface tension−temperature
curves with well-defined minima; the parabolicity of these curves
increases with alcohol concentration. These fluids were first

studied by Vochten and Petre21 who observed the occurrence of
the minimum in surface tension with temperature in high carbon
alcohol solutions. Petre and Azouni22 carried out experiments
that involved imposing a temperature gradient on the surface of
alcohol aqueous solutions, and used talc particles to demonstrate
the unusual behavior of these fluids. The nonlinear thermocapil-
lary effect on thin liquid films was studied by Oron and
Rosenau27 and later by Slavtchev and Miladinova.28 Exper-
imental work on these fluids was also carried out under reduced-
gravity condtions.24 The term “self-rewetting”was coined by Abe
et al.29 who studied the thermophysical properties of dilute
aqueous solution of high carbon alcohols. Due to thermocapillary
stresses, and the shape of the surface tension−temperature curve,
the fluids studied spread “self-rewet” by spreading spontaneously
towards the hot regions, thereby preventing dry-out of hot
surfaces and enhancing the rate of heat transfer. Due to these
properties, “self-rewetting” fluids were shown to be associated
with substantially higher critical heat fluxes compared to
water.30−32 Savino et al.25 illustrated the anomalous behaviour
of self-rewetting fluids by performing experiments to visualize the
behaviour of vapour slugs inside wickless heat pipes made of
pyrex borosilicate glass capillaries. They found that the size of the
slugs was considerably smaller than that associated with fluids
such as water. More recently, work on self-rewetting fluids was
extended tomicrogravity conditions for space applications on the
International Space Station,26 and Hu et al.33 demonstrated that
the use of these fluids within micro oscillating heat pipes led to an
increase in the efficiency of these devices.
We consider constant substrate temperature gradients and use

lubrication theory to derive a single evolution equation for the
interface dynamics, in the high-conduction limit, in which the
contact angle varies locally with temperature. Our results indicate
that for self-rewetting fluids, the spreading rate far exceeds that of
fluids with a monotonic surface tension dependence on
temperature. This spreading is characterized by power-law
exponents that approach unity, and is punctuated by the
formation of pronounced capillary ridges at the contact line.

Figure 1. Variation of temperature and the gas−liquid surface tension, σlg, in the x-direction for different Clg,1 and Clg,2 values, and with Γ = 0.01. The h
profile is given by eq 22.
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These features are reminiscent of droplets undergoing “super-
spreading”,34 which has been observed to be previously driven by
the addition of certain surfactant molecules, or the application of
electric fields.35

The rest of the paper is organized as follows. In Section II, we
outline the main steps of the derivation of the evolution equation
for the interface dynamics, and the numerical method used for its
numerical solution; full details of this derivation are provided by
Karapetsas et al.20 The results are presented and discussed in
Section III. Finally, the concluding remarks are given in Section
IV.

■ PROBLEM FORMULATION

We study the motion of a two-dimensional drop of an
incompressible, Newtonian fluid on a horizontal, rigid, and
impermeable solid wall. The fluid has a constant density ρ,
viscosity μ, specific heat capacity Cp, and thermal conductivity λ.
The temperature-dependent surface tensions of the liquid−gas,
liquid−solid, and solid−gas interfaces are σlg, σls, and σsg,
respectively. The drop maximal thickness and half-width are
given by H and L, and we assume that H/L ≪ 1, which permits
the use of lubrication theory. We note that this theory assumes
small slopes and therefore cannot be used to model droplet
spreading at high contact angles (usually exceeding 30−40°36,37).
A Cartesian coordinate system, (x,z), is used to describe the flow
in which x and z denote the horizontal and vertical coordinates,
respectively, with the wall located at z = 0 and the gas−liquid
interface at z = h(x,t). The two-dimensional velocity field is u =
(u,w) where u and w denote the horizontal and vertical velocity
components, respectively. The distribution of the temperature,
T, along the wall is given by Tw = To + γx in which Tw denotes the

temperature of the wall and To is the wall temperature at x = 0,
while γ ≡ dTw/dx is a constant.
The equations of mass, momentum, and energy conservation

govern the flow dynamics. Solutions of these equations are
obtained subject to a tangential and normal stress balance, as well
as a kinematic boundary condition imposed at z = h(x,t). We
assume the rate of heat transfer from the interface to be negligible
and set the thermal flux to zero at z = h(x,t); this is supported by
the fact that, for typical experimental conditions, the Biot number
is small.5,6,38 We also impose continuity of temperature at z = 0.
In addition, at the liquid−solid interface, we apply the no-
penetration condition on w, and a Navier slip condition on u39 to
relieve the stress singularity which would otherwise arise at the
moving contact line: u = βuz; here, β is a slip length. A nonlinear
constitutive relation for the dependence of the interfacial
tensions on temperature is chosen to model the behavior of a
self-rewetting fluid:

σ σ
σ σ

= + | − + −

=
T

T T
T

T T

i lg ls sg

d
d

( )
1
2

d
d

( )

( , , )

i i o
i

T s o
i

s o,

2

2
2

o

(1)

where Ts is the temperature at the corresponding interface, and
σi,o, (i = lg, ls, sg) denotes the surface tension of all interfaces at the
reference temperature, To.
We choose the following scalings in order to render the

governing equations and boundary conditions dimensionless:

Figure 2. Evolution of the drop profile for θa,l = θa,r = 0.447 and for (a) Clg,1 = −0.1, (b) Clg,1 = 0, (c) Clg,1 = 0.01, and (d) Clg,1 = 0.1. The rest of the
parameter values are ε = 0.1, Ca = 100,Clg,2 = 10, k = 10

−3,m = 3, Bo = 0.5,Γ = 0.01, δls = 1, and S =−0.001. The locations of theminimum surface tension
in panels (a), (b), (c), and (d) are −0.5, 0, 0.05, and 0.5, respectively.
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The tilde symbol that designates the dimensionless variables is
suppressed henceforth. Here, p denotes the pressure, t represents
time, and U = εσlg,o/μ is a characteristic velocity; Ca = μU/ε

3σlg,o,
Bo = ρgH2/μU, Γ = γL/To, and B = β/H correspond to the
capillary and Bond numbers, and a dimensionless thermal
gradient and slip length, respectively. Substitution of these
scalings into the governing equations and boundary conditions
yields the following set of equations using the lubrication
approximation:
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The detailed derivation of these equations is given in
Karapetsas et al.20 Solution of eqs 3−5, and use of the boundary
conditions 6 and 7, yields

=T Tw (8)

and the following evolution equation for h
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where the pressure gradient, px, is given by

σ ε= − +−p h hCa ( ) Box lg xx x x
1

(10)

and the dimensionless form of the constitutive equation for the
surface tension is given by

σ = − − + −C T C T1 ( 1) ( 1)lg lg s lg s,1 ,2
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in which Ci,1 = −(dσi/dT)(To/σi,o), Ci,2 = 1/2(d2σi/dT
2)(To

2/
σi,o), and δi = (σi,o/σig,o), (i = lg, ls, sg). It follows from eq 8 that the
interfacial temperature is Ts = T|h = Tw given by

= = + ΓT T x1s w (13)

Using eqs 11, 12, and 13, it is possible to determine the position
of maximum/minimum surface tension by using the following
expression
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At the contact line, we set the interface height to zero

= = = =h x x t h x x t( , ) ( , ) 0cl cr (15)

where xcl and xcr denote the location of the left and right contact
lines, respectively. We use an empirical constitutive equation for
the dependence of the contact line speed on the contact angle,40

which has been employed by numerous researchers previously to
study contact line motion.11,34,41−44 The dimensionless form of
this relation, in the absence of contact angle hysteresis, is given by
the Cox-Voinov-Tanner law
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where θl and θr are the dynamic contact angles at xcl and xcr,
respectively, and θa,j, (j = l,r) are the corresponding advancing
contact angles, taken to be equal to the equilibrium contact angle,
which may vary depending on the wall temperature local to the
position of the corresponding contact line. In eq 16, kj are
mobility exponents (here, we will assume that kl = kr = k), and m
will take values in the range 1 ≤ m ≤ 3. Other forms of a similar
power law dependence have been suggested in the literature
based on local analysis near the contact line, i.e., dxci/dt ≈ θi

3 −
θa,i
3 ,45 which, however, give qualitatively similar predictions. As
noted by Karapetsas et al.,20 imposing the Navier slip condition
away from the contact line, and the Cox-Voinov relation at the
contact line, is similar to using a generalized Navier boundary,46

which relates the contact line speed to a viscous stress
contribution, and an extra contribution due to an uncompen-
sated Young stress; the latter is present in out-of-equilibrium
situations such as the one considered in the present work and
exceeds greatly the viscous stress contribution at the contact line.
The equilibrium balance between the tangential interfacial

forces at the contact line yields
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We set θa,j→ εθa,j in the lubrication approximation and, since cos
(εθ) ∼ 1 − ε2θ2/2 for ε ≪ 1, we can deduce that
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This expression for θa,j is used in eq 16 to represent the local
influence of wall temperature on the contact line speed. If the
right-hand-side of eq 18 becomes negative, we assume that the
substrate is wetted perfectly and set θa,j = 0. If the surface tensions
of the substrates and liquids have an identical dependence on
temperature, thenClg,1 =Csg,1 =Cls,1 andClg,2 =Csg,2 =Cls,2, and the
expression for the equilibrium contact angle reduces to

θ
ε

= − S
2

a j,
2

2 (19)

where S = δsg− δls− 1 denotes the spreading parameter; S is kept
small in order to be consistent with the lubrication
approximation. Thus, only in this unlikely case does the
advancing contact angle remain equal to the equilibrium contact
angle at the reference temperature and independent of the
position of the contact line.20

We map the transient physical domain, (x,t), onto a
computational domain fixed in time, (x′,t′), using
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so that the interior of the drop is mapped to 0 ≤ x′ ≤ 1, and the
time-derivatives are expressed as follows:

∂ = ∂ − ′ ∂′ ′
x
t

d
dt t x (21)

The evolution equation for h is then solved numerically using a
finite element/Galerkin method (details of the numerical
procedure are given in refs 20,34) starting from the following
initial conditions:

= = −h x t x( , 0) 1 2
(22)

= = −x t( 0) 1cl (23)

= =x t( 0) 1cr (24)

200 elements were used to discretize the computational domain
in space, and the implicit Euler method was employed to advance
the solution in time. The Newton−Raphson method was used to
solve the resulting set of nonlinear algebraic equations at each
time-step. Convergence was achieved upon mesh-refinement,
and mass conservation was satisfied to within 1%. A discussion of
the results is presented next.

■ RESULTS AND DISCUSSION
We begin the presentation of our results by showing in Figure 1
the variation of the surface tension, σlg, the interface height, h, and

Figure 3. The position of the (a) left and (b) right contact lines of the drop versus time. Evolution of dynamic contact angles (c) θl, (d) θr for different
values ofClg,1. Evolution of (e) the extent of spreading, and (f) the position of the center of mass of the droplet for different values ofClg,1. The rest of the
parameter values are the same as those used to generate Figure 2.
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the temperature at the interface, Ts, with the horizontal
coordinate, x. This variation is depicted for parameterically
varying values of Clg,1 and Clg,2, the constants that control the
linear and quadratic dependence of σlg on Ts, as dictated by eq 11.
As is illustrated in Figure 1, the depth and location of the
minimum of the σlg−x curve can be controlled by varying these
parameters. Below, we discuss the spreading dynamics that are
associated with starting from different locations of the minimum
in relation to the initial position of the droplet. Numerical
solutions were obtained over a wide range of parameter values.
For typical applications Γ ≈ 10−4−0.02 and Bo ≈ 10−2−2. For
the remainder of this paper we choose a representative “base”
case and set ε = 0.1, Ca = 100, k = 10−3, m = 3, Bo = 0.5, δls = 1,
and S = 0.001. This set of parameters corresponds to the
spreading of slender centimeter-size droplets.
Constant θa.To set the base of the discussion that follows we

begin our study by considering the case of constant θa. This

assumption is often enountered in the literature reflecting the
independence of the equilibrium contact angle on the substrate
wettability in response to local temperature variations. We
assume that the equilibrium contact angle remains equal at all
times to the equilibrium contact angle at the reference
temperature (given by eq 19); for the particular values of ε and
S, we have θa,l = θa,r = 0.447.
In Figure 2a, we show the spreading dynamics associated with

the Clg,1 = −0.1 and Clg,2 = 10 case in which the σlg−x minimum
lies initially to the left of the flow origin, x = 0, the symmetry
plane for h. As can be seen in this panel, the droplet deforms in
the direction of increasing surface tension driven by
thermocapillarity. The spreading is highly asymmetric, reflecting
the initial difference between the plane of symmetry of the drop
and the initial location of the σlg−x minimum. Toward the latter
stages of the spreading, a pronounced ridge is formed at the
droplet right contact line, xcr, in the direction of fastest spreading.
In contrast, the location of the left contact line, xcl, advances very
little in the negative x direction. This is because the difference in
σlg between the minimal σlg value and that at the left edge of the
droplet is smaller than the corresponding difference associated
with the right contact line. This is also reflected in Figure 3a and b
in which we plot the temporal location of xcl and xcr and their
dependence on Clg,1.
We also track the temporal variation of the dynamic contact

angles at the two contact lines, θl and θr, in panels (c)−(d) of
Figure 3. As can be seen clearly in this figure, both contact angles
decrease from their initial values, and exhibit oscillatory behavior
at intermediate times. For the Clg,1 = −0.1 case, however, θl (θr)
decreases (increases) at late times, which coincides with the

Figure 4. Schematic for the mechanism of the thermally enhanced
spreading of self-rewetting fluids.

Figure 5. Evolution of the drop profile for (a)Clg,1 =−0.5, (b)Clg,1 =−0.1, (c)Clg,1 = 0, and (d)Clg,1 = 0.1. The rest of the parameter values are ε = 0.1, Ca
= 100,Cls1 =Csg1 = 1,Clg,2 = 10,Csg2 =Cls2 = 0, k = 10

−3,m = 3, Bo = 0.5, Γ = 0.01, δls = 1, and S =−0.001. The locations of the minimum surface tension in
panels (a), (b), (c), and (d) are −2.5, −0.5, 0, and 0.5, respectively.
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Figure 6. Position of the (a) left and (b) right contact lines of the drop versus time; evolution of the (c) extent of spreading; (d) position of the center of
mass of the droplet for different values of Clg,1. The rest of the parameter values are the same as those used to generate Figure 5.

Figure 7. Evolution of dynamic contact angles (a) θl, (b) θr, and equilibrium contact angles (c) θa,l, (d) θa,r for different values of Clg,1. The rest of the
parameter values are the same as those used to generate Figure 5.
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formation of the pronounced ridge at xcr. The temporal variation
of the extent of spreading, measured by the difference in the
location of the left and right contact lines, xcr− xcl, is also tracked
and shown along with that of the droplet center of mass in panels
(e) and (f) of Figure 3, respectively. It can be seen that the
spreading exhibits power-law like behavior at sufficiently long
times, characterized by large exponents; we estimate the latter to
be between 1 and 1.2 during the latter stages of the spreading, as
shown in panel (e). This result is striking since such large values
of the spreading exponent have been observed in cases of
droplets undergoing “superspreading” driven by the addition of
certain surfactant molecules34 or the application of electric
fields.35

We also examine the effect that the difference between the
locations of the σlg−x minimum and the drop symmetry plane
exerts on the spreading dynamics. This is varied by altering the
value ofClg,1 while keeping all other parameters fixed. ForClg,1 = 0
the σlg−x minimum and symmetry plane are co-located, and as
can be seen in Figure 2, the spreading is perfectly symmetric. For
increasingly positive values ofClg,1, the minimial σ value is located
progressively to the right of the symmetry plane so that σlg is
higher at the left boundary than it is on the right one. This then
leads to thermocapillary-driven spreading from the minimal σ
region toward higher σlg domains. Since the largest gradients are
associated with the left boundary, spreading is fastest in that
direction, as can be seen in panel (d) of Figure 2; this is a mirror
image of the case presented in panel (a) of this figure. In all cases
considered, thickened ridges are formed at the contact line
advancing with the largest speed, and these are also associated
with high power-law exponents, and the largest dynamic contact
angles, as shown in Figure 3.

At this point, it is interesting to examine the mechanism that
drives the enhanced spreading, as is shown in Figures 2−3. In the
case of a fluid with a linear dependence of the surface tension on
temperature, the Marangoni stresses always drive flow from hot
to cold regions, acting in the same direction for both ends of the
droplet (see Figure 4). On the other hand, in the case of a self-
rewetting fluid, the dependence of surface tension on temper-
ature is non-monotonic, which has a significant effect on the
induced Marangoni stresses. When the position of minimum
surface tension happens to be inside the droplet, the Marangoni
stresses induce flow away from this position, in the direction of
increasing tension located at the droplet edges. As a result,
Marangoni stresses cause the latter to move in opposite
directions, thereby stretching the droplet and enhancing the
spreading rate.
As was implied above, the spreading of self-rewetting fluids

shares some common characteristics with the “superspreading”
that takes place in the presence of certain surfactants. To make
this connection clearer, it is useful to mention two of the main
characteristics of “superspreading” that have been observed
experimentally: (a) very fast spreading with spreading exponents
close to 1, and (b) the formation of ridge in the periphery of the
drop. It appears that both these features are also present in the
case of self-rewetting fluids (see Figures 2, 3). Karapetsas et al.34

suggested that the mechanism responsible for this behaviour is
the existence of local Marangoni stresses near the contact line,
acting outwards on both sides of the droplet. As was explained
above, a similar mechanism is also present in the case of self-
rewetting fluids when the position of the minimum surface
tension is located inside the droplet resulting in thermally
induced “superspreading”.

Figure 8. Evolution of the drop profile for (a)Γ = 0.005, (b)Γ = 0.01, and (c)Γ = 0.02. The rest of the parameter values are ε = 0.1, Ca = 100,Cls1 =Csg1 =
1,Clg,1 =−0.1,Clg,2 = 10,Csg2 =Cls2 = 0, k = 10

−3,m = 3, Bo = 0.5, Γ = 0.01, δls = 1, and S =−0.001. The locations of theminimum surface tension in panels
(a), (b), and (c) are −1, −0.5, and −0.25, respectively.
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Varying θa. As was mentioned above, in order for the
assumption of constant θa to be valid, the surface tensions of the
substrate and liquids must have an identical dependence on
temperature (Clg,1 = Cls1 = Csg1 and Clg,2 = Cls2 = Csg2); it is evident
that this assumption is rather restrictive. Here, we discuss the
results generated for a dynamic contact angle that varies
dynamically through the change of substrate wettability driven
by wall-heating. In eq 12, we set Cls,2 = Csg,2 = 0 for the remainder
of this paper; this corresponds to a linear dependence of σls and
σsg on Ts. Thus, we focus only on the effects that can be attributed
to the nonlinear dependence of the gas−liquid interfacial tension
on temperature.
In Figure 5, we show the dependence of the spreading

dynamics on Clg,1 with the rest of the parameters remaining fixed.
For cases wherein the minimum in the σlg−x curve is located to
the left of the symmetry plane, and outside of the initial drop
profile, x = 0, characterized by Clg,1 = −0.5, the drop spreads in
the direction of highest tension, toward the right domain
boundary, and behaves similarly to the case of an ordinary fluid.
This is driven by Marangoni stresses which act in the same
direction across the liquid−gas interface.The drop is deformed in
the direction of spreading, and the location of the maximal
thickness shifts from the flow origin toward the right contact line,
xcr. The left contact line, xcl, moves toward the left at early times,
but remains essentially pinned thereafter.
As Clg,1 becomes progressively positive, and the location of the

minimal σlgmoves to the right of x = 0, the direction of spreading
is reversed in comparison to the Clg,1 = −0.5 case. Here, the
spreading proceeds with xcl advancing toward the left domain
boundary, which coincides with the largest value of σlg, and xcr

moves at a much slower rate also to the left. The spreading speed
is also considerably larger than the Clg,1 = −0.5 case with high
power-law exponents, and is accompanied by the formation of
thickened ridges at the left contact line, xcl, as shown in Figures 5
and 6. These features are qualitatively similar to those observed
in the case of constant equilibrium contact angle, θa, and the
enhancement of spreading rate shares the same mechanism as
discussed in the previous section.
Interestingly, we note that the spreading in theClg,1 =−0.1 case

takes place in the opposite direction from the one shown for
constant θa (compare Figures 2a and 5b). Moreover, we notice
that the spreading in the Clg,1 = 0 case, for which the location of
the σlg−xminimum coincides with x = 0, is markedly asymmetric;
this is also in contrast to the analogous constant θa case, shown in
Figure 2b, for which the spreading is symmetric. These two cases
illustrate the important role of accounting for local variations of
θa in modeling the spreading dynamics.
In Figure 7, we plot the temporal variation of the dynamic and

equilibrium contact angles at the left and right contact lines for
different values of Clg,1. For Clg,1 = −0.5, where the
thermocapillary stresses drive spreading toward the highest σlg
at the right boundary, the spreading is aided by θr − θa,r, which
remains positive for the time duration considered. For xcl, which
becomes the receding contact line at intermediate times, the
equilibrium contact angle θa,l is zero-valued for the entire
computation, and θl − θa,l also remains positive. This is because
σlg achieves a low value at the left of x = 0 (see Figure 1), which
makes θa,l negative, as can be seen from eq 18; this is then set to
zero. The positive θl − θa,l, however, provides no wettability
driving force for spreading and xcl becomes essentially pinned.

Figure 9. Evolution of the (a) extent of spreading, (b) the position of the center of mass of the droplet, and equilibrium contact angles (c) θa,l, (d) θa,r for
different values of Γ. The rest of the parameter values are the same as those used to generate Figure 8.
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As Clg,1 increases, thermocapillarity spreads the drop toward
the left, as discussed above. For Clg,1 = −0.1 the position of
minimum σlg is located inside the droplet and closer to the left
edge, and naively, we would expect that the drop would move to
the right; this is true in the case of constant θa (see Figure 2a).
Instead, we find that the droplet spreads in the opposite
direction. This effect is due to the fact that the surface energy of
the substrate is affected by the imposed temperature gradient.
The surface energy on the left side of the droplet is lower which
facilitates the initial spreading in this direction that is later
enhanced by the presence of Marangoni stresses stretching the
droplet. As shown in Figure 7, the advancing contact line for Clg,1

≥ −0.1 is xcl for which θl − θa,l is positive, which accelerates its
spreading. This, then, leads to an increase in θl for times above t∼

103, which coincides with the formation of the thickened ridge at
xcl, and further increases θl − θa,l, accelerating the spreading rate.
For xcr, which becomes the receding contact line at intermediate
times, the difference θr − θa,r becomes negative which aids the
motion of xcr toward the left. The equilibrium angle θa,r remains
positive, since σlg is relatively large near the right boundary due to
the quadratic dependence of σlg on Ts while σsg and σls, which
depend linearly on Ts, attain their lowest values at this hot
boundary. Note that the value of θa,r in this varying −θa case
exceeds that used to generate the results in the previous section,
where θa was held constant, until the very latest stages of the
spreading. The negative θr − θa,r difference, however, is not as
large as that associated with xcl; consequently, the motion of the
right contact line is considerably slower.

Figure 10.Time snapshots of the drop profile for (a)Clg,2 = 5 and (b)Clg,2 = 10. Evolution of the (c) extent of spreading, (d) the position of the center of
mass of the droplet, and equilibrium contact angles (e) θa,l, (f) θa,r for different values ofClg,2. The rest of the parameter values are ε = 0.1, Ca = 100,Cls1 =
Csg1 = 1,Clg,1 =−0.1,Csg2 =Cls2 = 0, k = 10

−3,m = 3, Bo = 0.5, Γ = 0.01, δls = 1, and S =−0.001. The locations of theminimum surface tension in panels (a)
and (b) are −1 and −0.5, respectively.
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Next, we examine the dependence of the dynamics on the
temperature gradient, Γ, in the variable θa case. We show in
Figure 8 the drop spreading profiles for different values of Γ with
all other parameters remaining constant. For the lowest Γ values
studied, the effects associated with the quadratic dependence of
σlg on Ts are small, and the extent of spreading is rather modest
even at relatively late times. With increasing Γ, however, these
effects become accentuated leading to the “superspreading″-like
behaviour discussed above, as shown in Figures 8 and 9. For Γ =
0.02, the temperature gradient is sufficiently large so as to drive
the formation of very large ridges at the left contact line, xcl, which
contains the majority of the fluid in the drop, and a trailing thin
film. We also note that there is a non-monotonic dependence of
the spreading rate on the applied temperature gradient, Γ. For
high values of Γ, the surface energy of the substrate is affected
significantly, and as the droplet spreads to the left the contact line
experiences an increasingly hydrophobic surface inhibiting the
spreading process (see Figure 9c). The effect of a temperature-
varying substrate wettability was also discussed in Karapetsas et
al.20 where a similar behaviour was reported even for liquids with
a linear dependence on surface tension.
We also explore the effect of varying Clg,2 on the dynamics

while keeping the rest of the parameters fixed; this parameter
controls the quadratic dependence of σlg on Ts. Inspection of
Figure 10 reveals that increasing the value of Clg,2 has a similar
effect to raising Γ: it gives rise to lower surface tension minima
and larger thermocapillary stresses that drive rapid, “super-
spreading″-type behavior.
Finally, the parameter Clg,2 can also be used to control whether

the liquid−air interface exhibits a minimum or a maximum
surface tension at a given temperature. As mentioned above, in
the case of self-rewetting fluids, this parameter is positive,
whereas for a system that exhibits a maximum surface tension this
parameter is negative. Systems with the latter behavior have been
reported in the literature.47We performed a set of simulations for
Clg,2 = −10 and for such values of Clg,1 that the position of
maximum σlg resides inside the droplet (e.g., Clg,1 = −0.1, 0, 0.1)
which are not presented here for conciseness. We found that in
this case the induced Marangoni stresses drive flow toward the
position of maximum surface tension inhibiting the spreading
process. The spreading exponent for the cases that we have
investigated was found to be much lower than in the case of self-
rewetting fluids discussed above.

■ CONCLUSIONS
We have carried out an investigation of thermocapillary-driven
droplet spreading on nonuniformly heated substrates; the effect
of a nonlinear dependence of the surface tension on temperature
was the focus of the present work. We have used the lubrication
approximation to derive an evolution equation for the interface
that accounts for capillary and thermocapillary forces. The
energy equation within the drop was assumed to be dominated
by conduction, and heat transfer from the interface was
neglected. The potential singularity at the contact line was
relieved via use of a Navier slip condition at the wall and a Cox-
Voinov-type relation at the moving contact line. The equilibrium
contact angles were allowed to depend on the substrate
temperature through their dependence on the gas−liquid,
liquid−solid, and gas−solid interfacial tensions.
Numerical solutions of the evolution equation for the interface

were obtained for various gas−liquid surface tension−temper-
ature curves, which exhibited a surface tensionminimum over the
temperature range considered; these included cases wherein the

location of this minimum was initially inside the drop, and others
in which the minimum was located to either side of the drop. In
the latter case, thermocapillary stresses induce droplet spreading
away from the surface tension minimum, causing both contact
lines to move in the same direction. In the former cases, however,
our results demonstrate that thermocapillary stresses drive flow
away from the surface tension minimum within the droplet,
causing the contact lines to move in opposite directions. This, in
turn, accelerates the spreading significantly to the extent that the
spreading characteristics, in terms of power-law exponents and
interfacial shapes, resemble those that accompany surfactant-
driven “superspreading” of droplets on hydrophobic substrates.
In particular, the power-law exponents approach a value of unity
during the spreading, and the latter is accompanied by the
formation of pronounced ridges at the advancing contact lines.
Fluids that are associated with either a linear dependence of the
surface tension on temperature, or a maximum in the surface
tension-temperature, curve do not exhibit this type of behavior.
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