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ABSTRACT: We study the two-dimensional dynamics of a
droplet on an inclined, nonisothermal solid substrate. We use
lubrication theory to obtain a single evolution equation for the
interface, which accounts for gravity, capillarity, and thermo-
capillarity, brought about by the dependence of the surface
tension on temperature. The contact line motion is modeled
using a relation that couples the contact line speed to the
difference between the dynamic and equilibrium contact
angles. The latter are allowed to vary dynamically during the
droplet motion through the dependence of the liquid−gas, liquid−solid, and solid−gas surface tensions on the local contact line
temperature, thereby altering the local substrate wettability at the two edges of the drop. This is an important feature of our
model, which distinguishes it from previous work wherein the contact angle was kept constant. We use finite-elements for the
discretization of all spatial derivatives and the implicit Euler method to advance the solution in time. A full parametric study is
carried out in order to investigate the interplay between Marangoni stresses, induced by thermo-capillarity, gravity, and contact
line dynamics in the presence of local wettability variations. Our results, which are generated for constant substrate temperature
gradients, demonstrate that temperature-induced variations of the equilibrium contact angle give rise to complex dynamics. This
includes enhanced spreading rates, nonmonotonic dependence of the contact line speed on the applied substrate temperature
gradient, as well as “stick−slip” behavior. The mechanisms underlying this dynamics are elucidated herein.

■ INTRODUCTION

The motion of liquid droplets over liquid and solid substrates
has attracted the interest of many researchers in the past
because of its numerous practical applications and scientific
challenges (see, for example, the reviews by de Gennes1 and
Bonn et al.2 and references therein). It is well-known that the
application of a body force or external gradients can be used as
a mechanism for driving the motion of liquid drops, and the
ability to control these properties can play a key role in many
industrial applications that involve coating processes and
microfluidic devices.
In the present work, we focus on the migration of droplets

on inclined solid substrates due to the presence of
thermocapillary effects. A temperature gradient along the
substrate causes another along the interface which may in
turn induce surface tension gradients driving liquid flow from
warmer to colder regions. Early experimental work by Bouasse3

has shown that this effect can be used to force a drop to climb a
tilted wire, against gravity, by heating its lower end. More
recent studies on horizontal plates demonstrated that under
certain conditions it was possible to get a steady migration of
droplets with a fixed shape; for a temperature gradient below a
certain threshold, the drop may not move due to the effect of
contact angle hysteresis.4,5

It appears, however, that the effect of contact angle hysteresis
is not always important. Pratap et al.6 performed experiments

using decane drops on polydimethylsiloxane (PDMS)-coated
substrates and showed that the effect of contact angle hysteresis
was much weaker. An interesting observation in the experiment
of Pratap et al.6 was the fact that there was a significant
dependence of the contact angle on temperature and this was
clearly demonstrated by the significant distortion of the
footprint of the drop from a circular shape. Pratap et al.6

have also reported that the experimentally measured migration
velocity of the drop was not constant but decreases as the drop
moves toward colder regions. They have attributed this effect
mainly to the increasing viscosity of the drop and secondarily to
the reduction in drop size due to evaporation. However, since
in their experiments there was a significant dependence of the
contact angle on temperature, it is reasonable to ask whether
the variation of the velocity can also be due to the change of
wettability as the drop moves to colder regions. One should
note that wettability gradients have been proven to be very
efficient in driving flow inside liquids.7,8 Daniel et al.7 were able
to achieve remarkably rapid movement of liquid drops by
appropriate manipulation of temperature gradients which
altered the wettability of the solid surface. One common factor
between the experiments of Pratap et al.6 and Daniel et al.7 is
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that wettability and temperature gradients coexist. In the
present study, the wettability gradients are not imposed
externally but are a natural consequence of the variation of
temperature along the solid surface.
The thermocapillary motion of droplets has been the subject

of several theoretical studies in the literature. Brochard9

examined the motion of droplets in the presence of chemical
or thermal gradients. She assumed that the shape of the drop is
a wedge and employed force balance and energy arguments to
deduce the wetting characteristics in terms of the spreading
coefficient. Ford and Nadim10 generalized the work of
Brochard9 to allow for arbitrary shapes of the drop and also
allowed the contact angles to be different at the two ends.
Ehrhard and Davis11 used lubrication theory to describe the
spreading of a droplet on a uniformely heated plate, and
Anderson and Davis12 took into account the effect of
evaporation. The latter effect was also studied recently by
Karapetsas et al.13 Chen and co-workers took into account the
effect of buoyancy convection14 and studied the phenomenon
of thermocapillary nonwetting.15

Lubrication theory was also used by Smith16 in the presence
of thermal gradients to derive quasi-steady solutions employing
a dynamic boundary condition at the contact line, which relates
the velocity of the contact line to the dynamic contact angle,
taking into account the effect of contact angle hysteresis. He
showed that only two possible steady states exist: either a
motionless drop or a steady migration of the droplet with a
fixed shape toward colder regions. Very recently, Gomba and
Homsy17 revisited this problem using lubrication theory in
combination with a precursor model to relieve the contact line
singularity. The profile of the droplet was allowed to change
dynamically with time in the presence of a parametrically
varying constant contact angle. They were able to identify three
different regimes depending on the contact angles. For small
contact angles, the drop spreads with a capillary ridge whereas
for large contact angles the drop translates with a fixed shape.
For intermediate contact angles, they found a transition regime
with rather complex dynamics involving break-up of the drop
into smaller droplets.
The results of Gomba and Homsy17 elucidate the importance

of the contact angle in the dynamics of the thermocapillary
motion of droplets. The effect of contact line dynamics can be
enhanced if we also take into account the effect of the variation
of wettability due to the variation of temperature along the
solid surface. All of the aforementioned works considered a
constant contact angle along the substrate. It is important to
investigate what would be the effect of a dynamically varying
contact angle which may have a significant impact in cases
where there is a strong dependence of the surface energy of the
solid substrate on temperature. To the best of our knowledge,
this problem has not been addressed in the literature, and this
will be one of the aims of this paper. In addition, we will also
consider the case of an inclined surface to investigate the
interplay of Marangoni stresses, contact line dynamics, and
gravity.
The rest of the paper is organized as follows. In section II, we

describe the details of the derivation of the evolution equations
for the drop profile and temperature, and the numerical method
used for their numerical solution. Results are presented and
discussed in section III, followed by concluding remarks in
section IV.

■ PROBLEM FORMULATION
We consider the dynamics of a drop of an incompressible,
Newtonian fluid with constant density ρ, viscosity μ, specific
heat capacity Cp, and thermal conductivity λ, which has been
deposited on a inclined, rigid and impermeable solid substrate
subjected to a constant temperature gradient (see Figure 1).

The angle of inclination to the horizontal is denoted by α. The
surface tensions of the liquid−gas, liquid−solid, and solid−gas
interfaces are σlg, σls, and σsg, respectively. We assume that
initially the drop has a maximal thickness H and a half-width L.
In the present work, we consider the drop to be very thin and
therefore L is assumed to greatly exceed H so that the drop
aspect ratio, ε = H/L, is assumed to be very small. The latter
assumption permits the use of lubrication theory, which will be
employed below to derive a set of evolution equations that
govern the spreading process.

Governing Equations. We use a Cartesian coordinate
system, (x, z), to model the dynamics and the velocity field, u =
(u,w) where u and w correspond to the horizontal and vertical
components of the velocity field, respectively. The liquid−gas
interface is located at z = h(x, t), whereas the liquid−solid and
the solid−gas interfaces are located at z = 0. The spreading
dynamics are governed by the equations of the conservation of
mass, momentum and energy, given below:

∇· =u 0 (1)

ρ μ ρ+ ·∇ + ∇ − ∇ − =pu u u u( ) g 0t
2

(2)

ρ λ+ ·∇ − ∇ =C T T Tu( ) 0tp
2

(3)

where p is the pressure and T is the temperature, while ∇
denotes the gradient operator. Unless stated otherwise, the
subscripts x, z, and t denote partial differentiation with respect
to x, z, and t, respectively, where t denotes time.
Solutions of the above equations are obtained subject to the

following boundary conditions. Along the free surface, the
velocity field should satisfy a local force balance between
surface tension and viscous stresses in the liquid, setting the
pressure in the surrounding gas to zero (datum pressure)
without loss of generality. Taking the tangential and normal to
the free surface components of this force balance, we obtain

τ σ· · = ·∇n t t s lg (4)

τ κσ· · =n n 2 lg (5)

where n = (−hx,1)/(1 + hx
2)1/2 and t = (1, hx)/(1 + hx

2)1/2

denote the outward unit normal and unit tangential vectors on

Figure 1. Schematic diagram of the drop on an inclined plate (not to
scale). Tw = T0 + γx, where γ is the constant temperature gradient
applied at the solid wall and T0 is the temperature at (x, z) = (0,0).
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the interface, respectively, ∇s is the surface gradient operator,
2κ is the mean curvature of the free surface, defined as

κ = −∇·n2 s (6)

and

∇ = − ·∇I nn( )s (7)

and τ is the total stress tensor

τ μ= − + ∇ + ∇pI u u( )T
(8)

where I is the identity tensor.
In addition, along the moving interface we impose the

kinematic boundary condition

+ =h uh wt x (9)

and the following thermal flux condition

λ
·∇ = | −T

h
T Tn ( )

g
h g (10)

where hg denotes the heat transfer coefficient at the liquid−gas
interface and Tg is the temperature of the ambient gas; for
simplification we will assume that Tg = T0, where T0 = T(x = 0,
z = 0).
At the liquid−solid interface, we apply the usual no-

penetration condition in the vertical direction

=w 0 (11)

In the horizontal direction, the usual no-slip condition is
replaced by the Navier slip condition18 to avoid the stress
singularity, which would otherwise arise at the moving contact
line

β=u uz (12)

where β is a slip length. We also assume that temperature of the
solid surface is fixed and given by the following expression:

γ= | = +T T T xw 0 0 (13)

where γ = dTw/dx is the value of the constant temperature
gradient applied at the solid wall.
To complete the description, a constitutive equation that

describes the dependence of the interfacial tensions on the
temperature is required. To this end, we use a simple linear
relation

σ σ
σ

= + − =
T

T T i
d
d

( ), ( lg, ls, and sg)i i
i

,0 s 0 (14)

where Ts is the temperature at the corresponding interface, and
σi,o, (i = lg, ls, and sg) denotes the surface tension of all
interfaces at the reference temperature, T0.
Scaling. The governing equations and boundary conditions

are made dimensionless using the following scalings (tildes
denote dimensionless variables)

ε ε

ε
μ σ σ σ

= ̃ ̃ ̃ = ̃

= ̃ ̃

= ̃ = ̃ = ̃ =

x z h L x z h t
L
U

t

u w U u w

p
UL

H
p T TT i

( , , ) ( , , ), ,

( , ) ( , ),

, , , ( lg, ls, sg)i i2 0 lg,0

(15)

where U = −(dσlg/dT)(T0/μ) is a characteristic velocity. The
dimensionless numbers that arise are the Bond number Bo = ρ
gH2/μU, the Biot number Bi = hgH/λ, the dimensionless

thermal gradient Γ = γL/T0, and the dimensionless slip
parameter B = β/H. The tildes are henceforth suppressed.
Substitution of these scalings into the momentum and mass

conservation governing equations and boundary conditions,
using the lubrication approximation (ε ≪ 1), yields

+ =u w 0x z (16)

ε α= = −p u p Bo, cosx zz z (17)

=T 0zz (18)

ε σ

ε σ

= + | = | | = −

| = | = − | −

z h x t h u h w p
C

h

u
C

T Bi T

( , ): , ,

, ( 1)

t h x h h xx

z h x z h h

3
lg

lg

lg
lg,

(19)

= = = = + Γz u Bu w T x0: , 0, 1z w (20)

where

σ
σ

= − =C
T

T
i

d
d

, ( lg, ls, and sg)i
i

i

0

,0 (21)

It should be noted here that the lubrication approximation
assumes small slopes, and therefore this model does not
formally capture droplet spreading with high contact angles. By
solving eqs 16−18, and imposing boundary conditions 19 and
20 we can derive the following evolution equation for h and
temperature T

σ

α

= ∂
∂

+ − +

−

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

h
x

h
Bh p Bh

h
C

h
Bo

3 2

3
sin

t x x

3
2

lg,

2

lg

3

(22)

= + −
+

T T
Bi h z

Bih
1 ( )

1w (23)

where

ε σ σ ε α= − + +p
C

h h Boh( ) cosx xxx x xx x

3

lg
lg lg,

(24)

and the dimensionless form of the constitutive equation for the
surface tension is given by

σ δ= − −C T(1 ( 1))lg lg lg s (25)

σ δ= − − =C T i(1 ( 1)), ( ls and sg)i i i w (26)

where

δ
σ
σ

= =i, ( lg, ls, and sg)i
i ,0

lg,0 (27)

It follows that the interfacial temperature is Ts = T|h = Tw/(1
+ Bih). For typical experimental conditions, Bi is small (Bi ≪
1),4,5,19 and therefore, for the rest of the paper we will make the
assumption that

= = + ΓT T x1s w (28)

Contact Line Motion. At the contact line, the thickness of
the drop becomes zero-valued
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= = = =h x x t h x x t( , ) ( , ) 0cl cr (29)

where xcl and xcr denote the location of the left and right
contact lines, respectively. We use an empirical constitutive
equation, which relates the fluid velocity at the contact line with
the contact angle.20 In its dimensionless form, ignoring the
effect of contact angle hysteresis, to keep the formulation as
simple as possible, this relation is given by

θ θ= − =
x

t
k j

d

d
( ) , ( l and r)j

j j j
mc

a, (30)

where θl and θr are the dynamic contact angles at xcl and xcr,
respectively, and θa,j, (j = l and r) are the corresponding
advancing contact angles; for the purpose of this study, the
latter will be taken to be equal to the equilibrium contact angle,
which may vary depending on the temperature of the wall at
the position of the corresponding contact line. The model has
two empirical constants, the so-called mobility exponents kj (we
will assume that kl = kr = k), and m which usually takes values in
the range 1 ≤ m ≤ 3. This functional dependence has been
used by several researchers in the past to model contact line
motion.12,21−25 The power-law dependence has been verified
experimentally (e.g., see ref 25). It is worth mentioning that
imposing the Navier slip condition away from the contact line
and the Cox−Voinov relation at the contact line, mimics the
use of the generalized Navier boundary,26 which relates the
contact line speed to a viscous stress contribution (the
equivalent of eq 20 in our paper) and an extra contribution
due to an uncompensated Young stress (present in out-of-
equilibrium situations such as ours). The latter contribution is
related directly to the dynamic and static contact angles in a
way that is reminiscent of the Cox−Voinov relation, and is
much larger (smaller) than the viscous stress contribution at
(away from) the contact line. Thus, our approach is rather
similar to that involving the use of the generalized Navier
boundary condition.
At equilibrium the balance between the tangential interfacial

forces at the contact point gives

σ σ θ σ= + =x x x j( ) ( ) cos ( ), ( l and r)c j j jsg j lg c a, ls c (31)

Using eq 25 in eq 31 and setting Ts(xcj) = Tw(xcj) = Tcj, (j = l
and r), where Tcj is the temperature at the contact line, we
obtain

θ
δ δ

=
− − − − −

− −
C T C T

C T
cos( )

(1 ( 1)) (1 ( 1))

1 ( 1)j
j j

j
a,

sg sg c ls ls c

lg c

(32)

In the lubrication limit θa,j is small. Therefore we set θa,j →
εθa,j and using the fact that cos(εθ) = 1 − ε2θ2/2, since ε ≪ 1,
we can then derive the following relation:

θ
ε

δ
= −

− Γ − − − − Γ
− Γ

S C x C C C C x

C x
2 (1 ) ( ) ( )

1j
j j

j
a,

2
2

sg c sg lg ls sg ls c

lg c

(33)

where S = δsg − δls − 1 denotes the spreading parameter; in
order to be consistent with lubrication approximation, S should
be kept small. This expression for θa,j is used in eq 30 to model
the local influence of wall temperature on the contact line
velocity. When the right-hand side of eq 33 becomes negative,
we simply assume that θa,j = 0 which implies a perfectly wetting
surface. The present method for describing the contact line
dynamics can be extended easily to cases where there are

wettability gradients of different nature, e.g., involving chemical
treatment of the substrate. A similar method has been used
previously by Karapetsas et al.24 to model the effects of
surfactants at the contact line in the context of “super-
spreading”.
In the limiting case where Clg = Csg = Cls, the expression for

the equilibrium contact angle reduces to

θ
ε

= − S
2

ja,
2

2 (34)

and therefore the advancing contact angle in this case is
independent of the position of the contact line and remains
equal to the equilibrium contact angle at the reference
temperature. From this, we may deduce that the usual
assumption in the literature of a constant equilibrium contact
angle simply corresponds to substrates and liquids whose
surface tension depends on the temperature in the exact same
manner; this is rather restrictive.

Numerical Method. The discretization of the governing
equations is performed using a finite element/Galerkin method
and we approximate all the variables using quadratic Lagrangian
basis functions, ϕi. After applying the divergence theorem, the
weak form of the governing equations becomes

∫ ϕ ϕ ϕ+ − =h f x f( ) d [ ] 0
x

x

t
i

x
i i

x
x

cl

cr

cl
cr

(35)

∫ ϕ̅ − =h h x( ) d 0
x

x

xx
i

cl

cr

(36)

where

β σ β α= + − + −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f

h
h p h

h
C

h
Bo

3 2 3
sinx x

l

3
2

lg,

2

g

3

(37)

and

ε σ σ ε α= − ̅ + ̅ +p
C

h h Boh( ) cosx x x x

3

lg
lg lg,

(38)

Note that the fourth order partial differential equation for h has
been decomposed into two differential equations by introduc-
ing a new variable, h̅ = hxx.
The initial condition used for the film thickness and the

position of the contact line are given by

= = −h x t x( , 0) 1 2
(39)

= = −x t( 0) 1cl (40)

= =x t( 0) 1cr (41)

During the spreading process the contact lines move and
therefore the physical domain changes with time. In order to
map the transient physical domain, (x, t), onto a computational
domain fixed in time, (x′, t′), we use the following equation:

′ = −
= − =

−
x x x

x t x t
x x

( )
( 0) ( 0)

cl
cr cl

cr cl (42)

The interior of the drop is mapped to 0 ≤ x′ ≤ 1. The
derivatives that arise in the evolution equations also have to be
rewritten in terms of the new variables
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∂ = ∂ − ′ ∂′ ′
x
t

d
dt t x (43)

and this expression is used to replace the corresponding terms
in the weak form of the governing equations presented above.
The computational domain is discretized using 200 elements

in all the computations presented in this paper; numerical
checks showed that increasing the number of elements further
led to negligible changes. In all the simulations presented below
the fluid mass conservation are satisfied within 1%. The
resulting set of discrete equations is integrated in time with the
implicit Euler method. An automatically adjusted time-step is
used for that purpose, which ensures convergence and
optimizes code performance. The initial time step for all the
simulations was 10−6. The final set of algebraic equations is
nonlinear and they are solved in each time-step using the
Newton−Raphson method. The iterations of the Newton−
Raphson method are terminated using 10−8 as tolerance for the
absolute error of the residual vector.

■ RESULTS AND DISCUSSION
Numerical solutions were obtained over a wide range of
parameter values. For brevity, we choose a representative “base”
case that has values ε = 0.1, k = 10−3, m = 3, Csg = Cls = 1, δls =
1, and S = −0.001. This set of parameters corresponds to
slender drops spreading on partially wetting solid surfaces.
Considering Ci ≠ 0 (i = sg and ls) implies that the surface
tension of both the solid−gas and liquid−solid interfaces
depend on the variation of temperature.
Constant equilibrium contact angle. To set the stage for

the discussion that follows, we begin our study by examining
the motion of a drop on a horizontal substrate and for the
simplest case which predicts a constant equilibrium contact

angle. That is true when the surface tension of all interfaces
depends in the same way on the temperature, i.e., for Clg = Cls =
Csg. Using eq 34 we get that for Ci = 1, (i = lg, ls, and sg) the
equilibrium contact angle remains constant and approximately
equal to θa,j = 0.447, (j = l and r). A typical drop evolution for
different thermal wall gradients is presented in Figure 2. As
anticipated, we find that for Γ = 0, i.e., when there is no thermal
gradient, the drops spreads symmetrically around x = 0 and the
radius grows with a power law of t1/7 (see Figure 3c), in
agreement with its theoretical predictions reported in the
literature.11 On the other hand, as it is shown in Figure 2b−d,
the application of a thermal gradient along the wall induces
Marangoni stresses which drive the liquid in the drop to flow
from hotter to colder regions and thus result in the translation
of the drop leaving behind a thin film. The creation of this film
is due to the fact that the right edge of the drop spreads
initially, but, at the same time, the Marangoni stresses drive
liquid flow toward its left edge, thus draining the right edge.
The effect of Marangoni stresses becomes stronger with

increasing thermal wall gradient and indeed we see in Figure 3d
that the drop translates faster and for longer distances for
higher values of Γ. This dependence appears to be monotonic
in accordance with earlier studies in the literature.
We observe in Figure 3b that the right contact angle initially

advances to the right due to the mismatch of the initial contact
angle and the equilibrium contact angle. Eventually, however,
the right contact line starts receding due to the effect of the
Marangoni stresses which act in the opposite direction. These
two mechanisms are also present at the left edge and affect its
motion with one important difference. In this case, the
mismatch of the initial contact angle with equilibrium contact
angle actually enhances the action of Marangoni stresses

Figure 2. Evolution of the drop profile for (a) Γ = 0, (b) Γ = 0.005, (c) Γ = 0.01, and (c) Γ = 0.02. The rest of the parameter values are ε = 0.1, Clg =
Csg = Cls = 1, k = 10−3, m = 3, Bo = 0.5, α = 0°, δls = 1, and S = −0.001.
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causing the advancement of the contact line to the left. The
combined action of these two mechanisms at the two edges
results in enhanced spreading rates and the area covered by the
droplet grows with a power-law exponent of order t2/3 (see
Figure 3c). One should note at this point that the spreading
rate predicted by our simulations is significantly larger than the
spreading rate predicted earlier by Gomba and Homsy.17

Gomba and Homsy17 presented a similarity solution for
droplets with small contact angles suggesting that xcr − xcl ≈
t1/2 and showed that the results obtained from their numerical
simulation are in agreement with this scaling law. It should be
pointed that in order to derive the similarity solution, Gomba
and Homsy17 ignored the effect of the contact line dynamics.
Moreover, their numerical simulations were initiated assuming
an equilibrium shape and, therefore, it is expected that, in their
case, the contact line dynamics would not play a significant role.
On the other hand, we consider drops that are initially far from

equilibrium. Indeed, using as initial condition a drop at
equilibrium we recover the exponent 1/2, as expected.
Therefore, it becomes apparent that the effect of contact line
dynamics actually plays an important role leading, in our case,
to the prediction of enhanced spreading rates.
Figure 3e shows the evolution of the maximum height of the

drop for different values of Γ. At early times, as the drop
spreads out its height decreases with t−1/7 for all values of Γ.
Later on, the drop starts to translate due to the effect of
Marangoni stresses which initiates the creation of a trailing film.
During this phase, the spreading of the bulk drop ceases and, as
a result, the drop height decreases much more slowly. As the
drop moves further away from its initial position, the film
thickens containing a significant amount of liquid, which leads
eventually to the decrease of the drop height.

Varying Equilibrium Contact Angle. As was mentioned
above, the assumption of constant equilibrium angle in our

Figure 3. Position of the (a) left and (b) right contact lines of the drop versus time, evolution of the (c) extent of spreading, (d) the position of the
center of mass of the droplet, and (e) the maximum height of the drop for different values of Γ. The rest of the parameter values are the same as
those used to generate Figure 2.
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model corresponds to Clg = Csg = Cls. To investigate how
deviations from this limiting case may affect the flow, we keep

the values of Clg = Csg = 1 and vary slightly the value of Cls =
1.05. The choice of this value of Cls corresponds to a case where

Figure 4. Evolution of the drop profile for Cls = 1.05 and for (a) Γ = 0, (b) Γ = 0.005, (c) Γ = 0.01, and (d) Γ = 0.02. The rest of the parameter
values are the same as those used to generate Figure 2.

Figure 5. Evolution of dynamic contact angles (a) θl and (b) θr, and equilibrium contact angles (c) θa,l and (d) θa,r for different values of Γ. The rest
of the parameter values are the same as those used to generate Figure 4.
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the surface tension of the liquid−solid interface is slightly more
sensitive to the variation of temperature as compared to the
other two interfaces.
We present in Figure 4 the profiles of the drops at different

time instants for different values of Γ. The initial configuration
of the drop is such that the dynamic contact angle is larger than
the equilibrium contact angle for both edges which causes the
initial spreading of the drop in both directions (see Figure 5).
In the absence of thermal gradients the drop spreads
symmetrically and, as expected, there are no differences
between Figures 2a and 4a. On the other hand, for finite
values of Γ, the drop spreads initially in both directions, and, at
the same time, the induced thermally driven Marangoni stresses
drive liquid flow toward colder regions of the substrate.
However, as the left edge advances it experiences lower
temperatures and as a result the corresponding equilibrium
contact angle increases significantly, which implies that the
wettability of the substrate changes making it more hydro-

phobic (see Figure 5c). Consequently, the difference between
the dynamic and equilibrium contact angles at the left edge of
the drop decreases considerably and the motion of the droplet
in that direction decelerates (see Figure 5b,c). As can be
deduced from eq 33, the wettability of the substrate is affected
most for higher values of Γ, and, for the particular choice of
parameters, the left contact line will experience a more
hydrophobic substrate closer to the initial position of the
drop with increasing Γ.
The change in wettability is also reflected on the migration

velocity of the droplet. Comparing the positions of the drop for
the two highest values of Γ, we see that at t = 105 the drop has
moved less from its initial position for Γ = 0.01 than for Γ =
0.02 but later catches up. This is shown more clearly in Figure
6a where we have plotted the evolution of the position of the
left contact line for various values of Γ. Apparently, for Γ = 0.02
the left contact line decelerates at late times and the drop for Γ
= 0.01 appears to be moving faster toward the colder regions of

Figure 6. Position of the (a) left and (b) right contact line of the drop versus time, evolution of the (c) extent of spreading, (d) the position of the
center of mass of the droplet, and (e) the maximum height of the drop for different values of Γ. The rest of the parameter values are the same as
those used to generate Figure 4.
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the substrate (see also Figure 6d where we plot the position of
the center of mass of the drop with time). The behavior above
is somewhat counterintuitive because we would expect that
high thermal gradients would induce high Marangoni stresses
which would, in turn, accelerate the motion of the droplet
toward lower temperatures of the solid surface. Such behavior
has been reported in several theoretical studies in the
literature,10,16,17 and was actually shown to be true in the
limiting case of constant equilibrium angles in the previous
section. However, the present results clearly show that when we
take into account the contact line dynamics and in the general
case where the contact angle varies depending on the position
of the contact line on the solid surface, the thermocapillary
motion of droplets can be significantly more complex.
At this point we should also note that at very late times it is

reasonable to expect that the dynamic contact angle at the left
edge will eventually become equal to the equilibrium contact
angle at which point the motion of the droplet will stop. For
the particular set of parameters, it is straightforward to show
that the final distance that will be covered by the drop becomes
smaller with increasing the wall thermal gradient. Therefore,
apart from the nonmonotonic dependence of the translation
velocity on the thermal gradient, the inclusion of the contact
line dynamics in our model sets a limitation on the motion of
the droplet along the substrate in contrast to an infinite motion
of the drop under the influence of Marangoni stresses predicted
by previous models in the literature.17 This effect could also
provide an explanation for the decrease of the migration
velocity observed experimentally by Pratap et al.6

On the right edge, we observe that the thin film that follows
the drop as it moves toward colder regions in all cases of Figure
2 is no longer present in Figure 4b for Γ = 0.005. The film

appears at early times for Γ = 0.01 and disappears at later times
whereas it seems to persist for very long times for the highest
value of Γ = 0.02 (see Figure 4c,d). For moderate values of Γ,
as the drop translates toward colder temperatures, the
equilibrium contact angle at the right edge gradually increases
and at some point it becomes larger that the dynamic contact
angle triggering the retraction of the right contact line which is
enhanced by the action of Marangoni stresses. In Figure 6b, we
have plotted the evolution of the position of the right contact
angle with time which show clearly the retraction of right
contact line for intermediate values of Γ. This retraction also
results in the significant decrease of the area covered by the
drop and that is shown in Figure 6c. For the highest value of Γ
= 0.02, the equilibrium contact angle at the right edge initially
happens to be equal to zero (i.e., the contact line feels a
hydrophilic substrate from that side) and the liquid wets
perfectly the surface from that side. As a result the thin film that
is created, in this case, is very stable and remains in place till the
end of the simulation.
To explore further the effect of varying substrate wettability

due to temperature variation, we impose a constant wall
thermal gradient (Γ = 0.01), and vary the value of Cls and Csg.
As shown in Figure 7 even small variations in the value of Ci (i
= sg and ls) can have a significant impact on the resulting drop
motion by enhancing or inhibiting the translation of the droplet
toward colder regions of the wall. These results provide another
clear indication that the effect of contact line dynamics should
be an integral part of any study of the thermocapillary-driven
motion of droplets.
Next we investigate another interesting situation where the

interplay between Marangoni stresses and contact line
dynamics affect significantly the flow. In Figure 8, we present

Figure 7. Evolution of the drop profile for (a) Clg = Csg = 1 and Cls = 0.9, (b) Clg = Csg = 1 and Cls = 1.1, (c) Clg = Cls = 1 and Csg = 0.9, and (d) Clg =
Cls = 1 and Csg = 1.1, for Γ = 0.01. The rest of the parameter values are the same as those used to generate Figure 4.
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the case of a droplet that partially wets the solid substrate with
spreading parameter S = −0.02. In this case, the drop stays
stationary for a significant amount of time, then moves rapidly
toward the hotter region of the substrate before stopping. This
“stick−slip” motion of the droplet is highly unexpected, even
more so considering the fact that the drop moves in the
opposite direction to the action of Marangoni stresses, which
are due to the temperature gradient along the substrate.
To rationalize the above result, we examine the evolution of

the dynamic and equilibrium contact angles. In Figure 9, we see
that initially, θl < θa,l and θr > θa,r. As a result, if we ignore
temporarily the effect of Marangoni stresses, the left and right
contact lines will recede and advance, respectively. The action
of Marangoni stresses drives fluid flow from right to left, acting
to decrease θr and increase θl. As the right contact line
advances, it experiences a hotter substrate and, as a result, the
right equilibrium contact angle decreases. The drop experiences
an increasingly hydrophilic substrate from that side, and that
contact line starts to advance rapidly carrying away the bulk
drop. The left contact line moves to the right and experiences
higher temperatures which leads to a decrease of the
equilibrium contact angle, θa,l. As soon as the dynamic contact
angle becomes equal to the equilibrium contact angle, the
motion of that contact line stops. On the right side, the
dynamic contact angle continues to decrease as the equilibrium
contact angle becomes zero (perfectly wetting substrate);
however, Marangoni stresses, which act in the opposite
direction, do not allow the bulk drop to be carried away.

It is reasonable to expect that such a “stick−slip” motion will
take place for other sets of parameters that will correspond to
similar situations as the one described above. More specifically,
we expect that such motion would take place when the initial
configuration of the drop is such that the contact angles are
somewhere in between the corresponding equilibrium contact
angles, and the substrate becomes more hydrophilic with the
increase of temperature.

Inclined Wall. Effect of Bo. Next, we turn our attention to
the effect of gravity and to this end we will examine the
thermocapillary motion of a droplet along an inclined substrate.
Figure 10 presents the evolution of a drop for different values of
the Bond number considering an inclination angle, α = 30°.
Gravity pulls the drop toward the right side whereas the
Marangoni stresses act in the opposite direction, since the
temperature increases moving to the right (Γ > 0). We expect
that the direction of the motion of the droplet will depend on
the magnitude of the Bond number, and the temperature
gradient, both of which affect the relative strength of the gravity
and Marangoni forces. Indeed it is shown in Figure 10 that for
small values of Bo the Marangoni stresses dominate causing the
translation of the droplet toward the colder regions of the
substrate; this is also shown in Figure 11b where we plot the
evolution of the position of the center of mass of the droplet.
On the other hand, for large values of Bo the Marangoni
stresses are dominated by gravity, and the drop spreads
downslope acquiring a shape that resembles that of a pancake.
As shown in Figure 11, the extent of spreading depends

Figure 8. Evolution of the (a) drop profile and (b) position of the center of mass of the drop. The parameter values are Bo = 0.5, ε = 0.1, Clg = 1, Csg
= 0.5, Cls = 1, k = 10−3, m = 3, Γ = 0.01, α = 0°, δls = 1, and S = −0.02.

Figure 9. Evolution of (a) left dynamic contact angle, θl (solid line) and left equilibrium contact angle θa,l (dashed line), and (b) right dynamic
contact angle, θr (solid line) and right equilibrium contact angle θa,r (dashed line) for the parameter values are the same as those used to generate
Figure 8.
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significantly on Bo, and upon comparing with the case of a
horizontal substrate, we find that the spreading rate has

decreased considerably. This should come as no surprise since
in the former case the drop spreading is solely due to the effect

Figure 10. Evolution of the drop profile for (a) Bo = 0.05, (b) Bo = 0.1, (c) Bo = 0.2, and (d) Bo = 0.8. The rest of the parameter values are ε = 0.1,
Clg = 1, Csg = 1, Cls = 1.1, k = 10−3, m = 3, Γ = 0.01, α = 30°, δls = 1, and S = −0.001.

Figure 11. Evolution of the (a) extent of spreading and (b) the position of the center of mass of the droplet and the dynamic contact angles: (c) θl
and (d) θr for different values Bo. The rest of the parameters are the same as those used to generate Figure 10.
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of Marangoni stresses whereas in the latter case the gravity acts
in the opposite direction inhibiting spreading.
As the drop spreads out, its height decreases and this leads

eventually to a different balance between Marangoni stresses
and gravity. When the action of these two forces becomes equal
and the dynamic contact angles approach the equilibrium
contact angles, we expect that it would be possible for the drop
to reach a steady state. Actually, some of the simulations
presented in Figure 11 appear to satisfy these conditions and to
have reached such a stationary state. If we ignore the effect of
contact line dynamics, it is possible to obtain a rough estimate
of the mean height, hmean = ∫ xcl

xcrhdx/∫ xcl
xcr dx required for gravity

and Marangoni stresses to be balanced. Since we seek a steady

state solution, we set ht = 0 in eq 22. We also assume curvature
and, therefore, the capillary pressure term to be negligible; for
negligible slip, we can derive from eq 22 the following
expression for the mean height:

α
≈ Γ

h
Bo

3
2

1
sinmean (44)

Indeed, when we plot hmean versus 1/sinα in Figure 12a, we
find that the slope is approximately equal to 3Γ/(2Bo), in
agreement with eq 44. The small difference in the slope can be
attributed to the effect of contact line dynamics, which has been
ignored in the analysis above. In Figure 12b, we also present the
evolution of the position of the droplet for Bo = 0.5 and various
angles of inclination; it is shown that for all angles (except for

Figure 12. (a) Dependence of the mean height of the droplet, hmean, on the inclination angle; the solid line shows the computed value of hmean at t =
105 and the dotted line shows hmean as evaluated by eq 44. (b) Evolution of the position of the center of mass of the drop for different angles of
inclination and (c) drop profiles at t = 105. The rest of the parameter values are Γ = 0.01, ε = 0.1, Clg = 1, Csg = 1, Cls = 1.1, k = 10−3, m = 3, Bo = 0.5,
δls = 1, and S = −0.001.

Figure 13. Evolution of (a) the extend of spreading and (b) the position of the center of mass of the droplet for different values Γ. The rest of the
parameter values are ε = 0.1, Bo = 0.5, Clg = 1, Csg = 1, Cls = 1.1, k = 10−3, m = 3, α = 30°, δls = 1.0, and S = −0.001.
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Figure 14. Evolution of the (a) drop profile, (b) left dynamic contact angle θl (solid line) and left equilibrium contact angle θa,l (dashed line), and
(c) right dynamic contact angle θr (solid line) and right equilibrium contact angle θa,r (dashed line), for Γ = −0.005. The inset in panel b is the drop
profile at t = 7.5 × 105. The rest of the parameter values are the same as those used to generate Figure 13.

Figure 15. Evolution of the (a) drop profile, (b) left dynamic contact angle θl (solid line) and left equilibrium contact angle θa,l (dashed line), and
(c) right dynamic contact angle θr (solid line) and right equilibrium contact angle θa,r (dashed line) for Γ = −0.02. The rest of the parameter values
are the same as those used to generate Figure 13.

Langmuir Article

dx.doi.org/10.1021/la4014027 | Langmuir 2013, 29, 8892−89068904

http://pubs.acs.org/action/showImage?doi=10.1021/la4014027&iName=master.img-014.png&w=382&h=297
http://pubs.acs.org/action/showImage?doi=10.1021/la4014027&iName=master.img-015.png&w=382&h=292


the case of a horizontal plate) the motion of the droplet stops
as soon as all forces balance. The long-time shapes of the
droplet are presented in Figure 12c where we see that for finite
values of α the droplet is nearly flat, except for regions near the
contact lines where curvature effects are expected to be
significant; over the majority of the drop, however, h ≈ hmean.
Effect of Temperature Gradient, Γ. So far we have

examined cases for positive values of Γ, which implies that
gravity and the Marangoni stresses act in the opposite direction.
We now examine situations where both gravity and Marangoni
stresses act in the same direction; this can be achieved by
setting Γ < 0. One may be tempted to assume that, in this case,
the droplet will spread less and will move faster downslope
because of the combined action of Marangoni and gravity
forces. However, as we will see below, the effect of contact line
dynamics can be responsible for a much more complex
behavior which could not have been predicted easily.
Figure 13a,b presents the evolution of the extent of

spreading, and the position of the drop for various values of
Γ. For positive Γ, the droplet initially spreads and moves
downslope until it reaches a steady state, as described above.
For negative values of Γ, on the other hand, the situation varies
considerably. We observe in Figure 13b that the migration
velocity of the droplet depends in a nonmonotonic way on the
magnitude of the temperature gradient. At early times, for Γ =
−0.005 the drop migrates with approximately the same velocity
as for Γ = 0, implying that during this time the action of gravity
is dominant. Later on, however, the migration velocity changes
drastically and the droplet accelerates significantly for Γ =
−0.005. We also note that during the period of fast motion of
the droplet, the extent of spreading decreases abruptly. This
happens because the left contact line starts to retract leading to
a rapid decrease of the size of the thin film behind the drop
until all of it eventually integrates with the bulk drop (see
Figure 14a). The retraction of the contact line is triggered when
the dynamic contact line becomes smaller than the equilibrium
contact line at the left edge as is shown in Figure 14b. When
the contact line starts to retract, it comes into contact with a
substrate of increasing surface energy due to the effect of
temperature. As a result, the retraction of the contact line is
accelerated. These results imply that, in this case, Marangoni
stresses, gravity forces, as well as the varying substrate
wettability, all act cooperatively to enhance the migration of
the droplet.
On the other hand, it appears that this is not the case for

higher values of Γ, and this can been seen very clearly in Figure
13b. The migration velocity for Γ = −0.02 is found to be
smaller than for Γ = 0, and the curve that shows the evolution
of the position of the center of mass follows closely that for Γ =
0.005. The evolution of the drop profiles for Γ = −0.02 is
presented in Figure 15 along with the evolution of the dynamic
and equilibrium contact angles. We observe that throughout the
simulation the film behind the droplet remains stable unlike for
Γ = −0.005. This happens because due to the increased
temperature gradient the wettability of the substrate now differs
significantly, and the equilibrium contact angle becomes equal
to zero, which implies that the solid surface can be fully wetted
from the left side stabilizing the film. Therefore, we see that for
Γ = −0.02 the effect of wettability actually inhibits the
migration of the droplet, in contrast to what occurs for smaller
values of Γ. It becomes apparent that the thermocapillary
motion of the droplet is very complex, and the effect of

wettability and contact line dynamics should be an integral part
of the theoretical study of this problem.

■ CONCLUSIONS

We have studied the two-dimensional dynamics of a droplet
moving on a nonisothermal, inclined solid substrate, heated
with constant temperature gradients, bounded from above by a
hydrodynamically passive gas. Lubrication theory is used in
conjunction with asymptotic reduction to simplify the
equations of mass, momentum, and energy conservation, and
derive a single evolution equation for the gas−liquid interface.
This equation models droplet motion driven by gravity,
capillarity, and Marangoni stresses arising from the dependence
of surface tension on the local temperature. Crucially, our
model also accounts for contact line motion in the presence of
dynamically varying substrate wettability brought about by local
temperature variations; this, in turn, arises due to local
variations of the equilibrium contact angles (at the two edges
of the droplet) through their dependence on the temperature-
dependent surface tensions of the gas−liquid, liquid−solid, and
solid−gas interfaces. This important feature of the model has,
to the best of our knowledge, not been taken into account by
previous models in the literature in which the contact angles
were kept constant; this is valid only when the surface tension
of all interfaces has the same dependence on temperature.
We have used a finite-element formulation and an implicit

Euler method in time to solve the interface evolution equation.
A full parametric study was carried out that focused on the
interplay between the effects of the magnitude of the substrate
temperature gradient, substrate wettability, Marangoni stresses,
and gravity. Results were generated for the spatiotemporal
evolution of the droplet shape, and the dynamics of the contact
lines, and contact angles for a wide range of parameters starting
from drop shapes that are initially far from equilibrium. These
results show that for constant equilibrium contact angles,
substrate temperature gradients give rise to enhanced spreading
rates, characterized by exponents as large as 2/3; these are
larger than those predicted by Tanner’s law, as as well as the 1/
2 exponents obtained for nonisothermal spreading by
neglecting the contact line dynamics.17

In the presence of temperature-induced wettability variations,
the dynamics are rather complex. This is characterized by a
nonmonotonic dependence of the droplet center-of-mass
velocity on the magnitude of the substrate temperature gradient
for horizontal substrates, and situations wherein, for inclined
substrates, this monotonicity persists even when the thermal
gradient is such that Marangoni stresses are expected to
reinforce the action of gravity. We have also found evidence of
“stick−slip” contact line motion that arises in cases in which the
initial contact angles are between the corresponding temper-
ature-varying equilibrium values. These results show collectively
that it is essential to account for variations of the substrate
wettability in models of droplet motion over nonisothermal
walls.
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