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ABSTRACT: Recent experiments on the evaporation of
sessile droplets have revealed the spontaneous formation of
various patterns including the presence of hydrothermal waves.
These waves had previously been observed, in the absence of
evaporation, in thin liquid layers subjected to an imposed,
uniform temperature gradient. This is in contrast to the
evaporating droplet case wherein these gradients arise naturally
due to evaporation and are spatially and temporally varying. In
the present paper, we present a theory of evaporating sessile
droplets deposited on a heated surface and propose a
candidate mechanism for the observed pattern formation
using a linear stability analysis in the quasi-steady-state approximation. A qualitative agreement with experimental trends is
observed.

■ INTRODUCTION

The dynamics of evaporating droplets are central to several
technological and biomedical applications that involve heat and
mass transport; these include small-scale applications, such as
cooling of microelectronics chips and medical diagnostics based
on stain analyses of biofluid samples,1,2 and industrial-scale
applications, such as heat exchangers, boilers, and condensers.
The behavior of these droplets, however, remains poorly
understood, as demonstrated by recent experiments on the
evaporation of sessile droplets that revealed the spontaneous
formation of various patterns including the presence of
hydrothermal waves (HTWs)3 (see Figure 1). The latter
correspond to thermally induced traveling waves, which occur
in the absence of surface deformations, and derive their energy
from the base flow temperature gradients. The experimental
work of Sefiane et al.3 on droplets evaporating under ambient
conditions was also complemented by experiments performed
on superheated substrates;4 it was concluded that increasing the
superheat tends to increase the wavenumber of the thermal
waves. More recently, Brutin et al.5 presented a series of
experiments on heated droplets exhibiting similar patterns to
those reported in Sefiane et al.3

In previous work, the presence of HTWs was predicted, in
the absence of evaporation, for thin liquid layers of constant
thickness subjected to an externally imposed, uniform temper-
ature gradient.6−8 Smith and Davis6 have shown that fluid
layers subjected to sufficiently large horizontal temperature
gradients become unstable and exhibit steady longitudinal rolls
or unsteady hydrothermal waves. The latter propagate parallel
and almost perpendicularly to the temperature gradient for
small and large Prandtl numbers, respectively.6−8 The presence
of these waves has been experimentally confirmed in differ-

entially heated pools of ethanol9 and silicon oil.10−12 In the case
of annular pools, HTWs resemble spirals at relatively large
values of the thickness, and, for films whose depth is less than
the capillary length scale, the observed HTWs propagate
radially from the inner to the outer edge of the cylinder.
Temperature fluctuations associated with HTWs propagating in
an annulus have also been reported;13 the amplitude and
frequency of these oscillations depend on the imposed
temperature gradient as well as the fluid depth.
In contrast to the evaporation-free cases studied previously,

the temperature gradients and the drop thickness in the case of
evaporating droplets vary spatially and temporally, and are a
natural consequence of the evaporation process; exploring their
role in the formation of convective rolls and hydrothermal
waves in evaporating droplets is the subject of the present work.
We focus on heated droplets because this problem permits use
of the simplifying “one-sided” approximation (negligible vapor
density, viscosity, and thermal conductivity),14 allowing us to
concentrate solely on the liquid phase; this also allows us to
derive the simplest model that contains the physical
mechanisms that drive instability and pattern formation. We
solve numerically for the evolving base state, corresponding to
an evaporating, two-dimensional droplet, and then linearize
about this state by invoking the quasi-steady-state approx-
imation to investigate its linear stability characteristics to
azimuthal perturbations. Our results demonstrate that the “one-
sided” model is sufficient to describe the development of
pattern formation in evaporating sessile droplets.
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■ PROBLEM FORMULATION
We study the behavior of an evaporating droplet of density ρ,
viscosity μ, and thermal conductivity λ, which rests on a
uniformly heated solid surface (see Figure 2). The substrate

temperature, Tw, is constant, while the surrounding temper-
ature is Ta. The liquid−air interface has a surface tension, σ,
which depends linearly on temperature, σ = σ0 − γ(Ts − Ta); Ts
denotes the interfacial temperature, γ = −dσ/dT, and σ0 is the
surface tension at the ambient temperature. We assume that the
droplet initially has maximal thickness H0, radius R0, and
uniform temperature, T|t=0 = Tw, and adopt the “one-sided”
model of evaporation (negligible vapor density, viscosity, and
thermal conductivity).14

We introduce the following scaling (tildes denote dimension-
less variables):
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where ε = H0/R0, ΔT = Tw − Ta, U = εγΔT/μ is a characteristic
velocity, L is the latent heat, while v, P, J, and t denote the
velocity vector, pressure, evaporative flux, and time, respec-
tively. The tildes are henceforth suppressed. The dimensionless
groups that arise are the Reynolds number, Re = ρUH0/μ, the
Prandtl number, Pr = μCp/λ, the Stokes number, St = ρgH0

2/
(μU), the effective Marangoni number, Ma = γΔT/σ0, and the
evaporation number, E = λΔT/(ρUH0L); the evaporation
number represents the ratio of the viscous to evaporative time
scales. Table 1 provides the properties of fluids used in the
experiments shown in Figure 1 and the corresponding values of
the dimensionless parameters.
The flow in the droplet is incompressible and governed by

the following dimensionless mass, momentum, and energy
balance equations

∇· =v 0 (2)

∂
∂

+ ·∇ + ∇ − ∇ − =⎜ ⎟⎛
⎝

⎞
⎠Re

t
P St

v
v v v g 02

(3)

∂
∂

+ ·∇ − ∇ =⎜ ⎟⎛
⎝

⎞
⎠RePr

T
t

T Tv 02

(4)

The boundary conditions imposed at the solid wall (z = 0)
correspond to no-penetration, the Navier slip condition, and
constant temperature:

=v 0z (5)
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Recently, Ren and E15 performed molecular dynamics
simulations to investigate the suitability of various boundary
conditions along a moving contact line. Their simulations
suggest that the best approach among the models they have
studied is to replace the Navier slip condition at the contact line
(z = 0, r = Rc) with the following equation

β ϕ ϕ= −v (cos cos )r cl s (8)

According to this model, the deviation of the dynamic
contact angle, ϕ, from its static value, ϕs, provides the driving
force for contact line motion. This model is very similar to the
Cox−Voinov model,16 widely used for thin drops using the
lubrication approximation, but is more suitable for drops that
are not so thin.

Figure 1. Patterns in sessile drops of water, methanol, and FC-72 refrigerant evaporating on silicon substrates, shown in panels a−c, respectively,
obtained using IR thermography. Reprinted with permission from ref 3. Copyright 2008, American Institute of Physics.

Figure 2. Schematic of an evaporating droplet on a solid surface.

Table 1. Physical Properties and Dimensionless Numbers of
fluids at 25 °C and 1 atma

water methanol FC-72

ρ (kg m−3) 997 791 1680
ρg (kg m−3) 0.59 0.21 4.35
μ (mPa s) 0.890 0.560 0.638
λ (W m2 K−1) 0.606 0.203 0.057
Cp (J kg

−1 K−1) 4180 2531 1100
L (kJ kg−1) 2449 1165 88
σ0 (mN m−1) 72.7 22.7 12.0
γ (mN m−1 K−1) 0.17 0.08 0.09

Re 128 121 223
Pr 6.14 6.98 12.3
Ma 0.012 0.018 0.037
E 1.1 × 10−5 1.3 × 10−5 2.3 × 10−5

St 20.7 34.9 65.8
K 7.9 × 10−5 2.4 × 10−5 1.8 × 10−5

aThe dimensionless parameters are evaluated assuming ΔT = 5 °C
and a droplet with initial radius R0 = 3 mm and maximum height H0 =
0.6 mm.
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Along the liquid−air interface, we impose a local stress
balance, neglecting the effect of vapor recoil

ε σ σ· − + ∇ + ∇ − ∇ + =− −PI Man v v n( ) ( 2 ) 0T 1 1
s

(9)

where 2 = −∇s·n, ∇s = (I − nn)∇ and I is the identity
matrix. In addition, we impose the kinematic equation

∂ ∂ + ·∇ =f t f EJv/ (10)

where f describes the position of the interface and a condition
for thermal flux

= − ·∇J Tn (11)

The evaporative effects are modeled using the following
constitutive equation.14

=KJ Ts (12)

The parameter K = λTa
3/2(2πRg)

1/2/(ρgH0L
2) measures the

degree of nonequilibrium at the evaporating interface; ρg and Rg
denote the vapor density and gas constant, respectively. In the
results that will be presented below, we have taken the value of
K to be larger than that shown in Table 1 for demonstration
purposes. However, we should note that the value of K can be
associated with the inverse of the Biot number used by Ehrhard
and Davis17 and therefore a wider range of K can be relevant for
these systems.
The governing equations are discretized using the finite-

element method combined with an elliptic mesh generation
scheme, which is capable of following the deformations of the
physical domain.18 For all the computations presented in this
paper, we have used 100 and 20 elements in the radial and axial
direction, respectively; convergence was achieved upon mesh
refinement. The resulting set of discrete equations is integrated
in time with the implicit Euler method.
Linear Stability Analysis. In order to examine the stability

of the flow, we consider the effects of infinitesimal disturbances
to the base flow and perform a linear stability analysis. We
apply the quasi-steady-state approximation (QSSA) which
assumes that the growth rate of the disturbances is much
faster than the rate of change of the evolving base state.
Accordingly, we “freeze” the solution at one time instant, tqs,
and use this solution as the base state about which we perform
a linear stability analysis. We perturb this base state solution
allowing for 3D disturbances and write each variable in the
following form

θ = + α θ+X r z t X r z t X r z( , , , ) ( , , ) ( , )e t ik
b qs p (13)

where Xb is the “frozen” base state solution and Xp is the
perturbation. Substituting these normal modes into the
governing equations and neglecting higher-order terms, we
obtain a generalized eigenvalue problem of the form

α=P Qx x (14)

where α are the eigenvalues and x the eigenvectors. Regarding
the boundary conditions at the axis of symmetry, we follow a
similar approach to Preziosi et al.19 The eigenvalue problem is
solved using the Arnoldi algorithm as it is implemented in the
ARPACK library.

■ RESULTS
Base State. We will begin our study by considering first the

case of an axisymmetric droplet. It is important to note that

inclusion of inertia, which has been largely ignored in previous
studies,20−22 makes this case quite novel. The presence of
inertia may give rise to interesting phenomena such as
interfacial oscillations,23 which will be discussed below.
Figure 3 presents simulations for various values of the

evaporation number, E, while the rest of the parameters are

shown in the caption of the same figure; the choices of the
parameters used are in the range expected for small droplets of
liquids like the ones used in the experiments of Figure 1.
During the early stages of the simulation, the contact line
remains pinned until at some point it starts receding due to
droplet evaporation; the receding takes place earlier as E
increases. Depending on the value of the static contact angle,
and in cases where the evaporation is not too strong, the
droplet may spread before it starts receding (e.g., for E =
0.00005). In Figure 3, we also present the time evolution of the
droplet height at the axis of symmetry. Due to the presence of
inertia, the liquid−air interface at some point starts to oscillate
near the center of the drop and these oscillations soon decay;
the amplitude and frequency of these oscillations are largely
insensitive to E. On the contrary, they depend strongly on Re,
and for very small values of Re, they become imperceptibly
small (see Figure 4). Following the decay of these oscillations,
the height of the droplet near the center may either decrease
monotonically with time, for small values of E, or increase
followed by rapid decrease, for large E. In the latter case, strong
evaporation gives rise to steeper temperature gradients which
induce, in turn, higher Marangoni stresses drawing fluid toward
the center of the drop. With increasing time, the droplet loses

Figure 3. Time evolution of the position of the contact line, Rc, and
the height of the air−liquid interface at r = 0, h(0, t), for Re = 100, Pr =
1, St = 50, Ma = 0.01, K = 0.1, βsl = 105, ϕs = 0.2, βcl = 0.1, and ε = 0.2.

Figure 4. Time evolution of the height of the air−liquid interface at r
= 0, h(0, t), for various Re; the rest of the parameters are the same as in
Figure 3.
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mass due to evaporation, and the interfacial height decreases
until the droplet vanishes.
Figure 5 depicts contour lines of the temperature field along

with streamlines for E = 0.0005 at two different time instants,

keeping the rest of the parameters fixed. At early times, the
temperature decreases locally around the liquid−air interface as
the liquid cools due to evaporation and another temperature
gradient arises close to the contact line due to the presence of
the heated solid wall, which is at constant temperature, higher
than the saturation temperature. The temperature gradient in
the contact line region induces locally high Marangoni stresses,
which give rise to a small recirculation vortex. With increasing
time, the temperature gradient spreads along a larger portion of
the interface and the vortex grows significantly until it engulfs
the whole droplet; the direction of the vortex is in agreement
with previous studies for substrates of infinite conductivity.21,24

Increasing the value of Pr renders the dynamics more complex
and, as can be seen in Figure 6, for Pr = 7, multiple rolls are

formed; increasing the value of Pr leads to an increase in the
number of these cells. Furthermore, their number and size
decreases with time as the droplet shrinks due to evaporation.
We should note that the flow in this case is similar to the
cellular motion described by Pearson25 due to surface tension
forces when a thin layer of fluid is heated from below, in the
absence of buoyancy.
Linear Stability Analysis. We proceed in our analysis by

performing a quasi-steady-state linear stability analysis as
described in section 2 to account for nonaxisymmetric
perturbations. We compute the eigenvalues of our system for
various values of the wavenumber, k. The stability of the flow is

determined by the real part of the eigenvalues, α. When all the
eigenvalues have a negative real part, the corresponding
eigenmodes will decay, whereas if at least one eigenvalue has
a positive real part the corresponding eigenmode is linearly
unstable.
In Figure 7, we present the computed eigenvalues of the

most dangerous modes as a function of the base state time for E
= 0.0005, keeping the rest of parameters the same as in Figure
3; αR and αI denote the real and imaginary parts of the
eigenvalue, respectively. Every point of this figure corresponds
to a solution of an eigenvalue problem, as described above,
assuming that at the corresponding time instant the base state is
quasi-steady. The solid line in Figure 7a depicts the evolution of
dh/dt at r = 0. The rest of the subplots in this figure present the
wavenumber associated with the most unstable mode, kd, and
the cutoff mode, kc, beyond which all modes are stable. At early
times, the computed eigenvalues are affected significantly by the
presence of surface deflections, which are due to the presence
of inertia. These results indicate that the validity of the QSSA
analysis is questionable at early times because the presence of
interfacial oscillations makes the growth rate of the base state
comparable to that of the perturbation. However, after some
time, the base state oscillations decay and the perturbation
growth rates become much larger than that of the base state.
Since the perturbations grow exponentially with time, we can
safely assume that the QSSA analysis becomes valid after this
point (approximately for t > 20 for this choice of parameters).
In Figure 8a,b, we show contour plots of the temperature

disturbances in (r, θ) that correspond to the most dangerous
mode at two “quasi-static” times with Re = 100 and Pr = 1.
Inspection of this figure shows that, for times beyond which the
QSSA is valid (see Figure 7), the most dangerous eigenvalues
have zero imaginary part, indicating the presence of stationary
rolls. Also, the growth rate and the value of the wavenumber
associated with the most dangerous mode decrease with time,
as the droplet evaporates, in direct agreement with the
experimental observations.3 Although the validity of the
QSSA analysis at early times is questionable, as noted above,
it is still interesting to examine the form of the eigenvectors at
times where the base state growth rate is relatively small. We
observe that modes with nonzero imaginary parts emerge and
this is the signature of traveling waves in the azimuthal
direction. The presence of these hydrothermal waves can be
seen clearly in Figure 8a. It is noteworthy that these wave-trains
resemble remarkably the ones seen in the experiments3 (see
Figure 1b). For 20 < t < 50, the most dangerous mode has k =
3, and the temperature contours associated with this mode,
shown in Figure 8b, are reminiscent of the “flower-like”
patterns observed in differentially heated cylindrical cavities.12

In Figure 8c, we present the selected mode for the base state
shown in Figure 6, generated for relatively late times, t = 125,
Re = 20, and Pr = 7. In this case, the most dangerous mode has
k = 6. The base flow in combination with the perturbation
profile shown in Figure 8c results in patterns which resemble
the experimental observations in Figure 1c for FC-72.
In order to identify the physical mechanism and the nature of

unstable modes, we have performed an “energy budget”
analysis following the methodology outlined in the Appendix.
The analysis was performed for the cases shown in Figure 8,
and the terms with the largest contributions to the budget are
given in Tables 2 and 3; the ones omitted are either zero or
negligible. The energy decomposition reveals that the
dissipative terms, ϕdis and ϕdif, provide negative contributions;

Figure 5. Contour plots of temperature and streamlines for Re = 100,
Pr = 1, and E = 0.0005 at (a) tqs = 2.5 and (b) tqs = 250; the rest of the
parameters are the same as in Figure 3. A video of the simulation is
available at http://workspace.imperial.ac.uk/ceFluidMechanics/
Public/Re100_Pe100_E0.0005.avi.

Figure 6. Contour plots of temperature and streamlines for Re = 20, Pr
= 7, and E = 0.0005 at tqs = 125; the rest of the parameters are the
same as in Figure 3. A video of the simulation is available at http://
workspace.imperial.ac.uk/ceFluidMechanics/Public/Re20_Pe140_E0.
0005.avi.
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this indicates that viscous dissipation and thermal diffusion
provide a restoring effect and are stabilizing, as expected. The
only positive contributions to dKE/dt and dTE/dt come from
ϕint,1 and ϕadv, respectively. This implies that the unstable
modes are driven by Marangoni stresses and advection. These
results demonstrate that the instabilities presented in this paper
share a similar mechanism to that which drives the formation of
hydrothermal waves. This mechanism is described in detail by
Smith and Davis6−8 for thin liquid layers of constant thickness

subjected to an externally imposed, uniform temperature
gradient: for small Pr number, it involves the transfer of energy
from the horizontal basic state temperature field to the
disturbances through horizontal convection, whereas, for large
Pr number, it involves the transfer of energy from the vertical
basic state temperature field to the disturbances through
vertical convection. It is important to reiterate that an
important difference in the present case is the fact that the
temperature gradients which drive this instability are not

Figure 7. Evolution of the most unstable mode as predicted by the QSSA analysis for E = 0.0005; the rest of the parameters are the same as in Figure
3.

Figure 8. Contour plots of the temperature perturbations of the most unstable modes for E = 0.0005; the rest of the parameters are the same as in
Figure 3.

Table 2. Kinetic Energy Budgets for the Cases Shown in Figure 8, Calculated Using eq 15

Re Pr t kd ϕrey ϕdis ϕint,1

100 1 2.5 9 −6.03 × 10−3 −1.06 × 10−1 1.14 × 10−1

100 1 25 3 −1.97 × 10−7 −2.41 × 10−5 2.51 × 10−5

20 7 125 6 −1.13 × 10−4 −1.90 × 10−3 1.95 × 10−3

Table 3. Thermal Energy Budgets for the Cases Shown in Figure 8, Calculated Using eq 16

Re Pr t kd ϕadv ϕdif ϕint,2

100 1 2.5 9 1.31 × 10−1 −1.09 × 10−1 −1.83 × 10−2

100 1 25 3 6.29 × 10−5 −5.27 × 10−5 −6.67 × 10−6

20 7 125 6 5.28 × 10−3 −2.88 × 10−3 −5.97 × 10−4
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imposed externally but are a natural consequence of the
evaporating process.
The role of evaporation on the stability of the flow

considered in the present paper is quite complex: on the one
hand, it stabilizes the flow by removing heat from the interface
with a tendency to make the temperature along the interface
more uniform; on the other hand, it destabilizes it by inducing
higher thermal gradients in the radial direction due to the
presence of the solid wall. This interplay is demonstrated by the
fact that the term associated with Marangoni stresses, ϕint,1, is
positive and the term associated with the cooling effect of
evaporation, ϕint,2, is negative. By increasing the rate of
evaporation, it is expected that the temperature will be more
uniform along the interface, closer to the saturation temper-
ature, and therefore, its stabilizing role should prevail. The latter
is supported by the results of our simulations shown in Figure
9. In this figure, we plot the dispersion curves for two different

evaporation numbers and we find that the wavenumber
associated with the most unstable mode, kd, decreases from
kd = 4 (for E = 0.0001) to kd = 3 (for E = 0.0005). The trend is
also similar for the cutoff mode, kc, which decreases as the
evaporation number, E, increases.

■ CONCLUSIONS
We have studied the dynamics of evaporating droplets on
heated substrates using the “one-sided” model and focused on
the instabilities that accompany the evaporation process. We
have carried out a linear stability analysis of the flow in the
quasi-steady-state approximation, which predicts the formation
of stationary cells and traveling hydrothermal waves, in
qualitative agreement with experimental observations. Fur-
thermore, an “energy budget” decomposition highlighted the
role of thermo-capillary-driven Marangoni stresses and
advection as the key contributors to instability. To make a
quantitative comparison with experimental observations, it
would be necessary to proceed with three-dimensional (3D)
dynamic simulations, since the flow in this case is inherently
3D. Moreover, it would also be useful to consider the more
complicated, “two-sided” models26−28 which should include the
effect of vapor concentration taking into account the gaseous
phase and the substrate thermal properties.

■ APPENDIX
The “energy” method considers the mean flow and the
disturbance flow by evaluating the mechanical and thermal
energy balance for the system. Decomposition of the kinetic
and thermal energy equations into energy production and

dissipation terms allows one to isolate the mechanisms by
which energy is transferred from the base flow to the
disturbances.
The disturbance kinetic and thermal energy equations are

obtained by taking the inner product of the perturbed
momentum and energy equation with the velocity and
temperature perturbation, respectively. The resulting equations
are integrated over the volume of the flow field and one
periodic cycle in time (i.e., 0 < t < 2π/αI). We end up with with
the following equations:

ϕ ϕ ϕ= + +
t

dKE
d rey dis bnd,1 (15)

ϕ ϕ ϕ= + +
t

dTE
d adv dif bnd,2 (16)

where

= ⟨ · ⟩
t

v v
dKE

d
1
2 p p (17)

ϕ = −⟨ ·∇ + ·∇ · ⟩v v v v v( )rey p b b p p (18)

ϕ = − ⟨ − + ∇ + ∇ ∇ ⟩
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The symbols ⟨ ⟩ and [ ] are defined as follows:

∫ ∫⟨ ⟩ =
π α

f f V td d
V0

2 / I

(25)

∫ ∫=
π α

f f S t[ ] d d
S0

2 / I

(26)

where V and S denote the drop volume and the surface area
along the boundaries, respectively.
In eq 15, dKE/dt denotes the rate of change of the kinetic

energy of the disturbances, ϕrey represents the contribution of
“Reynolds stress”-like terms (arising from the products of
disturbances), ϕdis represents the viscous dissipation, and ϕbnd,1
the contribution of stresses along the boundaries. In eq 16,
dTE/dt denotes the rate of change of the thermal energy of the
disturbances, ϕadv represents the contribution of advection, ϕdif
represents the thermal diffusion, and ϕbnd,2 the contribution of
thermal gradients along the boundaries. Both ϕbnd,1 and ϕbnd,2
can be decomposed into contributions associated with the
interface and the wall

ϕ ϕ ϕ= +i i ibnd, int , wall, (27)

ϕint,1 and ϕwall,1 are evaluated using eq 20, where S = Sint for
ϕint,1 and S = Swall for ϕwall,1. Likewise, ϕint,2 and ϕwall,2 are
evaluated using eq 24 along the interface and the wall,

Figure 9. Dispersion curves for Re = 100 and Pr = 1 at t = 25 for
different values of the evaporation number, E; the rest of the
parameters are the same as in Figure 3.
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respectively. The rest of the boundaries have no contribution to
the energy budget.
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