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Sessile liquid lenses spreading over a fluid layer, in the presence of Marangoni stresses due to

surfactants, show a surprisingly wide range of interesting behaviour ranging from complete

spreading of the lens, to spreading followed by retraction, to sustained pulsating oscillations.

Models for the spreading process, the effects of surfactant at the moving contact line, sorption

kinetics above and below the critical micelle concentration, are all incorporated into the modelling.

Numerical results cast light upon the physical processes that drive these phenomena, and the

regular oscillatory beating of lenses is shown to occur in specific limits. VC 2011 American Institute
of Physics. [doi:10.1063/1.3670009]

I. INTRODUCTION

The spreading of liquids on other immiscible liquids is

central to a number of applications including coating flow

and lubrication technologies, the production of pesticides,

fire extinguishing, and anti-foaming agents, oil recovery, and

oil-spill clean-up. It is unsurprising, therefore, that this sys-

tem has been the subject of a number of studies in the litera-

ture. The early papers focused mainly on uncontaminated

liquids, a prime example of which is the work of Harkins1

who advanced the concept of a spreading coefficient. For the

case of a layer of liquid “2” spreading over another immisci-

ble liquid “1,” S� is defined as follows:

S� ¼ r�13 � ðr�23 þ r�12Þ: (1.1)

Here, r�13, r�23, and r�12 denote the surface tension of liquid

“1,” liquid “2,” and of the interface separating these liquids.

The superscript “*” indicates that the corresponding variable

is dimensional. Spontaneous spreading is expected for

S� > 0 and for S� < 0, one expects the formation of a stable

lens-shaped drop of liquid “2” on the surface of liquid “1.”

The consequences of a positive spreading coefficient,

S� > 0, have been studied in several papers2–5 examining

spreading over deep layers for which the spreading exhibits a

power-law behaviour, consistent with the scaling theory of

Hoult;6 the radius of a spreading lens, R, scales as R � t3=4,

where t denotes the time elapsed following the deposition of

the lens. This scaling is also valid for spreading along the

liquid-liquid interface of two deep immiscible fluids.7 For

spreading over thin fluid layers, where the lubrication approx-

imation is valid, the power-law exponent decreases to 1/7.8,9

For negative spreading coefficients, S� < 0, Kriegsmann

and Miksis10 studied the steady-state shapes of lenses of one

liquid on the surface of another, resting on an inclined plane,

using lubrication theory. These authors treated the three-

phase contact line as a massless point and derived boundary

conditions at this point by writing down equilibrium force

balances. More recently, Craster and Matar11 also used the

lubrication approximation to model lens formation but did

not consider the presence of the three-phase contact line ex-

plicitly. Instead, they followed the approach of Schwartz and

Eley12 and carried out a force balance in the vicinity of the

contact line where the lens adjusts onto a thin, stable wetting

layer, stabilised by antagonistic intermolecular forces. Craster

and Matar11 used their model to simulate the development of

lenses over a wide range of parameters, which included the

density, viscosity, and surface tension ratios; they also exam-

ined briefly the role of extensional stresses in the lens, which

becomes significant for highly viscous lenses.

In addition, a number of papers have examined the effect

of surfactants on liquid-on-liquid spreading. Surfactant plays

a potentially major role in the spreading process since it can

lower significantly the surface tension of the interface upon

which it is deposited; gradients in the surfactant interfacial

concentration create Marangoni stresses that drive spreading

in the direction of higher tension.13 Surfactants are often pres-

ent at interfaces in the form of contaminants, or by design, as

in the case of detergents; surfactants can also be present natu-

rally, as is the case with phospholipids, an example of lung

surfactant, or may be the product of interfacial chemical reac-

tions.14 Inspection of Eq. (1.1) reveals that surfactants can

lower r�23 and/or r�12 leading to S� > 0 in situations which

would have otherwise been characterised by negative S�.
Bergeron and Langevin15 showed that similar power-law

exponents to those observed for pure liquid can be found in

situations, wherein the surfactant is insoluble in the spreading

liquid. In other studies, a power-law of R � t1=2 was observed

for the spreading of surfactant solutions on an immiscible

organic substrate layer.16–23 The power-law exponents found

by Svitova et al.21 to be consistently lower than the 3/4 pre-

dicted by Hoult6 were attributed by Chauhan et al.22 to the

influence of surfactant diffusion within the lens.

The dynamics of lenses containing surfactant are often

accompanied by complex behaviour an exemplar of which is

the regular oscillatory beating of a sessile lens upon a fluid
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layer. Experiments by Stocker and Bush,24 who revisit ear-

lier work by Sebba,25 show that a surfactant-laden oil drop

placed on a water surface has a radius that can oscillate for

long times. The long-term sustained oscillatory behaviour is,

at first sight, perplexing as one naturally wonders how this

behaviour is generated, and sustained, with no obvious

source of forcing. Using very careful experiments and video-

microscopy, Stocker and Bush24 reveal that the oscillations

are generated by partial emulsification at the lens edge and

sustained by the evaporation of surfactant from the water

surface. The subsequent retraction of the lens is initiated by

the rapid formation of thin films at the lens leading edge, due

to growth of perturbations in the azimuthal direction, releas-

ing surfactant at the water-air interface, and thereby decreas-

ing its surface tension. This provides a serious challenge in

terms of modelling; a model for the lens oscillations is devel-

oped in Sec. IV B 4.

In spite of these numerous studies in the literature, the

spreading behaviour of surfactant-laden lenses remains

poorly understood. To the best of our knowledge, we are not

aware of any models capable of providing accurate predic-

tions of the dynamics of surfactant-laden lenses of one liquid

spreading on the surface of another immiscible liquid. We

therefore revisit this problem, our aim being to create models

of sufficient complexity that they are capable of capturing

observed phenomena, but are sufficiently simple so as to

allow for physical interpretation; the fluid mechanics takes

advantage of the thin lenses and consider flow over a shallow

layer, thereby allowing the lubrication approximation to be

utilized. We build on the work of Karapetsas et al.,26 who

studied the super-spreading of thin surfactant-laden drops on

solid substrates,27,28 and derive a coupled set of equations

for the interfaces “13,” “23,” and “12” [as defined by

Eq. (1)], and for the surfactant concentrations at these inter-

faces. The surfactant is allowed to exist in the form of inter-

facial and bulk monomers, as well as in the form of micellar

aggregates. The model developed accounts for Marangoni

stresses, surface and bulk diffusion, sorption and micellar

formation and breakup kinetics, and the effects of surfactant

on the moving contact line. Our results demonstrate that

power-law exponents range from 1/7 to 1/2 depending on the

range of parameters investigated. We also show that it is pos-

sible, under certain conditions, for the lens to exhibit sus-

tained oscillations reminiscent of those observed by Stocker

and Bush;24 the mechanism underlying this behaviour is

detailed herein.

The rest of the paper is organised as follows. Details of

the model derivation and of the numerical procedure are pro-

vided in Secs. II and III, respectively. A discussion of the

results of our parametric study can be found in Sec. IV; this

section also contains details of the numerical procedure used

to carry out the computations. Finally, concluding remarks

are given in Sec. V.

II. PROBLEM FORMULATION

The dynamics of a surfactant-laden lens of a viscous

fluid of density q�2 and viscosity l�2 spreading on the surface

of a layer of another fluid of density and viscosity q�1 and l�1,

respectively, is considered; properties of the lens and of the

bottom fluid will, henceforth, be designated by subscripts 1

and 2, respectively. Both fluids are assumed to be incom-

pressible, Newtonian, and immiscible. The bottom layer is

bounded from below by an impermeable, rigid, and horizon-

tal solid substrate, while both fluids are bounded from above

by an essentially inviscid gas (designated by subscript 3).

The surface tensions of the lens-air, substrate-air, and lens-

substrate interfaces are r�13, r�23, and r�12, respectively. We

assume that initially the lens has a half-width L� and volume

V�2 as shown in Fig. 1. In the present work, we consider the

drop to be very thin so that the drop aspect ratio,

e ¼ V�2=L�2, is assumed to be very small; this is a reasonable

assumption for the majority of experimental situations of,

say, oil spreading upon water. This assumption permits the

use of lubrication theory, which will be employed below to

derive a set of evolution equations that govern the spreading

process. It should be noted here that the lubrication approxi-

mation assumes small slopes, and therefore, this model does

not formally capture droplet spreading with high contact

angles. Our primary interest is in developing a model, suffi-

ciently complicated to capture the essential physics, whilst

being simple enough to isolate and understand the physico-

chemical mechanisms primarily at the droplet edge, and

hence, we consider Cartesian rather than axisymmetric,

model geometry.

A. Hydrodynamics

We use a Cartesian coordinate system, x�; z�ð Þ, to model

the dynamics, and the velocity field is u� ¼ u�;w�ð Þ, where

u� and w� correspond to the horizontal and vertical compo-

nents of the velocity field, respectively. The various interfa-

ces are located at z� ¼ h�j ðx�; t�Þ, where j ¼ 12; 13; 23. The

spreading dynamics for both fluids are governed by momen-

tum and mass conservation equations, respectively, given

below

q�i u�i;t� þ u�i � ru�i

� �
þrp�i � l�ir2u�i � q�i g� ¼ 0; (2.1)

r � u�i ¼ 0; i ¼ 1; 2; (2.2)

where u�i , p�i , g� are the velocity vector, pressure, and gravi-

tational acceleration, respectively, while r denotes the gra-

dient operator. Unless stated otherwise, the subscripts denote

FIG. 1. A schematic of a two-dimensional lens of fluid 2 of volume V2 and

half-width L, spreading over fluid 1 of volume V1. The surfactant is soluble

in fluid 2 and insoluble in fluid 1, and it can be present in the bulk of the lens

as monomers or aggregates such as micelles or vesicles, and at all the inter-

faces as monomers.
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partial differentiation with respect to x�, z�, and t�, where t�

denotes time.

Solutions of Eqs. (2.1) and (2.2) are obtained subject to

the following boundary conditions. Along the interfaces, the

velocity field should satisfy a local force balance between

surface tension and viscous stresses in the neighboring fluids.

Setting the pressure in the surrounding gas to zero (datum

pressure), without loss of generality, we obtain

nj � T2
� ¼ rs;jr

�
j þ 2njj

�
j r
�
j ; j ¼ 13; 23; (2.3)

n12 � T1
� � n12 � T2

� ¼ rs;12r
�
12 þ 2n12j

�
12r
�
12; (2.4)

where nj ¼ �h�j;x� ; 1
� �

= 1þ h�j;x�
2

� �1=2

denote the outward

unit normal on the interface j, rs;j is the corresponding sur-

face gradient operator, and Ti
� is the total stress tensor in

fluid i given by

Ti
� ¼ �p�i I þ l�i ru�i þ ru�i

� �T
h i

; (2.5)

where I is the identity tensor and 2j�j is the mean curvature

of the interface j, defined as

2j�j ¼ �rs;j � nj; rs;j ¼ I � njnj

� �
� r: (2.6)

In addition, along the moving interfaces, we apply the kine-

matic boundary condition,

h�j;t� þ u�s;jh
�
j;x� ¼ w�s;j; at z� ¼ h�j ðx�; t�Þ; (2.7)

where u�s;j and w�s;j are the surface velocities at interface j.
At the liquid-solid interface, the usual no-slip, no-pene-

tration conditions are imposed,

u�1 ¼ 0; w�1 ¼ 0: (2.8)

B. Surfactant transport and chemical kinetics

We utilize the surfactant kinetic model of Edmonstone

et al.29 and Karapetsas et al.26 that allows for two surfactant

species in the bulk (bulk monomers and micelle aggregates)

and one at each interface; when the bulk monomer concentra-

tion is such that the bulk concentration of monomers in the

lens is above the critical micelle concentration, c�cmc, then it is

energetically favorable for the monomers to form micelles.

We assume that, below the c�cmc, the surfactant exists in the

form of monomers within the bulk with concentration c�2,

whereas, beyond the c�cmc, micellar aggregates are formed

with concentration m�2. The various surfactant species interact

according to the following kinetic laws. First, at both interfa-

ces of the lens, the transfer of surface monomers, c�23, into the

bulk phase, c�2, creates space at the interface or, conversely,

monomers from the bulk occupy space at the interface,

S23 þ c�2Ð
k�

1

k�
2

c�23; S12 þ c�2Ð
k�

3

k�
4

c�12; (2.9)

where Sj (j ¼ 12; 23) denotes the fraction of the total space

created by the desorption of the monomers with concentra-

tion c�j (j ¼ 12; 23). We note here that our model assumes

that there is no direct adsorption of the micelle aggregates at

the interfaces; the micelles must disassociate first into mono-

mers before adsorbing at the interface. The micelles and the

bulk monomers are related via

Nc�2Ð
k�

5

k�
6

m�2; (2.10)

which represents the creation of a micelle from N bulk

monomers or, conversely, the breakup of a micelle into N
bulk monomers. We have assumed here that there is a

strongly preferred micelle size, N, which is indeed often the

case.30,31 The chemical kinetics are simple enough that mod-

elling can proceed, but still contain the essential physics that

allows the model to capture realistic processes. The model

can be adjusted to allow for more complicated behaviour,

for, say, multiple micelle sizes, at the expense of further evo-

lution equations; indeed the model is not restricted to

micelles and could represent any aggregate of N monomers

in the bulk.

A key new addition to the kinetic modeling is the behav-

iour of the surfactant exactly at the contact line; monomers

at the interface 23 could be adsorbed directly at the liquid

substrate (interfaces 12, 13) through the contact line or vice-

versa. This is modelled using the following “reactions”:

S23 þ c�12Ð
k�7

k�
8

S12 þ c�23; S12 þ c�13Ð
k�

9

k�
10

S13 þ c�12;

S23 þ c�13Ð
k�

11

k�
12

S13 þ c�23: (2.11)

According to the first “reaction” in Eq. (2.11), the adsorption

of surface monomers, c�23, occupies space at the liquid sub-

strate, S12, creates space, S23, at the liquid-air interface and,

conversely, as monomers, c�12, desorb from the substrate and

adsorb at the liquid-air interface. Note that each “reaction”

used for this model is characterized by a rate constant k�i
with i ¼ 1; 2; :::; 12. We use these kinetic laws to generate

the relevant fluxes that determine how the surfactant trans-

fers between the different phases (see Appendix A).

The behaviour of the various surfactant species is mod-

elled by the following advection-diffusion equations:

c�23;t� þ rs;23 � u�s;23c�23

� �
þ c�23 rs;23 � n23

� �
u�2 � n23

� �
¼ D�23rs;23

2c�23 þ J�c2c23 þ J�ev23; (2.12)

c�12;t� þ rs;12 � u�s;12c�12

� �
þ c�12 rs;12 � n12

� �
u�2 � n12

� �
¼ D�12rs;12

2c�12 þ J�c2c12; (2.13)

c�13;t� þ rs;13 � u�s;13c�13

� �
þ c�13 rs;13 � n13

� �
u�1 � n13

� �
¼ D�13rs;13

2c�13 þ Jev13; (2.14)

c�2;t� þ u�2 � rc�2 ¼ D�c2r2c�2 � NJ�2 ; (2.15)

m�2;t� þ u�2 � rm�2 ¼ D�m2r2m�2 þ J�2 ; (2.16)

where u�s;j is the interfacial velocity defined as

122106-3 Surfactant-driven dynamics of liquid lenses Phys. Fluids 23, 122106 (2011)

Downloaded 22 Dec 2011 to 129.31.211.195. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



u�s;j ¼
I � njnj

� �
u�2; j ¼ 23; 12

I � njnj

� �
u�1; j ¼ 13

8<
: ; (2.17)

and D�i (i ¼ 13; 23; 12; c2;m2) denote the diffusion coeffi-

cients of the monomers at the interfaces, of the monomers in

the bulk and the micelles, respectively. We should note here

that our model also accounts for the possible “evaporation”

of the interfacial surfactant into the atmosphere. To this end,

we have used two additional fluxes, J�ev;j (j ¼ 13; 23), which

appear in Eqs. (2.12) and (2.14) and are given by the follow-

ing relations:

J�ev23 ¼ �k�13c�23; J�ev13 ¼ �k�14c�13: (2.18)

Note that the evaporation of the liquid phases is ignored and

this assumption is valid only in cases where the surfactant is

much more volatile than the rest liquids present in our sys-

tem. In addition, we ignore the effect of induced temperature

gradients due to the surfactant “evaporation” on the surface

tension of all interfaces. The latter assumption is valid in

cases where the surface tension depends weakly on tempera-

ture, or the induced temperature gradients are not significant.

To complete the description of our model, a constitutive

equation that describes the dependence of the interfacial ten-

sions on the surfactant concentrations is required. To this

end, we use the Sheludko equation of state,32,33

r�j ¼ r�jo 1þ
c�j

c�j1

r�jo
r�jm

 !1=3

�1

2
4

3
5

0
@

1
A
�3

; for j ¼ 13; 23; 12;

(2.19)

where r�jo and r�jm (j ¼ 13; 23; 12) are the surface tensions of

a surfactant-free fluid and that of maximal surfactant concen-

tration, respectively. This model is nonlinear and asymptotes

to a minimal surface tension, r�jm, at high concentrations of

adsorbed surfactant, which makes it appropriate for use at

high surfactant concentrations.

The total mass of the surfactant deposited per unit

length, M�, is a conserved quantity, given by

ðx�c

0

ðh�

0

c�2 þ Nm�2
� �

dz�dx� þ
ðx�c

0

c�23 þ c�12

� �
dx� þ

ðx1

x�c

c�13dx� ¼ M�;

(2.20)

where we use symmetry and consider only x > 0. Of course,

the above equation holds only in the absence of surfactant

“evaporation.” In the latter case, the mass surfactant present

in our system continuously decreases.

C. Scaling

The governing equations and boundary conditions are

made dimensionless using the following scalings:

x�; z�; h�j

� �
¼ L� x; ez; ehj

� �
; t� ¼ L�

U�
t; u�i ;w

�
i

� �
¼ U� ui; ewið Þ; p�i ¼

l�1U�

e2L�
pi;

c�13; c
�
23; c

�
12

� �
¼ c�13;1c13; c

�
23;1c23; c

�
12;1c12

� �
; c�2;m

�
2

� �
¼ c�cmc c2;m2=Nð Þ;

J�c2c23; J
�
c2c12; J

�
2 ; J
�
ev23; J

�
ev13

� �
¼ U�

L�
c�23;1Jc2c23; c

�
12;1Jc2c12; c

�
cmcJ2; c

�
23;1Jev23; c

�
13;1Jev13

� �
;

J�c12c23; J
�
c13c12; J

�
c13c23

� �
¼ U� c�12;1Jc12c23; c

�
13;1Jc13c12; c

�
13;1Jc13c23

� �
;

M� ¼ V�2c�cmcM; r�j ¼ r�jm þ ðr�jo � r�jmÞrj; ðj ¼ 13; 23; 12Þ;

(2.21)

where U� ¼ e r�23o � r�23m

� �
=l�1 is a characteristic Marangoni

velocity, r�jo and r�jm are the surface tension of zero and

maximum surfactant concentration, respectively, and

c�cmc ¼
k�

6

Nk�
5

� � 1
N�1

.

Substitution of these scalings into the momentum

and mass conservation governing equations and boundary

conditions, using the lubrication approximation

(e ¼ V�2=L�2 � 1), yields a set of reduced equations that are

then easily solved. In this process, the following dimension-

less groups emerge: l ¼ l�2=l
�
1, q ¼ q�2=q

�
1, Bo ¼ e3q�

1
g�L�2

l�
1
U� ,

dj ¼ r�jm=r
�
23m, and Rj ¼ ðr�jo � r�jmÞ=r�jm (j ¼ 13; 23; 12).

From the kinematic boundary condition and continuity,

we obtain

hj;t ¼
�
Ð hj

0
u1dz

� �
x
; j ¼ 12; 13

�
Ð h12

0
u1dzþ

Ð h23

h12
u2dz

� �
x
; j ¼ 23

8<
: ; (2.22)

and the velocity integrals areðh12

0

u1dz ¼ � h3
12

12
p1;x þ

h12

2
us;12; (2.23)

ðh23

h12

u2dz¼� h23�h12ð Þ3

3l
p2;xþ h23�h12ð Þus;12þ

h23�h12ð Þ2

2l
r23;x;

(2.24)ðh13

0

u1dz ¼ � h3
13

3
p1;x þ

d13R13

2R23

h2
13r13;x; (2.25)

where the pressure in each fluid is given by

p2 ¼ qBoh23 � e2h23;xx r23 þ 1=R23ð Þ; (2.26)

p1¼
1�qð ÞBoh12þp2�e2 d12

R23

1þr12R12ð Þh12;xx; 0�x�xc

Boh13�e2 d13

R23

1þr13R13ð Þh13;xx; x�xc

8><
>: ;

(2.27)
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and us;j is the interfacial velocity (at z ¼ hj),

us;j ¼

h12ðh23 � h12Þp2;x �
h2

12

2
p1;x þ

d12R12

R23

h12r12;x þ h12r23;x; ; j ¼ 12

� h2
13

2
p1;x þ

d13R13

R23

h13r13;x ; j ¼ 13

us;12 �
ðh23 � h12Þ2

2l
p2;x þ

ðh23 � h12Þ
l

r23;x ; j ¼ 23

8>>>>>><
>>>>>>:

: (2.28)

The dimensionless forms of the Sheludko equation of

state for all the interfaces are given by

rj ¼
1þ Rj

Rj

� �
1þ cj 1þ Rj

� �1=3�1
h i� ��3

� 1

Rj
;

for j ¼ 12; 13; 23: (2.29)

The advection-diffusion equations for the surfactant concen-

trations, even after using the slender lens assumption (see

Appendix B for the scaled equations), have possible varia-

tion in depth across the lens and underlying layer, and we

adopt one further important simplification.

D. Rapid vertical diffusion

We assume vertical diffusion to be rapid and use an

approach previously followed in the literature,34 that is

equivalent to making the following substitution in Eqs.

(B1)–(B5):

c2 x; z; tð Þ ¼ c
ð0Þ
2 x; tð Þ þ e2Pec2c

ð1Þ
2 x; z; tð Þ;

m2 x; z; tð Þ ¼ m
ð0Þ
2 x; tð Þ þ e2Pem2m

ð1Þ
2 x; z; tð Þ; (2.30)

and then averaging in the vertical direction of the monomer

and micelle equations in the bulk, under the assumption that

c
ð1Þ
2 ;m

ð1Þ
2

� �
¼ 1

h23�h12

Ð h23

h12
c
ð1Þ
2 ;m

ð1Þ
2

� �
dz ¼ 0, taking the limit

e2Pei ! 0 (i ¼ c2;m2). In addition, we employ the follow-

ing boundary conditions in the z-direction for the monomers:

Jc2c23 ¼ �
1

bc2c23

� h23;x

Pec2

c
ð0Þ
2;x þ c

ð1Þ
2;z

� �
z¼h23

;

Jc2c12 ¼
1

bc2c12

� h12;x

Pec2

c
ð0Þ
2;x þ c

ð1Þ
2;z

� �
z¼h12

; (2.31)

which are the dimensionless form of Eqs. (A1) and (A2), as

well as the ones for the micelles,

m
ð1Þ
2;z

���
z¼h23

¼ m
ð1Þ
2;z

���
z¼h12

¼ 0; (2.32)

since, as was mentioned above, we assume that there is no

direct adsorption of micelles at the liquid-air interface or the

substrate. The dimensionless parameters bc2c23 and bc2c12

provide a measure of surfactant solubility in the bulk fluid

and are given by

bc2c23 ¼
c�23;1

eL�c�cmc

; bc2c12 ¼
c�12;1

eL�c�cmc

: (2.33)

After dropping the “(0)” and “(1)” decoration, we obtain the

following equations:

c23;t þ us;23c23

� �
x
¼ c23;xx

Pe23

þ Jc2c23 þ Jev23; (2.34)

c12;t þ us;12c12

� �
x
¼ c12;xx

Pe12

þ Jc2c12; (2.35)

c13;t þ us;13c13

� �
x
¼ c13;xx

Pe13

þ Jev13; (2.36)

c2;tþ
c2;x�

h23�h12

�ðh23

h12

u2dz

¼
	�

h23�h12

�
c2;x



x�

h23�h12

�
Pec2

� bc2c23

h23�h12

Jc2c23�
bc2c12

h23�h12

Jc2c12�J2;

(2.37)

m2;t þ
m2;x

h23 � h12ð Þ

ðh23

h12

u2dz ¼
h23 � h12ð Þm2;x

	 

x

h23 � h12ð ÞPem2

þ J2:

(2.38)

The dimensionless form of the fluxes in the above equations

are given in Appendix B.

Finally, the total dimensionless mass of surfactant is

given byðxc

0

h23 � h12ð Þ c2 þ m2ð Þdxþ bc2c23

ðxc

0

c23dxþ bc2c12

ðxc

0

c12dx

þ bc2c13

ðx1

xc

c13dx ¼ M: (2.39)

III. NUMERICAL METHOD

A. Finite element method

The discretization of the governing equations is per-

formed using a finite element/Galerkin method, and we ap-

proximate all the variables using quadratic Lagrangian basis

functions, /i; it is numerically convenient to decompose

each fourth order partial differential equation into two sec-

ond order differential equations. Appendix C contains the

detailed weak formulation equations used in our numerical

algorithms. The details on how we map the physical domain

onto a computational one are presented in Appendix D.

B. Boundary conditions

To solve the above set of equations, we need to impose

appropriate boundary equations in the x-direction, which

are applied by substituting the boundary terms in
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Eqs. (C1)–(C11). At the plane of symmetry, we apply sym-

metry conditions

hj;x ¼ hj;xxx ¼ 0 and cj;x ¼ c2;x ¼ m2;x ¼ 0

at x ¼ 0 ðj ¼ 12; 23Þ: ð3:1Þ

We expect that, very far from the drop, the fluid velocity

should be zero, whilst the interfacial surfactant concentration

should not be affected by the presence of the drop; thus, we

impose

h13;x ¼ h13;xxx ¼ 0 and c13;x ¼ 0 at x ¼ x1: (3.2)

1. Contact line

The modeling at the contact line is essential as the phys-

icochemical processes at this point are crucial to the lens

behaviour. At the contact line, we impose the continuity of

the interfaces

h23 ¼ h13 and h12 ¼ h13 at x ¼ xc: (3.3)

Moreover, the pressure in fluid 1 should be continuous at

x ¼ xc, which results in the following relation:

h23;xxð1þ R23r23Þ þ h12;xxð1þ R12r12Þd12

� h13;xxð1þ R13r13Þd13 ¼ 0 at x ¼ xc: ð3:4Þ

Our efforts to directly impose the continuity of velocity for

fluid 1 at x ¼ xc explicitly resulted in serious numerical diffi-

culties, and so we took a different approach. The fluid mass

of the substrate is conserved at all times, and so we used the

following equation:

2

ðxc

0

h12dxþ 2

ðx1

xc

h13dx ¼ V1; (3.5)

to compute h13ðxc; tÞ; V1 is the total dimensionless volume of

fluid 1. To ensure this condition is sufficient and accurate,

we evaluate the computed velocities at the contact line and

verify that continuity of velocity is satisfied.

At the contact line, the force balance is always at equi-

librium. In the general case, where surfactants are present,

the balance between the interfacial forces at the contact point

in dimensional form gives

r�13 sin h�13 þ r�23 sin h�23 þ r�12 sin h�12 ¼ 0;

r�13 cos h�13 þ r�23 cos h�23 þ r�12 cos h�12 ¼ 0: (3.6)

Combining the above equations, we get

cos h�int ¼
r�213 � r�223 � r�212

2r�23r
�
12

; cos h�ext ¼
r�212 � r�213 � r�223

2r�23r
�
13

;

(3.7)

where h�int ¼ h�12 � h�23 and h�ext ¼ h�23 � h�13. Setting

h�int ¼ eha, p� h�ext ¼ e/a and taking into consideration

that cos ehð Þ ¼ 1� e2h2=2, since e� 1 in the lubrication

limit, we derive the following relations in dimensionless

form:

h2
a ¼

�S 2d13 1þ R13r13ð Þ � S½ 	
e2 1þ R23r23ð Þd12 1þ R12r12ð Þ ; (3.8)

/2
a ¼

�S 2d12 1þ R12r12ð Þ þ S½ 	
e2 1þ R23r23ð Þd13 1þ R13r13ð Þ ; (3.9)

where S denotes the dimensionless spreading parameter

defined as

S ¼ d13 1þ R13r13ð Þ � d12 1þ R12r12ð Þ � 1þ R23r23ð Þ:
(3.10)

Using cos h�int ¼ n12 � n23 and cos h�ext ¼ �n23 � n13, we have

ha ¼ h12;x � h23;x and /a ¼ h13;x � h23;x. Thus, provided that

the right hand sides of Eqs. (3.8) and (3.9) are positive and

given that h12;x > h23;x, as well as h13;x > h23;x, we get

h12;x ¼ h23;x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S 2d13 1þ R13r13ð Þ � S½ 	

e2 1þ R23r23ð Þd12 1þ R12r12ð Þ

s
; (3.11)

h13;x ¼ h23;x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S 2d12 1þ R12r12ð Þ þ S½ 	

e2 1þ R23r23ð Þd13 1þ R13r13ð Þ

s
: (3.12)

When S > 0 or the RHS of Eq. (3.8) or (3.9) becomes nega-

tive, we simply assume that h12;x ¼ h23;x or h13;x ¼ h23;x,

respectively. In the limit of S ¼ �e2, and for surfactant-free

fluids, Eqs. (3.11) and (3.12) reduce to the equations pre-

sented by Kriegsmann and Miksis.10

The contact line is a moving boundary, and therefore,

additional information is needed in to order to determine its

spatio-temporal evolution. To this end, we use the fact that

the fluid volume of the drop must be conserved at all times.

Therefore, the following relation:

2

ðxc

0

h23 � h12ð Þdx ¼ V2; (3.13)

is used to compute the position of the contact line, xc, at ev-

ery time instant; V2 is the dimensionless drop volume and it

is equal to 1.

Regarding the boundary conditions for c2 and m2 at the

contact line, we have to keep in mind that both c2 and m2 are

volume concentrations, while the volume of the fluid at

x ¼ xc reduces to a line making them both singular. Fortu-

nately, there is no need to find such a boundary condition for

these variables since the corresponding terms in Eqs. (C10)

and (C11) are multiplied by h23 � h12 which is zero-valued

at x ¼ xc according to Eq. (3.3).

As mentioned earlier, our model permits the transfer of

surfactant monomers from interfaces 12 and 23 to interface

13 and, conversely, directly through the contact line. The

associated fluxes are given by

us;23c23�
c23;x

Pe23

� 
x¼xc

¼dxc

dt
c23jx¼xc

�bc12c23Jc12c23�bc13c23Jc13c23;

(3.14)

us;12c12 �
c12;x

Pe12

� 
x¼xc

¼ dxc

dt
c12jx¼xc

�bc13c12Jc13c12 � Jc12c23;

(3.15)
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us;13c13 �
c13;x

Pe13

� 
x¼xc

¼ dxc

dt
c13jx¼xc

�Jc13c12 � Jc13c23:

(3.16)

We should note that, at the contact line (x ¼ xc), the interfa-

cial velocity, us;j, which appears in the LHS of Eqs.

(3.14)–(3.16), is equal to the contact line velocity, dxc=dt.

C. Initial conditions

The initial condition used for the film thickness, the

position of the contact line, and the surfactant concentrations

are given by

h23ðx; t ¼ 0Þ ¼ h12ðx; t ¼ 0Þ þ 3V2

4
1� x2
� �

; (3.17)

h12ðx; t ¼ 0Þ ¼ h13ðx; t ¼ 0Þ ¼ V1

2x1
; (3.18)

xcðt ¼ 0Þ ¼ 1; (3.19)

c23; c12; c13; c2;m2ð Þðx; t ¼ 0Þ ¼ 0; 0; 0; co;moð Þ: (3.20)

We assume that at t ¼ 0 the surfactant concentrations are in

local equilibrium, and hence, the flux J2 ¼ 0. Thus, we have

co ¼ m1=N
o : (3.21)

Substitution of Eq. (3.20) into Eq. (2.39) yields

1

2
m1=N

o þ mo

� �
¼ M; (3.22)

which is solved numerically for a prescribed value of M. If

M < 1, then the surfactant concentration is below the critical

micelle concentration, and consequently, no micelles are

present. In that case, we set mo ¼ 0 and co ¼ 2M.

The resulting set of discrete equations is integrated in

time using the implicit Euler method. An automatically

adjusted time step is used for that purpose, which ensures

convergence and optimizes code performance. The initial

time step for all the simulations was Dt¼ 10�6. The final set

of algebraic equations is nonlinear, and they are solved at

each time step using the Newton-Raphson method. The itera-

tions of the Newton-Raphson method are terminated using

10�7 as a tolerance for the absolute error of the residual vec-

tor. The code was written in Fortran 90 and was run on a PC

with Intel Core2 Duo E8400 at 3 GHz. Each run typically

required 6–15 h to complete.

IV. RESULTS AND DISCUSSION

The spreading of a surfactant-laden liquid drop on a liquid

substrate is a parametrically rich problem. Numerical solutions

were obtained over a wide range of parameter values. For

brevity, we choose a representative “base” case that has values

of e2 ¼ 0:005, x1 ¼ 10, V1 ¼ 20, l ¼ 1, q ¼ 1, R12 ¼ R23

¼ R13 ¼ 0:1, d12 ¼ 1, d13 ¼ 1:9, M ¼ 8, Bo ¼ 0:1, kc2c12

¼ kc2c23¼ 1, Rc2c12¼Rc2c23¼ 10, bc2c12¼bc2c23¼ bc2c13¼ 2,

kc12c23¼ kc13c12¼ kc13c23¼ kev23¼ kev13¼ 0; kb¼ 1, N¼ 10,

Pe12¼Pe23¼Pe13¼ 103, and Pec2¼Pem2¼ 10. This set of

parameters corresponds to the spreading of slender drops in the

presence of a soluble surfactant, with concentration well above

the critical micelle concentration, which can exist as a mono-

mer at all the interfaces as well as micellar aggregates in the

bulk drop. The surfactant is considered to be insoluble in

the liquid substrate. The values chosen are reasonable, given

the current knowledge of surfactant rate constants and the

experiments, and demonstrate the main qualitative flow fea-

tures that the model is capable of capturing.

A. Clean fluids

To set the stage for the discussion that follows, we begin

by examining the spreading of a drop on a liquid substrate

without any surfactants present (M ¼ 0). In Fig. 2(a), we

plot the time evolution of the contact line position for vari-

ous values of the spreading parameter, S. To get this plot, we

vary S by keeping constant d12 ¼ 1 and changing the value

of d13 (i.e., d13 ¼ 1:9; 1:99; 1:995; 1:999; 2:1). The rest of the

parameters remain unchanged and the same as in the “base”

case. As anticipated, we find that when the spreading param-

eter is negative the evolution of our system eventually leads

to the formation of a stable lens-shaped drop (see Fig. 2(b)

for the corresponding long time shapes at t¼104). The initial

extent of spreading cannot be maintained for S ¼ �0:11, and

the droplet retracts until it reaches equilibrium. Upon

increasing the value of S, the drop equilibrates to larger as-

pect ratios. As shown in the figure, for S ¼ �0:0011, the

drop initially spreads followed by a short period of retrac-

tion. When the spreading parameter becomes positive

(S ¼ 0:11), there is sufficient force to drive complete spread-

ing of the drop on the surface of the substrate; see Fig. 2(c)

for the spatio-temporal evolution of the drop. The droplet

radius grows with a power law exponent of order t1=7 (see

Fig. 2(a)) in agreement with theoretical predictions reported

in the literature.8,9 Further increase of the spreading parame-

ter (not shown here) does not have any effect on the spread-

ing exponent.

B. Surfactant-laden droplets

1. “Base” case

We next investigate the dynamics of a surfactant-laden

droplet. The time evolution of the drop and the surfactant

concentrations for the “base” case are shown in Figs. 3 and 4,

respectively.

As already mentioned in Sec. III C, we assume that, ini-

tially, there is no surfactant present along the interfaces. The

surfactant at t ¼ 0 exists only in the bulk of the lens and in

the form of monomers and micelles. At the early stages

of the simulation, the lens retracts as it would normally do,

for the given set of parameters, if there were no surfactant

present. However, as time increases, the surfactant adsorbs

at both interfaces of the lens resulting in the decrease of their

surface tension; the profiles of c12 and c23 are shown in

Figs. 4(a) and 4(b), respectively. This leads to the increase of

the spreading parameter, evaluated at the contact line, and in

turn to the deceleration of the retraction process until at

some point (t ¼ 0:126 for this set of parameter values), the

drop starts spreading (see also Fig. 5(a) below). During the
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retraction process, advection transfers surfactant towards

the plane of symmetry giving rise to Marangoni stresses in

the contact line region which oppose the lens retraction.

Later on, when the lens starts spreading, the Marangoni

stresses that are still present draw fluid from the substrate

away from the lens; this results in the lifting of the contact

line region and the creation of a ridge there (see Fig. 3(a)).

As time increases, more surfactant monomers adsorb at the

interfaces and, as a result, the corresponding bulk concentra-

tion, c2, decreases (see Fig. 4(c)). This, in turn, leads the

micelles to disassociate into monomers and the micelle con-

centration decreases very rapidly. Note that the correspond-

ing figure (see Fig. 4(d)) is presented only for early times

(t � 10) since after that point the concentration of micelles is

very small. The dilation of the lens-air and lens-substrate

interfaces, due to the spreading of the drop, causes continu-

ous decrease of the corresponding surfactant concentrations

and, consequently, to gradual deceleration of spreading. As

the lens decelerates, diffusion damps the concentration gra-

dients reducing Marangoni stresses leveling the lens until it

eventually reaches equilibrium.

2. Effect of surfactant mass, M

Next, we examine the effect of the mass of surfactant

emplaced in the drop by varying the parameter M. As shown

in Fig. 5(c), during the early stages of the simulation, the sur-

factant adsorbs rapidly at both interfaces and the correspond-

ing concentrations increase following a power law almost

equal to t, regardless of the value of M; the time evolution of

c12ð0; tÞ is very similar to c23ð0; tÞ and is not presented here.

When the initial amount of surfactant is large, the monomers

in the bulk are replenished by the disassociation of micelles,

which act as a large reservoir releasing surfactant monomers

and maintaining rapid spreading for longer times (see Figs.

5(d) and 5(e)). On the other hand, for small values of M, the

monomers and the micelles in the bulk become depleted

FIG. 2. (a) Time evolution of the contact

line position for various values of the

spreading parameter, S, (b) long time shapes

of the lens (at t ¼ 104) for negative S, and

(c) spatio-temporal evolution of the lens for

S ¼ 0:11. We vary the value of S by chang-

ing the value of d13 (1.9, 1.95, 1.99, 1.999,

2.1) while keeping d12 ¼ 1.

FIG. 3. Spatio-temporal evolution of the lens for the “base case.” These pa-

rameters are kept unchanged in the subsequent figures unless noted

otherwise.
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soon leading to a smaller extent of spreading. We can see in

Fig. 5(a) that the final extent of spreading depends monotoni-

cally on the amount of surfactant, in agreement with previ-

ous experimental findings;19 the drop profiles close to

equilibrium (t ¼ 105) for four different values of M can be

seen in Fig. 6.

Regarding the spreading rates, increasing the available

amount of surfactant results in the increase of the spreading

exponent, for moderate values of M. However, for large val-

ues of M, the front advances with a power law almost equal

to t1=2, a rate greatly in excess of the t1=7 predicted for the

case of clean fluids. Interestingly, these spreading rates are

FIG. 4. Spatio-temporal evolution of

the surfactant concentrations for the

“base case.”

FIG. 5. Time evolution of the (a) position

of the contact line, xc, and (b) thickness of

the lens at x ¼ 0, (c) c23ð0; tÞ, (d) c2ð0; tÞ,
(e) m2ð0; tÞ, (f) c2ðxc; tÞ for different values

of the surfactant mass, M.
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very close to those reported by several experimentalists for

the spreading of surfactant-laden drops on organic substrate

layers.16,21,22 At this point, however, it should be noted that

our model refers to a planar drop, and therefore, a direct

comparison with experimental values is not possible. Never-

theless, it is evident that the computed power law exponents

are in qualitative agreement with experiments showing the

significant increase of the spreading rate due to the presence

of surfactants. In addition, as the drop spreads out, its thick-

ness at x ¼ 0 decreases almost with t�1=2 (see Fig. 5(b)). In

this figure, we also observe that for large values of M the

drop thickness still changes significantly by the end of the

simulation (t ¼ 105), in contrast with the contact line posi-

tion which is unaffected, indicating that more time is needed

for our system to reach its final equilibrium state.

3. Effect of the density and viscosity ratios and
substrate depth

The effect of density ratio, q, is explored in Fig. 7,

where we plot the equilibrium shapes for q ¼ 0:1, 3, 5, and

10. As expected, when the drop is lighter than the bottom

fluid (q ¼ 0:1), the lens rests on top of the substrate, whereas

for q > 1, the drop sinks and may even touch the solid wall.

An interesting feature is that, in all cases presented in this

figure, the contact line (shown by the open circle) remains

approximately at the same position. For q ¼ 3 and 5, the

drop spreads due to the presence of the surfactant but collap-

ses under its own weight, towards the plane of symmetry,

leaving a very thin layer of fluid along the liquid substrate.

The inset for q ¼ 5 presents the evolution of the layer thick-

ness at x ¼ 2:5 in log-log scale and as we can see the layer

thins following a power law of approximately t�1=2. As we

can see in the figure, the situation becomes a bit more

complicated for heavier droplets. For q ¼ 10, the droplet

splits into three parts which are connected by a thin layer of

fluid. As we have already seen in Figs. 2 and 3, Marangoni

stresses draw part of the liquid below the drop towards the

contact line region raising this part of the drop. Obviously,

there is interplay between gravitational and Marangoni

forces which can give rise to this kind of phenomenon for

heavy drops.

The effect of varying the viscosity ratio, l, on the dynam-

ics of the drop is examined in Fig. 8(a) where we plot the

position of the contact line and the drop thickness at x ¼ 0 for

l ¼ 0:1, 1, and 100. We expect that the viscosity ratio would

affect the flow time scales. Indeed, the enhanced mobility of

the drop for low values of the viscosity ratio results in faster

retraction during the early stages of the simulation and allows

for the system to reach equilibrium sooner. Although the

spreading rate is not affected significantly, we see that during

the late stages of the simulation, the system needs consider-

ably more time to reach its final state for large values of l.

Another important parameter of our model is the initial

depth of the substrate, and its effect is examined in Fig. 8(b).

As expected, increasing the initial height, the drop feels less

the presence of the solid substrate resulting in higher spread-

ing rates due to the decreased resistance to the flow. It is im-

portant to note, however, that this parameter cannot be

increased indefinitely without invalidating the lubrication

approximation underlying the present model.

4. Spreading and recoiling

In Secs. IV B 1–IV B 3, surfactant is present only in the

bulk drop along the lens-substrate and lens-air interfaces.

The dynamics when the surfactant is allowed to diffuse away

FIG. 6. Long-time lens shapes at t ¼ 105 for different values of the surfac-

tant mass, M.

FIG. 7. Long-time drop shapes at t ¼ 105 for different density ratios, q. The

open circle symbol denotes the position of the contact line. The inset for

q ¼ 5 shows that the layer at x ¼ 2:5 thins following a power law of approx-

imately t�1=2.
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from the drop along the substrate-air interface is of consider-

able interest in terms of real surfactant behaviour. As already

mentioned in Sec. II, our model allows the transport of

surfactant from one interface to another through the contact

line using the boundary conditions shown in Eqs.

(3.14)–(3.16) where the corresponding fluxes are given by

Eqs. (B9)–(B11). Figures 9 and 10 present a series of simula-

tions for various values of kc13c12 while keeping kc13c23

¼ kc12c23 ¼ 0. These simulations refer to cases where the

surfactant monomers that have been adsorbed at the lens-

substrate interface can adsorb through the contact line at the

substrate-air interface and diffuse away from the drop.

During the early stages of the simulations, the surfactant

in the bulk drop adsorbs at the lens-substrate and lens-air

interfaces initiating the spreading process. As time increases,

more surfactant adsorbs at the substrate-air interface through

the contact line resulting in an increase in c13. This leads to

the decrease of the substrate-air surface tension and, in turn,

in the deceleration of the spreading process. Eventually, the

drop starts to retract until it reaches equilibrium. We should

note here that this simulation presents some interesting simi-

larities with the experiments presented by van Nierop

et al.,14 where they have observed droplets of oil containing

oleic acid to spread and then recoil on an aqueous solution of

sodium hydroxide. Oleic acid and NaOH react at the inter-

face producing sodium oleate which acts as a surfactant at

the oil-water interface. These authors have suggested that the

recoiling was due to the diffusion of the surfactant away

from the oil-water interface. Although our model does not

formally include a model for the interfacial reaction of two

reagents producing surfactant, the kinetics of the adsorption

process at the lens-substrate interface will play a similar role

to the kinetics of the interfacial reaction.

For small values of the kinetic parameter, kc13c12, the

surfactant is released slowly to the substrate-air interface and

the spreading process resembles the case where no surfactant

is present away from the drop (see Figs. 3(a) and 9(a)). Obvi-

ously, as shown in Fig. 9(b), this is not the case when kc13c12

becomes large. In this case, the surfactant adsorbs faster at

the substrate-air interface which results in the accumulation

of surfactant in the contact line region (see Fig. 10(b)). This

gives rise to strong Marangoni stresses which affect signifi-

cantly the shape of the substrate-air interface. The bottom

FIG. 8. Time evolution of xc and

h23ð0; tÞ � h12ð0; tÞ for (a) different vis-

cosity ratios l and (b) different initial

heights of the liquid substrate.

FIG. 9. Time evolution of the lens for (a) kc13c12 ¼ 0:001 and (b)

kc13c12 ¼ 1.
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fluid is drawn away from that region, and the height of the

contact line decreases while the rest of the drop sits higher.

As time passes, the surfactant diffuses away from the drop

weakening the Marangoni stresses along the substrate-air

interface, and as a result, the fluid flows back towards

the plane of symmetry. It is worth noting that Fraaije and

Cazabat9 reported a similar phenomenon when they placed

an oil drop on a thin layer of glycerol/water mixture. The

substrate in the neighborhood of the drop retracted leaving

the oil drop on the petri dish bottom, and after several sec-

onds, the substrate flowed back to the drop lifting it. Fraaije

and Cazabat suggested that an explanation for this phenom-

enon could be that the droplet is initially so large that pierces

the substrate. They have also suggested that this could be

due to inertial effects on the substrate liquid as it is drawn by

the rapidly spreading oil and until countercurrent is set up in

the substrate. We cannot help but wonder whether the

described phenomenon could also be due to the presence of

contaminants giving rise to Marangoni stresses at the

substrate-air interface as shown in Fig. 9(b).

Another mechanism through which a drop could initially

spread and then recoil is when the surfactant is volatile (see

Fig. 11). In this case, the interfacial surfactant concentration

increases until at some point it reaches a maximum and then

starts to decrease due to the dilation of the interfaces, as

the drop spreads out, and the “evaporation.” Despite the

decrease of the concentration, the drop continues to spread a

bit longer until the spreading parameter decreases to such

value that the extent of spreading cannot be maintained. At

that point, the drop starts to retract and the surfactant concen-

tration remains almost steady for some time since the

“evaporation” of surfactant is compensated by the contrac-

tion of the interfaces. Eventually, the drop decelerates as it

reaches equilibrium and the surfactant gets depleted.

5. Self sustained oscillations

As already mentioned, recent experiments, performed

by Stocker and Bush,24 on spontaneously oscillating

surfactant-laden oil drops revealed some very interesting fea-

tures, shedding light on the underlying mechanism. They

have shown that the retraction of the drop is initiated by the

rapid formation of thin films at the lens leading edge due to

growth of perturbations in the azimuthal direction, releasing

surfactant at the water-air interface and decreasing its surface

tension. The ejection process is, indeed, complex and model-

ing it in detail is beyond the scope of this paper. However,

given the versatility of the model, it is interesting to see if it

predicts this oscillatory behavior using an ad hoc approach

to model these eruption events.

Let us assume that, during the early stages of the spread-

ing, surfactant is present only in the bulk lens along the lens-

air and lens-substrate interfaces. As the lens spreads, the con-

tact angle decreases. We assume that when the contact angle

decreases below a certain limit, ha;l, the leading edge

becomes unstable, erupting and releasing surfactant at the

substrate-air interface. The release is modeled by allowing

surfactant to diffuse away from the lens using a finite value

for kc13c12 as we have already done in Fig. 9. At that point,

the lens begins to retract due to the decrease of the substrate-

air surface tension, and as a result, the contact angle

increases. We assume that when the contact angle increases

beyond a certain limit, ha;u, the leading edge becomes stable

and the release of surfactant stops. For our simulations,

FIG. 10. (a) Effect of kc13c12 on the con-

tact line position. (b) Time evolution of

the substrate-air monomer concentration,

c13 for kc13c12 ¼ 1.

FIG. 11. Time evolution of (a) the posi-

tion of the contact line xc and (b)

c23ð0; tÞ for various “evaporation” rates.
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shown in Fig. 12, we have used ha;l ¼ 0:75, ha;u ¼ 1:25 for

which the given value of e correspond to the contact angles

of 3
 and 5
, respectively. We should also note that for this

simulation we have considered that the interfacial surfactant

and the monomer in the bulk are initially at equilibrium and

that bc2c13 ¼ 0:1.

First, we examine the case where “evaporation” is not

present. Stocker and Bush reported that when they placed a

lid on the petri dish, the oscillations stopped. Indeed, we find

that when there is no “evaporation” (kev13 ¼ 0), the lens

reaches equilibrium after just two “ejection” events that take

place early (see Fig. 12(a)). During the initial spreading of

the drop, the contact angle decreases until at some point

becomes lower than ha;l and surfactant is released to the

substrate-air interface causing the retraction of the drop. The

released surfactant diffuses away from the contact line

region with time leading to the reinitiation of our system. Af-

ter a couple of “ejection” events and since we consider only

a finite amount of liquid substrate, the surfactant concentra-

tion at the substrate-air interface becomes such that the con-

tact angle remains always higher than ha;l; after that point,

no “ejection” takes place and the system reaches equilib-

rium. It is expected that the exact number of these “ejection”

events may vary slightly, depending on factors like the selec-

tion of ha;l,ha;u, and the length of our domain (here we use

x1 ¼ 5) and the solubility of surfactant to the substrate-air

interface.

The situation becomes quite different when we allow for

the surfactant that has diffused along the substrate-air

interface to “evaporate.” In this case, we find that the lens

oscillates for very long times in broad agreement with obser-

vations; the shape of the lens at two time instants, where the

contact line is at its maximum and minimum positions, is

shown in Fig. 12(d). We can see in Fig. 12(a) that increasing

the “evaporation” rate, by increasing the value of kev13,

results in the decrease of the time period of the oscillations.

This should be expected since in this case less time is needed

in order for the surfactant to “evaporate” and thus for the

contact line to reach its maximum position, before a new

“ejection” event takes place. This is also shown clearly in

Fig. 12(c) where we present time evolution of the substrate-

air surfactant concentration at the contact line. When the

“ejection” starts c13ðxc; tÞ suddenly increases and then its

concentration decreases due to the “evaporation.” The reason

for the sudden increase of c12ðxc; tÞ, shown in Fig. 12(d), is

quite different since it is due to the contraction of the lens-

substrate interface as the lens starts to retract. As time

increases, the total amount of surfactant present in the

FIG. 12. (a) Effect of the evaporation

rate on the contact line position, xc. Time

evolution of (b) c12ðxc; tÞ and c23ðxc; tÞ
for two different evaporation rates. (c)

Lens profiles at t ¼ 2523 and t ¼ 2543

for kev13 ¼ 0:0005.
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system will decrease resulting in higher contact angles until

at some point “ejection” events stop, and the lens reaches a

new equilibrium.

V. CONCLUDING REMARKS

We examine the spreading of surfactant-laden lenses

over liquid substrates for surfactants with concentrations

beyond the critical micelle concentration. Lubrication

theory and rapid vertical diffusion of the surfactant in the

bulk are used to derive a coupled system of evolution

equations for the interface positions, surfactant monomer

interfacial and bulk concentrations, and micelle bulk con-

centration. The model accounts for Marangoni-driven

spreading, interfacial and bulk diffusion, sorption kinetics,

“evaporation” of volatile surfactants, the formation and

breakup of micelles in the bulk, and for surfactant adsorp-

tion at the solid substrate. Moreover, this model takes into

account the effect of local surfactant concentration on

contact line motion and the possibility of surfactant

adsorption directly through the contact line. The model

incorporates the essential physics and surface chemistry of

the problem, coupled together with the hydrodynamics,

and is sufficiently complex to capture and explain realistic

phenomena. This model is solved numerically using the

finite-element method and the results of an extensive para-

metric analysis are presented.

Our numerical results have shown that the final extent of

spreading depends monotonically on the mass of the surfac-

tant deposited and that, for fairly large amounts of surfactant,

the leading edge advances following a power-law depend-

ence of t1/2. Eventually, the leading edge stops advancing,

while significantly more time may be needed before the lens

acquires its final equilibrium shape, depending on parameters

like the viscosity ratio and the total amount of surfactant

present. The spreading is accompanied in several cases by

the formation of a ridge in the contact line region because of

the presence of Marangoni stresses. These findings are in

agreement with previous observations of experiments in the

literature. We have also studied cases where the lens may

initially spread and then recoil as surfactant is removed from

the lens either due to the diffusion of surfactant along the

substrate-air interface or “evaporation.” In the former case

and in the presence of high Marangoni stresses, it is possible

for the liquid substrate to retract away from the lens leaving

it on the solid surface only to return later and lift the lens

from the bottom. Finally, we used our model to examine the

mechanism that was proposed by Stocker and Bush24 for the

spontaneous oscillations of oil lenses and found that, indeed

when surfactant is released via rapid ejections onto the

substrate-air interface and is allowed to “evaporate,” it is

possible for a lens to oscillate with a time period that

depends on the “evaporation” rate.
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APPENDIX A: SURFACTANT TRANSPORT FLUXES

This appendix contains expressions for the fluxes that

determine how the surfactant transfers between the different

phases, derived from kinetic laws for the “reactions” pre-

sented in Sec. II B,

J�c2c23 ¼ �D�c2 n � rc�2
	 


z�¼h�

¼ k�1c�2
��
z�¼h�

1� c�23

c�23;1

 !
� k�2c�23; ðA1Þ

J�c2c12 ¼ �D�c2 n � rc�2
	 


z�¼0
¼ k�3c�2

��
z�¼0

1� c�12

c�12;1

 !
� k�4c�12;

(A2)

J�2 ¼ k�5c�N2 � k�6m�2; (A3)

J�c12c23 ¼ k�7c�12 1� c�23

c�23;1

 !
� k�8c�23 1� c�12

c�12;1

 !" #
x�¼x�c

;

(A4)

J�c13c12 ¼ k�9c�13 1� c�12

c�12;1

 !
� k�10c�12 1� c�13

c�13;1

 !" #
x�¼x�c

;

(A5)

J�c13c23 ¼ k�11c�13 1� c�23

c�23;1

 !
� k�12c�23 1� c�13

c�13;1

 !" #
x�¼x�c

;

(A6)

where x�c denotes the position of the contact line at time t�.
Here, c�j;1(i ¼ 13; 23; 12) represent the interfacial surfactant

concentration at maximum packing. The non-linear terms in

Eqs. (A1)–(A2) and (A4)–(A5) imply that when c�j ! c�j;1
(j ¼ 13; 23; 12), that is, when an interface becomes fully

packed with monomers, no further surfactant is adsorbed.

The non-linear term is obtained by taking into consideration

the available space Sj (j ¼ 13; 23; 12) at the interface, indicat-

ing that there is limit to the amount of monomers that can

adsorb at both surfaces. At equilibrium, this is the Langmuir

adsorption isotherm. This set of laws allows the surfactant to

move from monomer to micelle, from bulk to either surfaces,

and also allows surfactant to transfer through the contact line.

APPENDIX B: SCALED ADVECTION-DIFFUSION
EQUATIONS AND RELEVANT FLUXES

The height evolution equations are coupled to the scaled

surfactant transport equations that become

c23;t þ us;23c23

� �
x
¼ 1

Pe23

c23;xx þ Jc2c23 þ Jev23; (B1)

c12;t þ us;12c12

� �
x
¼ 1

Pe12

c12;xx þ Jc2c12; (B2)

c13;t þ us;13c13

� �
x
¼ 1

Pe13

c13;xx þ Jev13; (B3)

c2;t þ u2c2;x þ w2c2;x ¼
1

Pec2

c2;xx þ
c2;zz

e2

� �
� J2; (B4)
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m2;t þ u2m2;x þ w2m2;x ¼
1

Pem2

m2;xx þ
m2;zz

e2

� �
þ J2: (B5)

The dimensionless groups Pei ¼ U�L�=D�i (i ¼ 12; 23; 13;
c2;m2) are Peclet numbers representing a ratio of convective

to diffusive time scales for the monomers at the interfaces,

and the monomers and the micelles in the bulk, respectively.

The dimensionless fluxes Ji that appear in the above equa-

tions are expressed by

Jc2c23 ¼ kc2c23 Rc2c23c2jz¼h23
ð1� c23Þ � c23

� �
; (B6)

Jc2c12 ¼ kc2c12 Rc2c12c2jz¼h23
ð1� c12Þ � c12

� �
; (B7)

J2 ¼ kb cN
2 � m2

� �
; (B8)

Jc12c23 ¼ kc12c23 Rc12c23c12 1� c23ð Þ � c23 1� c12ð Þ½ 	x¼xc
;

(B9)

Jc13c12 ¼ kc13c12 Rc13c12c13 1� c12ð Þ � c12 1� c13ð Þ½ 	x¼xc
;

(B10)

Jc13c23 ¼ kc13c23 Rc13c23c13 1� c23ð Þ � c23 1� c13ð Þ½ 	x¼xc
;

(B11)

Jev23 ¼ �kev23c23; (B12)

Jev13 ¼ �kev13c13; (B13)

where the dimensionless parameters ki and Ri are given by

kc2c23; kc2c12; kb; kev23; kev13ð Þ ¼ L�

U�
k�2; k

�
4; k
�
6; k
�
13; k

�
14

� �
;

(B14)

kc12c23; kc13c12; kc13c23ð Þ ¼ k�8; k
�
10; k

�
12

� �
=U�; (B15)

Rc2c23;Rc2c12;Rc12c23;Rc13c12;Rc13c23ð Þ

¼ k�1c�cmc

k�2c�23;1
;

k�3c�cmc

k�4c�12;1
;
k�7c�12;1
k�8c�23;1

;
k�9c�13;1
k�10c�12;1

;
k�11c�13;1
k�12c�23;1

 !
:

(B16)

The kinetic parameters ki, from left to the right as they

appear in Eq. (B14), control the sorption kinetics at the

interfaces, the breakup and formation rate of micellar

aggregates in the bulk, and the kinetics of interfacial surfac-

tant “evaporation.” The kinetic parameters in Eq. (2.15)

control the sorption kinetics at the contact line. The param-

eter Ri is a measure of the affinity of the surfactant to the

liquid-air interface and substrate. Small values of Rc2c23 and

Rc2c12 signify the tendency of the surfactant to remain in the

bulk in the form of micelles.26,29 Similarly, when Rc12c23 is

small, the surfactant at the contact line has the tendency to

remain at the lens-air interface instead of adsorbing at the

substrate.

APPENDIX C: WEAK FORMULATION
OF THE GOVERNING EQUATIONS

Applying the divergence theorem, the weak form of the

equations for the position interfaces and the interfacial sur-

factant monomers (Eqs. (2.22) and (2.34)–(2.38)) become

ðx1

xc

h13;t/i � /ix

ðh13

0

u1dz

� �
dxþ /i

ðh13

0

u1dz

� x1

xc

¼ 0;

(C1)ðxc

0

h13;xx/i þ /ix h13;x

� �
dx� /ih13;x

	 
xc

0
¼ 0; (C2)

ðxc

0

h12;t/i � /ix

ðh12

0

u1dz

� �
dxþ /i

ðh12

0

u1dz

� xc

0

¼ 0; (C3)

ðxc

0

h12;xx/i þ /ix h12;x

� �
dx� /ih12;x

	 
xc

0
¼ 0; (C4)

ðxc

0

h23;t/i � /ix

ðh12

0

u1dz� /ix

ðh23

h12

u2dz

� �
dx

þ /i

ðh12

0

u1dzþ
ðh23

h12

u2dz

� �� xc

0

¼ 0; (C5)

ðxc

0

h23;xx/i þ /ix h23;x

� �
dx� /ih23;x

	 
xc

0
¼ 0; (C6)

ðxc

0

c23;t � Jc2c23 � Jev23

� �
/i � us;23c23 �

c23;x

Pe23

� �
/ix

� 
dx

þ us;23c23 �
c23;x

Pe23

� xc

0

¼ 0; (C7)

ðxc

0

c12;t � Jc2c12

� �
/i � us;12c12 �

c12;x

Pe12

� �
/ix

� 
dx

þ us;12c12 �
c12;x

Pe12

� xc

0

¼ 0; (C8)

ðx1

xc

c13;t � Jev13

� �
/i � us;13c13 �

c13;x

Pe13

� �
/ix

� 
dx

þ us;13c13 �
c13;x

Pe13

� x1

xc

¼ 0: (C9)

Note that each fourth order partial differential equation

has been decomposed into two second order differential

equations. The presence of h23 � h12 in the denominator

of several terms in Eqs. (2.37) and (2.38) will cause sig-

nificant numerical difficulties close to the contact line

since in that region h23 � h12 ! 0. To overcome this prob-

lem, we multiply by h23 � h12, and thus, the corresponding

weak forms, after applying the divergence theorem,

becomeðxc

0

�
ðh23� h12Þc2;tþ c2;x

ðh23

h12

u2dzþ bc2c23Jc2c23þ bc2c12Jc2c12

þðh23� h12ÞJ2


/idxþ

ðxc

0

ðh23� h12Þc2;x

Pec2

/ixdx

�
�
ðh23� h12Þc2;x

Pec2

xc

0

¼ 0; (C10)

ðxc

0

��
ðh23 � h12Þm2;t þ mx

ðh23

h12

u2dz� ðh23 � h12ÞJ2

�
/i

þðh23 � h12Þm2;x

Pem2

/ix


dx�

�
ðh23 � h12Þm2;x

Pem2

xc

0

¼ 0: (C11)
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APPENDIX D: MAPPING OF THE PHYSICAL
ONTO THE COMPUTATIONAL DOMAIN

The physical domain consists of two parts, one upstream

of the contact line and one downstream of it. During the spread-

ing process, the contact line moves, and therefore, the physical

domain changes with time. In order to map the transient physi-

cal domain, x; tð Þ, onto a computational domain fixed in time,

g; sð Þ, we use the following set of algebraic equations:

x ¼ gxc for 0 � g � 1; (D1)

x ¼ Aþ B xc � x1ð Þ
B B� 1ð Þ g2 � 3Aþ B Bþ 2ð Þ xc � x1ð Þ

B B� 1ð Þ g

þ 2Aþ B 2Bxc � Bþ 1ð Þx1ð Þ
B B� 1ð Þ for 1 � g � 2; (D2)

and s ¼ t; (D3)

where A ¼ xc=N1, B ¼ 1=N2, and N1, N2 denote the number

of grid elements in domains 1 and 2, respectively. The physi-

cal domain for 0 � x � xc is mapped onto 0 � g � 1 while

the one for x � xc is mapped onto 1 � g � 2. The mapping

we use for the second domain can guarantee an optimum dis-

tribution of nodes in the physical domain at all times during

the simulation presented in this paper. The derivatives that

arise in the evolution equations also have to be rewritten in

terms of the new variables,

@t ¼ @s �
dg
dt
@g; @x ¼

@g
@x
@g; (D4)

and Eq. (D4) is used to replace the corresponding terms in

the weak form of the governing equations presented above

as well as in the corresponding boundary conditions.

Each computational domain is discretized using 150 ele-

ments in all the computations presented in this paper; numer-

ical checks showed that increasing the number of elements

further led to negligible changes. In all the simulations pre-

sented below, the surfactant mass conservation is satisfied

within 0.01%.
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