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The steady planar and cylindrical stick-slip flows for a viscoelastic fluid are computed using the
Phan-Thien and Tanner �PTT� constitutive model. The mixed finite element method is used in
combination with the elastic-viscous stress-splitting technique and the streamline upwind Petrov–
Galerkin discretization for the constitutive equation. This combination of methods when applied to
the PTT constitutive model allows us to compute steady state solutions up to high Weissenberg
numbers; practically without an upper limit. Equally important, the global Jacobian matrix is
generated in order to be able to perform a linear stability analysis of the computed steady state. The
dependence of the steady solutions on all the problem parameters is examined. In the limit of a
Newtonian fluid, the expansion coefficients near the singularity are computed with comparable
accuracy to those from previous analytical and numerical studies, which include the singular finite
element method. In the case of a viscoelastic liquid, it is shown that the computed solutions
converge quadratically with mesh refinement even at the exit plane of the die and also locally very
close to the singularity. The form of the converged solution near the singularity is examined as well
as its dependence on various rheological parameters. It is shown that the singularity at the die exit
is a logarithmic one and always integrable. Under such conditions our calculations can be extended
to determine the linear stability of the herein computed steady states. © 2009 American Institute of
Physics. �doi:10.1063/1.3271495�

I. INTRODUCTION

Most polymer processing operations involve, at some
stage, extrusion of viscoelastic fluids from dies of various
shapes. This fact makes extrusion studies so important that
numerous experimental and theoretical studies have been
undertaken,1–4 trying to increase our understanding of the
very complex behavior of an array of polymers being ex-
truded from a variety of dies under different conditions. Un-
fortunately, very important technical questions still remain.
Extrusion is particularly complicated because it involves �a�
an abrupt change from boundary conditions on the velocity
inside the die to boundary conditions on the stress outside it,
making the point of departure from the die a mathematically
singular one; �b� a swelling of the extrudate that can be even
more than ten times larger if a viscoelastic material is in-
volved, instead of a Newtonian fluid; �c� various morpho-
logical deformations that arise on the extrudate interface or
its bulk. The latter introduce severe limitations on extrusion
rates, if product quality is to be maintained.

Although the proposed mechanisms leading to these de-
formations are very different in principle, it is very difficult
to distinguish their effect in practice. This is exactly the as-
pect where a theoretical approach could play an important
role in order to improve our understanding of the extrusion
process. This is the ultimate goal of our work and in order to
achieve this, we decided:

�a� To work with the simplest possible flow arrangement
that retained the abrupt change in the boundary condi-
tions from no slip along the wall to perfect slip along
the free surface where experiments have indicated that
surface instabilities are initiated, without the complica-
tion of an unknown free surface: the stick-slip flow.
This is an important special case of extrusion flows
from dies since it is formally equivalent to the free
surface problem in the limit of infinite surface tension,
where the normal stress balance reduces to the equation
of zero curvature in the flow direction.

�b� To avoid using slip along the die wall and use a con-
stitutive law which is able to predict the main flow
properties of polymeric fluids with monotonic flow
curves. Such a model is the affine Phan-Thien and
Tanner �PTT� model,5,6 which is based on network
theory. With only one additional parameter to fluid
elasticity and viscosity, it can predict a finite exten-
sional viscosity which is extensional hardening with
increasing extension rate followed by either a constant
extensional viscosity �in the linear version of the
model� or extensional thinning �in its exponential ver-
sion� and shear thinning. All these effects are observed
in the majority of viscoelastic fluids.

We will begin our presentation with a short description
of our code making sure that its predictions converge with
mesh refinement and that the expected singularity is inte-
grable for the parameters used before performing a thorough
examination of the steady viscoelastic stick-slip flow. This
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will be followed by a linear stability analysis around this
base state, which is the subject of part II of this paper, to find
out whether flow instabilities can be predicted. This is a clas-
sical method that has been applied with success in the past to
examine the stability of numerous problems of both Newton-
ian and non-Newtonian fluid flows,7,8 but it is quite strange
that it has not been undertaken in extrusion flows.

The simplification of a fixed fluid boundary, introduced
in the stick-slip flow, eliminates the nonlinearity in the ex-
trusion of a Newtonian fluid and Richardson9 was the first to
be able to find an analytical solution to the planar stick-slip
problem using the Wiener–Hopf method. However the
strength of the singularity that was predicted is incorrect as it
was first reported by Ingham and Kelmanson10 and subse-
quently verified by Georgiou et al.11 and Tanner and
Huang.12 Trogdon and Joseph13 extended the Wiener–Hopf
method to the calculation of the axisymmetric version of the
stick-slip problem. The local analysis near the singularity at
the lip was performed even earlier by Michael14 and
Moffatt15 since it is a special case of the flow of a viscous
fluid near a corner of an arbitrary angle formed by a solid
wall and a flat free surface. From the latter analysis it is
derived that for a Newtonian fluid, the velocity components
vary as the square root of the radial distance from the singu-
lar point, resulting in a square root singular dependence for
the stresses and the pressure.

Georgiou et al.11 suggested that it would be useful if one
could use this knowledge about the form of the singularity
around the die lip to improve the numerical solution in the
neighborhood of the singularity. To this end they introduced
the singular finite element method �SFEM� for the numerical
simulation of the planar stick-slip problem. They showed
that the convergence of the solution near the singularity
could be greatly enhanced by these special elements in com-
parison to the ordinary Lagrangian-type finite elements.
Later Salamon et al.16 showed that an extremely fine mesh
was indeed needed in order for the ordinary finite element
method �OFEM� to resolve the flow around the singularity
with the same accuracy as that achieved by SFEM with a
relatively coarser mesh. Although the success of SFEM is
evident, it has a significant drawback: It cannot be applied if
the form of the singularity is unknown and, unfortunately,
this is exactly the case when it comes to viscoelastic fluids.

Because of the profound interest on the process of vis-
coelastic extrusion, the simulation of the steady viscoelastic
stick-slip flow has received significant attention in the past.
One of the first attempts to simulate the viscoelastic stick-
slip flow was made by Coleman17 using a boundary integral
solution method to simulate the flow for an Oldroyd-B fluid
for Weissenberg numbers up to 2.6. Later Marchal and
Crochet18 were able to perform viscoelastic simulations for a
Maxwell and an Oldroyd-B fluid up to Wi=27. In order to
achieve this, they used the mixed finite element method com-
bined with an inconsistent streamline upwind �SU� method
to discretize the constitutive equation, which method, how-
ever, is recognized to be overdiffusive. Rosenberg and
Keunings19 performed simulations for an Oldroyd-B fluid us-
ing a streamline integration method achieving convergence,
however, only up to fairly low Weissenberg numbers

Wi=0.5. Shortly after, Owen and Phillips20 presented
simulations for an Oldroyd-B fluid using an algorithm based
on a domain decomposition method in a similar range of
Weissenberg numbers. The same model was also used by
Salamon et al.21 to study both analytically and numerically
the partial-slip/slip flow. Their efforts were focused on the
examination of the flow very close to the singularity. To
achieve that, they used highly refined meshes around the
singularity for their numerical computations, the results of
which showed remarkable agreement with their analytical
calculations. Later on, Fortin et al.22 and Baaijens23 pre-
sented numerical experiments for two low-order discontinu-
ous Galerkin methods for the stick-slip flow of a linear PTT
fluid reaching very high values of Wi �for large values of the
elongational parameter � no upper limit was found�. Finally,
quite recently Ngamaramvaranggul and Webster24 used the
semi-implicit Taylor–Galerkin/pressure-correction method to
perform time dependent simulations for the stick-slip prob-
lem of an Oldroyd-B fluid until it reached steady state. Con-
vergence up to Wi=2.2 was achieved.

Apparently, the stick-slip flow of a PTT fluid has been
addressed only in a slit die by Fortin et al.22 and Baaijens,23

although with a numerical method that does not generate the
global Jacobian matrix of the problem. On the other hand,
examination of the linear stability of this flow requires this
Jacobian matrix in order to compute its eigenvalues and
eigenvectors. This led us to decide to apply a different solu-
tion method to the stick-slip problem of the PTT fluid model
than those already presented and examine both the slit and
the cylindrical dies. Hence, the main objective of this paper
is to develop this accurate and efficient numerical method in
order to solve the steady viscoelastic two-dimensional and
axisymmetric stick-slip flow, to demonstrate that our results
converge with mesh refinement and that the computed vari-
ables are integrable even near the singularity. Moreover we
have the opportunity to examine in detail the form of the
solution very close to the die exit. This is important since it
has been proven impossible to date to derive an analytical
solution for a viscoelastic fluid. Then the stability of such
steady state solutions can be examined.

The rest of this paper is organized as follows. We briefly
present the governing equations and the boundary conditions
for this problem in Sec. II, and the numerical algorithm, used
in our calculations, in Sec. III. In Sec. IV, we examine the
accuracy of our results by comparing them to existing ones,
especially for Newtonian fluids, and the convergence and
integrability of all variables, especially near the singularity
and, finally, present a parametric study of the steady state
solution. Conclusions are drawn in Sec. V.

II. PROBLEM FORMULATION

The steady, planar, and axisymmetric stick-slip flow of a
viscoelastic fluid is examined. The fluid is assumed to be
incompressible with constant density �, relaxation time �,
and total zero-shear viscosity �=�s+�p, where �s and �p

are the solvent and polymer contributions, respectively. Fig-
ure 1 shows the geometry of this problem and its dimensions.
The viscoelastic fluid initially flows inside the die of diam-

123101-2 G. Karapetsas and J. Tsamopoulos Phys. Fluids 21, 123101 �2009�

Downloaded 14 Jan 2010 to 155.198.167.101. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



eter or width 2R and length L1. The velocity and pressure
fields rearrange as the fluid exits the die until far from it, at
distance L2 from the exit, a fully developed shear-free flow is
obtained.

All lengths are scaled with the half of the die gap, R, and
velocities with the mean velocity at the inflow boundary, V,
while both the pressure and stress components are scaled
with a viscous scale, �V /R. Thus, the dimensionless groups
that arise are the Reynolds number, Re=�VR /�, which here-
after is set to zero under the creeping flow assumption, the
Weissenberg number, Wi=�V /R, the ratio of the Newtonian
solvent viscosity over the total viscosity, �=�s /�, and the
geometric ratios l1=L1 /R and l2=L2 /R.

Inserting the previously defined characteristic quantities
into the momentum and mass conservation equations, we
obtain

�� P − �� · �= = 0, �1�

�� · v� = 0, �2�

where �� denotes the gradient operator for either the planar or
the cylindrical coordinates, v� and P are the velocity vector
and pressure fields, respectively, and �= is the extra stress
tensor, which is split into a purely viscous part, 2�	̇

=
and a

polymeric contribution �=p,

�= = 2�	̇
=

+ �=p, �3�

where 	̇
=

is the rate of strain tensor defined as 	̇
=

= 1
2 ��� v�

+�� v� T�.
To complete the description, a constitutive equation that

describes the rheology of the fluid is required in order to
determine the viscoelastic part of the extra stress tensor. As
such, we use the following differential model that has been
proposed by Phan-Thien and Tanner:5

Y��=p��=p + Wi �=p

�

− 2�1 − ��	̇
=

= 0 �4�

where the symbol � over the viscoelastic stress denotes the
Gordon–Schowalter derivative defined as

X=
�

=
DX=

Dt
− ��� v� − 
s	̇=�T · X= − X= · ��� v� − 
s	̇=� . �5�

Two forms of the PTT model are in common use, namely, the
linearized form,5 where the function Y��=p� is

Y��=p� = 1 +
�

1 − �
Wi tr�=p �6a�

and the exponential form6 with

Y��=p� = exp� �

1 − �
Wi tr�=p� . �6b�

In our simulations, primarily we have used the exponen-
tial form of the PTT model and assumed no slip between the
polymeric chains and the continuous medium �assumption of
affine motion�, 
s=0. By setting 
s equal to zero the Gordon–
Schowalter derivative reduces to the upper convective one.
The only other parameter of the PTT model, �, imposes an
upper limit to the elongational viscosity, which decreases as
this parameter increases. Moreover, increasing � increases
the shear-thinning behavior of the model. Clearly the PTT
model reduces to the Oldroyd-B one by setting �=0 and to
the upper convected Maxwell �UCM� model by setting �
=0 as well.

In order to solve accurately and efficiently various vis-
coelastic flows, Rajagopalan et al.25 introduced the elastic-
viscous split stress �EVSS� formulation. This method con-
sists of splitting the polymeric part of the extra stress tensor
into a purely elastic and a viscous part,

�=p = �= + 2�1 − ��	̇
=

. �7�

The success of this scheme resides on the fact that the elliptic
nature of the momentum equations is ensured even for
�=0. Brown et al.26 proposed a modification of this model
�EVSS-G� according to which an independent interpolation
of the components of the velocity gradient tensor is intro-
duced in order to satisfy the compatibility in the approxima-
tion between elastic stress and velocity gradients in the con-
stitutive equation. The corresponding equation that must be
solved is

G= = �� v� . �8�

Thus after reformulating the momentum and constitutive
equations using the EVSS-G formulation we obtain

�� P − �� · �= − 2�� · 	̇
=

= 0, �9�

Y��=p��= + Wi �=
�

+ 2 Wi�1 − ��D=
�

− 2�1 − ���1 − Y��=p��D=

= 0, �10�

where D== 1
2 �G=+G=T�. Moreover the definition of the Gordon–

Schowalter derivative becomes

X=
�

=
DX=

Dt
− G=T · X= − X= · G= . �11�

Along the free �slip� surface of the fluid �r=1 and
l1�z� l2� we impose the kinematic equation which for the
stick-slip problem reduces to

vr = 0 �12a�

and the shear-free condition on this straight surface becomes

�rz = 0. �12b�

On the die wall �r=1 and 0�z� l1� we impose the usual
no-slip, no-penetration conditions

vz = 0, �13a�

FIG. 1. Schematic of the flow geometry and coordinate system.
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vr = 0. �13b�

We also have to apply boundary conditions at the entrance of
the die and at the outflow boundary. We consider that both
boundaries are far enough from the die exit and thus we
assume that the flow in each boundary is fully developed.
Therefore at the outflow boundary �z= l1+ l2� we impose a
uniform velocity profile,

vr = 0, �14a�

�vz

�z
= 0. �14b�

At the die entrance �z=0�, besides the boundary conditions
for the velocity we also have to apply boundary conditions
for the polymeric part of the stresses due to the hyperbolic
character of the constitutive equation. The flow there is con-
sidered to be fully developed and therefore the velocity in
the r-direction is equal to zero, vr=0, while vz as well as the
stresses are functions of r. As for the pressure it can be easily
shown using the r-component of the momentum equation
that it varies only in the z-direction. From the z-component
of the momentum equations we get

1

rj

�

�r
�rj�rz� =

dP

dz
, �15�

where the superscript j identifies the flow geometry, with
j=0 and j=1 for the planar and the cylindrical case, respec-
tively. The above equation using Eq. �3� gives

1

rj

�

�r
�rj��prz + �

dvz

dr
	� =

dP

dz
. �16�

Moreover for this kind of flow, the constitutive equation,
assuming that 
s=0, reduces to

�prr = �p = 0, �17a�

Y��=p��prz = �1 − ��
dvz

dr
, �17b�

Y��=p��pzz = 2 Wi �prz
dvz

dr
. �17c�

Equations �16�, �17b�, and �17c� can be solved numerically
by imposing, on the die wall �r=1�, the no-slip condition,
vz=0, and on the axis or plane of symmetry �r=0�, the typi-
cal symmetry condition, �vz /�r=0. More generally, steady
state solutions of PTT fluid models driven by a pressure gra-
dient inside ducts or by gravity over a solid surface have
been presented in Refs. 27 and 28, respectively. The pressure
drop, dP /dz, which appears in the above equations, is deter-
mined by demanding that the dimensionless mean velocity is
equal to unity since the mean velocity at the inflow bound-
ary, V, is used as a characteristic velocity for nondimension-
alizing the governing equations. Therefore the additional
equation that arises is

v̄z = �j + 1�

0

1

vzr
jdr = 1. �18�

Finally to complete our model we have to set a datum pres-
sure and as such, we impose a zero value to the pressure at a
node of the outflow boundary �P�r=1,z= l1+ l2�=0�.

III. NUMERICAL IMPLEMENTATION

In order to solve numerically the governing equations for
the viscoelastic stick-slip flow, we used the mixed finite ele-
ment method to discretize the velocity, pressure, and stress
fields.

A. Finite element formulation

The physical domain was discretized using triangular el-
ements. We approximate the velocity vector with six-node
Lagrangian basis functions, �i, and the pressure, the elastic
stresses, as well as the velocity gradients with three-node
Lagrangian basis functions, �i.

For the momentum and mass balances, we employ the
finite element/Galerkin method, which after applying the di-
vergence theorem results in the following weak forms:



�

�− P�� �i + �� �i · �= + 2�� �i · 	̇
=

�d�

− 

�

�n� · �− PI= + �=�� �id� = 0, �19�



�

�i�� · v� d� = 0, �20�

where d� and d� are the differential volume and surface
area, respectively. The surface integral that appears in the
momentum equation is split into five parts, each one corre-
sponding to a boundary of the physical domain and the rel-
evant boundary condition is applied therein.

The continuous approximation for the components of the
velocity gradient tensor is written as



�

�G= − �� v� ��i d� = 0. �21�

Finally the constitutive equation due to its hyperbolic char-
acter is discretized using the streamline upwind Petrov–
Galerkin �SUPG� method proposed by Brooks and Hughes,29



�

�Y��=p��= + Wi �=
�

+ 2Wi�1 − ��D=
�

− 2�1 − ���1 − Y��=p��D=��id� = 0. �22�

The new weighting function �i is formed from the finite
element basis function for the elastic stress components as

�i = �i +
h

v� 
v� · �� �i, �23�

where v�  is the magnitude of the mean velocity and h is a
characteristic length at the particular element. The mean ve-
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locity v�  in an element is defined as v� = 1
3�n=1

3 v� n, with v� n
denoting the magnitude of the velocity at the vertices of the
corresponding triangular element. As a characteristic length,
h, we used the square root of the area of each triangular
element.

The SFEM generally produces more accurate results
near the singular point. For this reason we decided to use it
also to examine the accuracy of our predictions for the simu-
lation of the Newtonian stick-slip flow in both planar and
cylindrical geometries. In this case, singular elements are
only used around the die lip while the rest of the domain is
discretized with ordinary elements as described above. The
details of this method can be found in Refs. 11 and 30.

B. Mesh generation

A blow up of the mesh, which was used for these
calculations, around the die lip only �z−zc�0.04 and
r−rc�0.04, where rc and zc are the coordinates of the triple
contact point� is presented in Fig. 2. We should note here that
special care was taken for the mesh near the plane of the die
exit since the flow rearrangement mostly takes place in that
area, as well as near the die wall and even more so around
the die lip where steep pressure or stress gradients or bound-
ary layers may arise. Therefore, in order to resolve ad-
equately the flow, a more refined mesh around these regions
is needed. To this end, we have used a grid for the physical
domain the mesh lines of which are clustered near those
regions combined with a local refinement scheme using the
h-method. The details of the implementation of the
h-refinement method can be found in Ref. 31, whereas the
clustering was performed following simple algebraic rela-
tions, as in Ref. 32.

In particular, for this problem, if we denote with � and 

the node coordinates of a uniform mesh, the new
transformed-clustered mesh would be given by the following
equations in the r-direction:

r =

k1�� k1 + 1

k1 − 1
	�

− 1�
� k1 + 1

k1 − 1
	�

+ 1

. �24�

Similarly, in the z-direction and for 0�z� l1, we apply

z = l1 − l1

�k2 + 1� − �k2 − 1�� k2 + 1

k2 − 1
	�1

� k2 + 1

k2 − 1
	�1

+ 1

, �25a�

where

�1 = 1 −
l1 − 


l1
, �25b�

whereas for l1�z� l1+ l2, we use

z = l1 + l2

�k3 + 1� − �k3 − 1�� k3 + 1

k3 − 1
	�2

� k3 + 1

k3 − 1
	�2

+ 1

, �26a�

where

�2 = 1 −

 − l1

l2
. �26b�

The degree of refinement near the die wall is controlled by
k1, a typical value of which is 1.1. Correspondingly, param-
eters k2 and k3 are also used for controlling the degree of the
refinement near the die exit in the z-direction. A typical value
for both parameters and for l1=10 and l2=50 is 1.01. These
parameter values allow for a very gradual increase in the
element size away from the singularity.

Georgiou et al.11 suggested that the type of triangulation
could affect the performance of the SFEM and this fact mo-
tivated us to examine whether our calculations are affected in
any way by the type of mesh around the singular point. To
this end, we used two different types of mesh, changing each
time the triangulation of the rectangular elements at the sin-
gularity. The direction of triangulation changes at the die and
as a result, four triangular elements share one of their nodes
at the singular point. Another possibility, which has been
used quite often even in similar problems, is for the triangu-
lation to remain unchanged inside and outside the die. In this
way, only three elements share their nodes at the die lip.
From our numerical experiments it was found that the former
gave slightly more accurate results for the expansion coeffi-
cients of vz near the singularity and therefore, it was used in
the rest of the present work. This same mesh performs much
better than the mesh with the same orientation in the trian-
gulation in the entire domain, if extrudate swell is allowed,
because the shape of the triangular element at the die lip does
not get significantly distorted, even for very large deforma-
tions of the extrudate, permitting calculations up to very high
Weissenberg numbers.33 The details on the mesh used with
the SFEM method can be found in Ref. 30.

In order to check the convergence of the numerical al-
gorithm for the viscoelastic problem, we performed an ex-
tended mesh refinement study. Some useful data about the
meshes that were used are presented in Table I. It is notewor-
thy that in meshes M1 and M2 the refinement is done only
by clustering the mesh lines near the die lip, whereas meshes
M3–M11 have up to ten levels of local refinement resulting
in sizes of elements in M11 as small as 7�10−6 near the

FIG. 2. Typical mesh �M10, see Table I�. For clarity we show only a region
around the die lip �z−zc�0.04 and r−rc�0.04� which includes the third
to eighth levels of local refinement.
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singularity. Finally, the only difference between the M1 and
D1 meshes is the increase in the length inside and outside the
die of D1, increasing at the same time the number of ele-
ments in the z-direction in order to retain the same degree of
discretization. The resulting minimum size of elements at the
singular point as well as their maximum size far from it
remains the same in both M1 and D1. Calculations using
either one of these two meshes produced the same results
verifying that the inflow and outflow boundary conditions do
not affect the solution in any way.

C. Numerical solution

The resulting set of algebraic equations for the base state
problem is solved simultaneously for all variables using the
Newton–Raphson method. In this way the global Jacobian
matrix of the problem is generated which can be used in
order to compute its eigenvalues and eigenvectors and study
the stability of the stick-slip flow. The Jacobian matrix that
results after each Newton iteration is stored in compressed
sparse row format and the linearized system is solved by
Gaussian elimination using PARDISO, a robust, direct, sparse-
matrix solver, Refs. 34 and 35. The iterations of the Newton–
Raphson method are terminated using a tolerance for the
absolute error of the residual vector, which is set at 10−9.
The code was written in FORTRAN 90 and was run on a work-
station with dual Dual Core Xeon CPU at 2.8 GHz in the
Laboratory of Computational Fluid Dynamics. Each calcula-
tion for the steady state problem for a wide range of
Weissenberg numbers typically required 2–5 days to com-
plete depending on the mesh used.

IV. RESULTS AND DISCUSSION

In order to validate our code and verify the accuracy of
our results, we will first compare them to the existing ones
for the Newtonian and PTT fluids. In addition, we will dem-
onstrate that our viscoelastic results converge with mesh re-
finement and proceed with the examination of the flow near
the singularity. Subsequently, we will present a parametric
study of our steady state calculations.

A. Comparison with previous studies

First, we solved the stick-slip flow of a Newtonian fluid
using both the OFEM, which we also used for all our vis-
coelastic simulations, and the SFEM. In this way, we will
gain valuable insight as to how the steady flow is affected by
either the numerical method or the form of the mesh around
the singularity before proceeding with the viscoelastic calcu-
lations and their stability.

The flow field of a Newtonian fluid is well known for
this problem and will not be reproduced in this paper, but can
be found in Ref. 30. For a Newtonian fluid the local
asymptotic analysis15 around the singularity for the planar
problem shows that the form of the z-component of the ve-
locity along the free surface is given by

vz = 2a1/2z1/2 − 2a3/2z3/2 + 2a5/2z5/2 + O�z7/2� . �27�

This equation was used to fit our finite element results for the
z-component of the velocity near the die edge �in the interval
l1�z� l1+1� and the computed values for the coefficients
are presented in Table II along with those obtained by several
previous analytical or numerical studies. We can see clearly
that the computed values for the planar case are in very good
agreement with the earlier ones. Moreover, we observe that
the SFEM gives accurate results even with a coarser mesh as
was already noted by Georgiou et al.11 To achieve the same
accuracy using the OFEM, one would have to use an ex-
tremely refined mesh around the singularity as was shown by
Salamon et al.16 Indeed using our finest mesh �M11�, we
were able to calculate the corresponding coefficients with
high accuracy. The best method available for a Newtonian
fluid in a planar geometry is the singular function boundary
element method developed by Elliotis et al.36 The success of
this method comes from the fact that it calculates directly the
singular coefficients. In fact, the first coefficient agrees to the
sixth decimal digit with the analytically calculated one in
Ref. 12 and, in addition, it calculates the next three coeffi-
cients converged to the fifth decimal digit. These cannot be
obtained analytically.

Furthermore, Trogdon and Joseph13 noted that the same
local dependence of vz holds for the cylindrical case since

TABLE I. Properties of typical finite element meshes used in the present work.

Mesh
No. of initial 1D Elements

in the �r ,z� direction
No.

of refinement levels
No.

of triangular elements
No.

of unknowns l1 l2 �rmin �zmin

D1 �22,300� 0 13 200 123 320 15 60 1.4�10−2 1.3�10−2

M1 �22,240� 0 10 560 98 720 10 50 1.4�10−2 1.3�10−2

M2 �40,440� 0 35 200 323 532 10 50 7.2�10−3 7.3�10−3

M3 �40,440� 1 38 918 357 260 10 50 3.6�10−3 3.6�10−3

M4 �40,440� 2 44 016 403 450 10 50 1.8�10−3 1.8�10−3

M5 �40,440� 3 46 776 428 500 10 50 9�10−4 9�10−4

M6 �40,440� 4 48 077 440 356 10 50 4.5�10−4 4.5�10−4

M7 �40,440� 5 49 573 453 974 10 50 2.2�10−4 2.2�10−4

M8 �40,440� 6 50 581 463 172 10 50 1.1�10−4 1.1�10−4

M9 �40,440� 7 51 197 468 814 10 50 5.5�10−5 5.5�10−5

M10 �40,440� 8 51 517 471 764 10 50 2.8�10−5 2.8�10−5

M11 �40,440� 10 52 095 477 364 10 50 7�10−6 7�10−6
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this geometry is locally, at the die lip, similar to the planar
one. Hence the same equation was used to fit the
z-component of the velocity in the cylindrical geometry. The
resulting coefficients are given in the same table. The com-
puted values using the SFEM as well as the OFEM method
are in good agreement. These results, however, differ signifi-
cantly from the value of a1/2 that was given earlier by Tanner
and Huang.12 They used the same J-integral to calculate the
coefficient in both the planar and axisymmetric cases. We
can see in Table II that indeed, in planar flow their computed
value is highly accurate. On the other hand, their computed
value for the axisymmetric case is inaccurate. This is because
the J-integral cannot be used without modification for the
axisymmetric flow since in this case it is not path indepen-
dent any more. To get a path-independent form one has to
add to the J-integral an additional surface integral and should
choose a path that does not intersect the axis of symmetry.37

This makes the computation nontrivial and we did not pursue
it since it would be beyond the scope of this paper. Finally,
we compared the semianalytical solutions given by Trogdon
and Joseph13 to our numerical ones. Using the software
“DATA THIEF” we replotted variables given in this paper, in-
cluding the singular pressure, and observed that they are vir-
tually indistinguishable from ours in all cases so they will
not be reproduced herein.

From the local asymptotic analysis for Newtonian stick-
slip flow we know that the pressure is singular for both ge-
ometries with a characteristic square root singularity at the
die lip. Figure 3 depicts the dependence of the pressure along
the free surface of the extrudate on the distance from the
singularity. It is clear that the predicted value for the slope of
the pressure is very close to �0.5 as predicted by theory and
is in good agreement with the values given by Salamon
et al.16 for the planar case. Again we observe that very close

to the singularity, the SFEM gives slightly less accurate val-
ues using a significantly coarser mesh than the OFEM. This
should be anticipated since SFEM inherently takes into con-
sideration the known form of the singularity for the Newton-
ian fluids. Nevertheless, this is also its main drawback since
for an unknown form of singularity, which is the case for a
viscoelastic fluid, the SFEM cannot be used.

In order to verify the accuracy of our code for the case of
a viscoelastic fluid, we also performed a comparison with the
results of the simulations reported by Baaijens23 for the
stick-slip flow using the linear affine PTT model. This author
used the discontinuous Galerkin method with constant stress
elements for his calculations. As a typical comparison, we
present in Fig. 4 the first normal stress difference along the
die wall and the slip surface �r=1� also using the linear PTT
model for Wi=19, �=0, and for two different values of the
elongation parameter, �. This value of Wi corresponds to
De=88.83 according to the definition of Baaijens.23 We

TABLE II. Computed with meshes M2 �modified to include singular ele-
ments for SFEM� and M11 �for OFEM� expansion coefficients near the
singularity for the Newtonian stick-slip flow compared to previous works.

Publication a1/2 a3/2 a5/2

Planar die

Present work �OFEM� 0.691 57 0.271 97 0.052 47

Present work �SFEM� 0.691 83 0.272 90 0.053 18

Georgiou et al.a �OFEM� 0.671 70 0.198 12 �0.022 97

Georgiou et al.a �SFEM� 0.691 73 0.271 68 0.050 13

Salamon et al.b 0.691 60 0.271 83 0.052 32

Ingham and Kelmansonc 0.691 08 0.264 35 0.049 62

Richardsond 0.581 00 ¯ ¯

Tanner and Huange 0.690 99 ¯ ¯

Elliotis et al.f 0.690 99 0.264 50 0.030 37

Cylindrical die

Present work �OFEM� 0.797 26 0.434 16 0.123 73

Present work �SFEM� 0.796 78 0.432 38 0.122 31

Tanner and Huange 0.651 47 ¯ ¯

aReference 11.
bReference 16.
cReference 10.

dReference 9.
eReference 12.
fReference 36.

FIG. 3. Dependence of log�−p� on log�z−zc� along the free surface of the
fluid for a cylindrical die using the �a� SFEM and �b� OFEM and for a planar
die using the �c� SFEM and �d� OFEM. Mesh M11 is used for the OFEM
calculations and a modification of the M2 mesh for the SFEM calculations.

FIG. 4. Comparison of the predictions for N1 for Wi=19, �=0, l1=10, and
l2=50 and for two different values of � with results given by Baaijens �Ref.
23�. Mesh M1 is used.
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should note here that the use of constant stress elements by
Baaijens23 resulted in piecewise constant curves for the first
normal stress difference. This unsmooth solution for the
stresses is inappropriate for studying its stability. Moreover,
Fig. 13 in his paper could not be read very well near the
singularity for the case of �=0.25 and it appears in Fig. 4
with a gap in that region. Despite this fact, it is clear that the
results of our computations are in very good agreement with
the ones given by Baaijens.23

B. Convergence with mesh refinement

The convergence of the finite element calculations with
mesh refinement is shown in Table III. It compares, for six
different meshes at a given point very close to the singular-
ity, the values of the z-component of the velocity vector,
pressure, elastic stresses, and exit pressure losses, ex, which
is defined as

ex =
�P − �Po

2�w
, �28�

where �P is the total pressure drop between the inlet and the
outlet in the stick-slip flow, whereas �Po is the pressure
drop for fully developed flow inside a die of the same
length and �w is the corresponding shear stress at the die wall
at the inflow boundary. In addition, we have performed a
Richardson extrapolation of our predictions and the com-
puted values are also presented in this table. The extrapola-
tion was done considering the series of the computed values
of each variable for the different meshes at the given point,
shown in the table. As a characteristic length we used the
minimum element size of each mesh in the radial direction.
We can see that all variables converge with mesh refinement.

To quantify the error and its dependence on the mesh, we
prepared Fig. 5 for a cylindrical die. The rate of convergence

is evaluated by computing the Euclidean norm of the
differences in the values obtained with any mesh, Mi
�i=2 ,3 ,4 ,5�, to those obtained by the finest mesh �M6� for
the same variables. This Euclidean norm includes only un-

TABLE III. Exit pressure losses, ex, axial velocity vz, pressure P, and stresses �rr, �rz, �zz, and � at the
position �r ,z�= �0.923,10�, which is fairly close to the singular point computed with various meshes for
Wi=2, �=0.02, �=0, l1=10, and l2=50.

Mesh ex vz P �rr �rz �zz �

Cylindrical die

M1 2.250 0.5233 10.070 0.7973 4.1710 17.001 �0.1273

M2 2.257 0.5195 10.175 0.7958 4.1760 17.131 �0.1277

M3 2.259 0.5180 10.220 0.7882 4.2135 17.260 �0.1278

M4 2.262 0.5169 10.265 0.7871 4.2127 17.338 �0.1269

M5 2.263 0.5163 10.288 0.7887 4.2081 17.384 �0.1263

M6 2.264 0.5160 10.298 0.7892 4.2066 17.395 �0.1261

Richardson extrapolation 2.264 0.5159 10.300 0.7893 4.2063 17.397 �0.1260

Planar die

M1 1.344 0.4355 5.466 0.6362 3.4191 14.335 ¯

M2 1.346 0.4317 5.537 0.6367 3.4229 14.416 ¯

M3 1.348 0.4301 5.582 0.6321 3.4422 14.544 ¯

M4 1.349 0.4293 5.605 0.6306 3.4395 14.588 ¯

M5 1.350 0.4289 5.617 0.6310 3.4363 14.612 ¯

M6 1.350 0.4287 5.622 0.6314 3.4354 14.622 ¯

Richardson extrapolation 1.350 0.4287 5.623 0.6315 3.4352 14.624 ¯

FIG. 5. The relative error of the axial velocity, pressure, and stresses at the
exit of a cylindrical die �z=10� for Wi=2, �=0.02, �=0, l1=10, l2=50, and
various meshes. As a reference value the solution with mesh M6 is used,
while the vectors vz,i, Pi, �rr,i, �rz,i, and �zz,i are calculated using meshes
M2–M5.
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knowns from the cross section at the die exit �0�r�1,
z= l1� where the effects of the singularity are expected to be
most apparent. For the computation of the norms, the values
of all variables at meshes other than the coarsest one were
interpolated at the locations corresponding to the coarsest
mesh. Clearly for all the variables the relative error decreases
quadratically with mesh refinement. We have also computed
similar norms along the free surface near the die exit �r=1,
l1�z� l1+1� and the convergence rate was found to be the
same. The convergence is similar for the case of a planar die.

C. Form of the singularity for a viscoelastic fluid

Having confirmed that our computations for the vis-
coelastic fluid converge with mesh refinement, we proceed
with the investigation of the form of the singularity for the
case of a PTT fluid. Of course it is expected that the form of
the singularity will not be the same as in the Newtonian case.
When it comes to the viscoelastic stick-slip flow, this singu-
larity may lead to major numerical difficulties or even to
numerical results with no physical meaning, when the elastic
stresses predicted by the corresponding viscoelastic model
are not integrable near the die lip. This fact motivated several
researchers in the past to examine carefully the flow for vari-
ous viscoelastic fluid models near such singularities, which
appear in general near re-entrant corners.12,38–42 We believe
that it would be very useful to compare the results of our
computations with the findings of the aforementioned works.
Moreover, since the analytical calculations have been proven
quite difficult for viscoelastic fluids, our results could eluci-
date the form of the solution near the singularity.

To start with, Fig. 6 depicts the variation of the elastic
stresses for the case of a planar die, very close to its exit
along r=1 in the range 9.9�z�10.1 for Wi=0.5, �=0.02,
�=0, l1=10, and l2=50. It is evident from the plots that all
the stresses become singular as the die lip is approached. The
solution for �rr and �zz is very smooth even close to the die
exit whereas for �rz some oscillations arise. Salamon et al.21

studied the partial-slip/slip flow for an Oldroyd-B fluid and
have shown both numerically and analytically that �rr and

�zz are singular, whereas �rz exhibit a distinct jump at the die
exit. The nonsingular behavior in this case is attributed to the
presence of partial slip along the wall. On the other hand, in
our case there is no slip at the die wall and as a result �rz

becomes singular close to the die lip.
It is expected that the variation of the velocities, pres-

sure, and stresses depends both on the radial distance, r�,
from the singularity as well as on the corresponding angle, �
�see Fig. 1 for their definitions�. To start with, the depen-
dence of the velocities, pressure, and elastic stresses on the
distance from the die lip at z=10 ��=90°� is presented in
Fig. 7 for the case of a planar die and for Wi=2, �=0.02,
�=0, l1=10, and l2=50. The slopes that are presented in this
figure were calculated performing a linear fit for all the vari-
ables using their computed values at the ten closest nodes to
the die lip. We observe that for the PTT fluid the slopes for
both velocity components have increased significantly com-
pared to the value of 0.5 which is predicted theoretically for
a Newtonian fluid. Therefore it can be deduced that the cor-
responding velocity gradients are less singular than in the
Newtonian case. The same holds for the pressure as well as
the polymeric part of the stresses as can be seen in the figure.
This finding is in accordance with the works of Renardy39

and of Evans and Sibley41,42 who showed analytically, as-
suming a Newtonian velocity field, that the elastic stresses
for a PTT fluid near a re-entrant corner are less singular than
the Newtonian stresses. On the other hand, Hinch40 and
Renardy38 showed that for an Oldroyd-B and a UCM fluid,
respectively, the predicted singularity is more intense than
for a Newtonian fluid. Even so, the computed stresses were
found to be integrable near the singularity in contrast to the
case of the second order fluid which was shown by Tanner
and Huang12 to predict nonintegrable stresses near a re-

FIG. 6. Local behavior of �rr, �rz, and �rz for Wi=0.5, �=0.02, �=0,
l1=10, and l2=50 with mesh M10. Planar die.

FIG. 7. Asymptotic behavior near the singularity for the velocities, pressure,
and elastic stresses at the die exit �z=10� for Wi=2, �=0.02, �=0, l1=10,
and l2=50 with mesh M6. Planar die.
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entrant corner. We should mention that for the case of a
cylindrical die the form of the singularity is expected to be
the same as the planar one since the cylindrical geometry
approaches a planar one when a very thin annulus is exam-
ined as the one very close to the singularity. We found that
this is the case indeed, but the corresponding figures are not
shown here for conciseness.

Although we have already examined the convergence of
the solution with mesh refinement, it is very important to
examine its convergence very close to the singularity. The
reason for this is the fact that very close to the die lip high
stresses arise which give rise to very thin boundary layers
and thus even though the solution may converge far from the
singularity, it may not have converged near it. To examine
this carefully we have prepared Table IV, where we have
calculated the slopes for all the variables for three different
Wi numbers using various meshes. The slopes were calcu-
lated using their computed values at the ten closest nodes to
the die lip for each mesh, just like in Fig. 7. The slopes
presented in this table were calculated using as many refine-
ment levels as possible to achieve convergence of the nu-
merical scheme at a given Wi number. We notice that the
maximum refinement level for which convergence of the nu-
merical scheme can be achieved decreases with the Wi num-
ber. This is a well known problem for the numerical compu-
tation of viscoelastic flows and was also discussed in Refs.
21 and 43. Beginning with the case of the highest Wi number
�Wi=5� we can see that the computed values of the slopes
converge with mesh refinement even though the numerical

scheme could achieve convergence only up to mesh M4.
Obviously, more refinement levels are needed for the slopes
to converge for Wi=2 and even more for the case of
Wi=0.5. The latter could be attributed to the fact that the
elongational as well as the shear viscosity of the PTT fluid
increase as the Wi decreases resulting in higher stresses near
the singularity �see Fig. 20 in Sec. IV D� and, consequently,
the rate of convergence for Wi=0.5 is much slower than for
higher values of Wi. Nevertheless, we observe that the com-
puted values of the slopes for all variables seem to converge
to the same value for all Wi numbers even though Wi was
increased tenfold. This is in agreement with the findings of
Salamon et al.21 where it was also shown analytically as well
as numerically that the solution near the singularity does not
depend on Wi but viscoelasticity enters the leading order
solution only through the dimensionless solvent viscosity.

Hagen and Renardy44 performed a boundary layer analy-
sis for the linear PTT and the Giesekus model for high
Weissenberg number flows. This work is of relevance here
because we expect that close to the singularity, the local
Weissenberg tends to infinity since at the die lip the rate of
strain becomes infinite. They studied the case of the elonga-
tional parameter, �, being of order 1 as well as the case of
very small �. The latter is of interest here since the exponen-
tial PTT model, used herein, tends to the linear PTT model
when � is very small. Hagen and Renardy44 suggested that
the proper scaling in this case is the same as the UCM scal-

TABLE IV. Convergence of computed slopes for the asymptotic behavior
near the singularity for the velocities, pressure, and elastic stresses at
z=10 ��=90°� and for various values of Wi, �=0.02, and �=0. Planar die
and ePTT fluid model.

Slope of… vr vz P �rr �rz �zz

Wi=0.5

M2 0.662 0.558 �0.161 �0.358 �0.512 �0.651

M3 0.706 0.581 �0.233 �0.446 �0.554 �0.626

M4 0.751 0.626 �0.278 �0.410 �0.521 �0.538

M5 0.794 0.680 �0.290 �0.336 �0.428 �0.412

M6 0.824 0.724 �0.276 �0.259 �0.327 �0.291

M7 0.859 0.770 �0.256 �0.205 �0.252 �0.208

M8 0.880 0.799 �0.233 �0.169 �0.202 �0.155

M9 0.890 0.815 �0.212 �0.148 �0.169 �0.122

M10 0.906 0.832 �0.193 �0.146 �0.148 �0.106

Wi=2.0

M2 0.820 0.743 �0.081 �0.324 �0.331 �0.226

M3 0.871 0.793 �0.086 �0.206 �0.225 �0.156

M4 0.896 0.823 �0.086 �0.149 �0.167 �0.115

M5 0.912 0.844 �0.085 �0.118 �0.133 �0.091

M6 0.923 0.856 �0.083 �0.101 �0.113 �0.077

Wi=5.0

M2 0.925 0.872 �0.052 �0.142 �0.133 �0.059

M3 0.954 0.897 �0.053 �0.079 �0.074 �0.039

M4 0.962 0.906 �0.052 �0.054 �0.051 �0.032
FIG. 8. Calculated slopes of the asymptotical behavior of the velocities,
pressure, and elastic stresses for various angles near the singularity and for
Wi=2, �=0.02, and �=0 with mesh M6. Planar die.
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ing and they used it to rescale the equations of the linear PTT
model inside the boundary layer. This scaling suggests that
the thickness of the boundary layer decreases dramatically as
the Wi number increases. This is in contradiction with the
results shown in Table IV. In order to explain this, we should
reconsider whether the UCM scaling is truly appropriate for
the PTT model. In principle, it is reasonable to assume that
as � decreases, the behavior of the PTT model should tend to
the UCM limit. However, even very small values of the elon-
gational parameter change radically the properties of the
fluid by introducing the effects of shear and elongational
thinning, which affect significantly the stresses especially for
high Wi flows. This can be seen very clearly in Figs. 19 and
20 given in Sec. IV D, where the stresses are plotted for
various Wi numbers. The zz-component of stress for the
UCM increases significantly with Wi whereas for the PTT
fluid, all the stresses decrease with Wi. Looking more closely
at the UCM scaling suggested by Hagen and Renardy,44 we

can see that the zz-component of stress should be of order Wi
and the rr-component of order Wi−1. These are in agreement
with our findings for the UCM fluid but the former is in total
disagreement with our calculations for the PTT fluid, which
very clearly show that both zz and rr components of the
stress decrease as Wi increases.

Now that we have confirmed that our solution converges
even very close to the singularity, it would be interesting to
examine the angular variation of the flow variables around
the singularity. To this end we have calculated the slopes of
the asymptotic behavior of the velocities, pressure, and elas-
tic stresses for various angles near the die lip and plotted
them in Fig. 8 for the case of a planar die and for Wi=2,
�=0.02, and �=0. In this figure, we also present with the
error bars the standard error of the computed slope values
for the linear fit of the corresponding numerical com-
putations. The standard error of the slope is given by
SE=����yi− ŷi�2 / �N−2�� / ���xi− x̄�2�, where yi is the value
of the dependent variable for the interpolation point i, ŷi is
the estimated value, using the computed slope, of the depen-
dent variable for point i, xi is the value of the independent
variable for point i, x̄ is the mean of the independent vari-
able, and N is the number of points. We observe that the form
of the solution for some of the variables varies weakly with
the angle �, whereas others remain almost the same for all
values of �. As � increases, the slope of vr increases, while
the one of vz remains almost constant. As for the elastic
stresses they present different dependencies. The radial stress
decreases, the shear stress increases, whereas the axial stress
remains constant with �. The pressure varies very little with
� showing the most singular behavior for �=90°. Moreover,
we observe that in all cases, the error of the computed slopes
is minimized for �=90° but increases away from this angle.
Perhaps, this weak dependence of the exponent of the loga-
rithmic singularity is the reason that a separable analytic so-
lution near the singularity for the PTT fluid model has not
been possible.

Apart from calculating the slopes at various angles it
would be very interesting to examine also the form of the
solution very close to the die lip. To this end, we present in

FIG. 9. Contour plots of �a� �pr�r�, �b� �pr��, and �c�, �p�� for a planar die
and for Wi=0.5, �=0.02, �=0, l1=10, and l2=50 using mesh M10. �The
plots are restricted to 0.9995�r�1 and 9.9995�z�10.0005�.

FIG. 10. Angular dependence of the velocities along the arc with r�
=0.0005 for Wi=0.5, �=0.02, �=0, l1=10, and l2=50 using mesh M10.
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Fig. 9 contour plots of the polymeric part of stress using
cylindrical coordinates around the singularity in the ranges
0.9995�r�1 and 9.9995�z�10.0005. The contour lines
are rather smooth verifying once more that the stresses have
converged even very close to the die exit. Moreover, we
observe that there is an obvious angular dependence of the
stress field. This can been seen in more detail in Figs. 10 and
11 where we present the angular dependence of the velocities
and the elastic stresses, respectively, at r�=0.0005 together
with certain trigonometric functional forms. The two normal
stresses are of the same magnitude but have opposite signs.
The coincidence of the velocities and the stresses with the
corresponding functional forms is impressive, which is an-
other indication that the solution has converged near the sin-
gularity. In addition, we should mention that Salamon et al.21

presented an analytical solution for the local asymptotic
forms of the stresses near the corner for the Oldroyd-B
partial-slip/slip flow. It is very interesting that in their solu-
tion �r�r� and ��� have an angular functionality of cos�2��
whereas �r�� has angular functionality of sin�2��. Even
though we are studying the stick-slip flow, without the pres-
ence of any slip at the die wall and are using a different
viscoelastic model, we are still getting the same form of
solution for all stress components as they had.

The effect of the various rheological properties of the
fluid on the form of the singularity is shown in Table V.
Since, as we have seen, the slopes are calculated with smaller
deviation for �=90°, we present at this position the slopes
for the asymptotic behavior near the singularity for the ve-
locities, pressure, and elastic stresses for various values of
the elongational parameter, �, and the solvent viscosity ratio,
�. Varying the elongational parameter � while keeping the
rest of the parameters the same has an effect when the value
of � becomes very small. This is consistent with the analysis
presented by Hagen and Renardy,44 which suggested that the
scalings inside the boundary layer should change when the
elongational parameter takes very small values. As this pa-
rameter increases, the elongational as well as the shear vis-
cosity of the fluid decreases resulting in a less singular flow
field around the die lip. On the other hand, as the Newtonian
solvent contribution increases, the singularity becomes inten-
sified tending to the Newtonian limit. This is expected be-
cause then the Newtonian stresses dominate the elastic ones
which are less singular near the die lip. Salamon et al.21 also
noticed that the partial-slip/slip flow for an Oldroyd-B fluid
is dramatically different from that of a UCM fluid because of
the presence of the solvent. In fact, they showed that the
leading order terms in the rate of strain and elastic stress
fields depend on �−1 increasing the strength of the singularity
as � decreases. We have to keep in mind though that for an
Oldroyd-B fluid, the predicted singularity is more intense
than for a Newtonian fluid. Therefore in this case the addi-
tion of solvent viscosity makes the Newtonian stresses domi-
nant over the elastic ones which are more singular and so

FIG. 11. Angular dependence of polymeric part of stresses along the arc
with r�=0.0005 for Wi=0.5, �=0.02, �=0, l1=10, and l2=50 using mesh
M10.

TABLE V. Slopes for the asymptotic behavior near the singularity for the velocities, pressure, and elastic
stresses at z=10 ��=90°� and for various values of � and � using mesh M6. Planar die.

Slope of… vr vz P �rr �rz �zz

Expt. PTT Wi=2.0, �=0

�=0.01 0.779 0.811 �0.039 �0.228 �0.130 �0.101

�=0.02 0.923 0.856 �0.083 �0.101 �0.113 �0.077

�=0.05 0.934 0.869 �0.057 �0.164 �0.109 �0.032

�=0.1 0.989 0.887 �0.089 �0.122 �0.111 �0.006

Expt. PTT �=0.02, Wi=2.0

�=0 0.923 0.856 �0.083 �0.101 �0.113 �0.077

�=0.111 0.699 0.730 ¯ �0.456 �0.261 �0.077

Wi=2.0, �=0.02, �=0

Expt. PTT 0.923 0.856 �0.083 �0.101 �0.113 �0.077

Linear PTT 0.571 0.681 ¯ �0.165 �0.153 �0.272
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decrease the intensity of the singularity tending to the
Newtonian limit. Finally we compared the two different ver-
sions of the PTT model keeping the same values of all the
parameters of the model. As we can see in the table the linear
PTT model predicts a more singular flow field probably due
to the fact that this model predicts a constant elongational
viscosity at high elongational rates in contrast to the elonga-
tional thinning predicted by the exponential PTT model. Un-
fortunately, the solution for the pressure field for �=0.111
and for the case of the linear PTT model presents some os-
cillations very close to the singularity making it very difficult
to calculate a meaningful slope and so it was preferred not to
include them in this table. As a last remark it should be
mentioned that for all cases, the singularity at the die exit is
found to be integrable.

D. Parametric study for a viscoelastic fluid

After verifying the convergence of the computed results
with mesh refinement and that the computed variables are
integrable, we proceed with a parametric study of the vis-
coelastic stick-slip flow. The flow field for a viscoelastic fluid
with Wi=5, �=0.02, and �=0 is illustrated in Fig. 12 for the
case of an axisymmetric die and in Fig. 13 for that of a
planar die. Both figures have been obtained with the M4
mesh but the results change very little even quantitatively, at
the scale of this figure had we used the M1 mesh �see also
Fig. 20 in Sec. V�. Once again, it is clear from the smooth-
ness of all contour plots that all variables have converged

away from the singularity. Contour plots of vr and vz, on the
upper and lower halves, respectively, are depicted in Figs.
12�a� and 13�a�. The total number of contour lines in each
part of these is equal to 15. Each variable changes by the
same amount between neighboring contour lines typically
spanning the range between their corresponding extreme val-
ues. We observe that the velocity field differs even qualita-
tively from the one for a Newtonian fluid. The corresponding
figures for a Newtonian fluid can be found in Ref. 30 or in
Refs. 24 and 16. More specifically, the maximum values of
both vr and vz have decreased in comparison to the corre-
sponding Newtonian ones. This is mostly due to the shear-
thinning effect which is present in PTT fluids. Shear thinning
turns the Newtonian parabolic profile of vz to a more uniform
one in the r-direction, resulting in a smaller maximum at the
axis of symmetry for the same average velocity. Hence, at
the die exit the axial velocity component in the main flow
direction has to decrease and rearrange less than its Newton-
ian counterpart in order to eventually approach the far field
uniform flow. The local mass balance requires that the here-
with generated component of vr velocity should take
�slightly� smaller values during the rearrangement of the
flow field around the die exit. In spite that the fluid memory
forces vr to vary over a larger distance outside the die than in
the Newtonian case, while further downstream, in a distance
of about two die gaps from the die exit, vr also changes sign
and becomes negative. Clearly, elasticity causes this oscilla-
tory variation of vr in the z-direction and a strong radial
gradient near the surface of vr for about one die gap down-
stream from the die exit. This in turn, forces the axial veloc-
ity, which along the no-slip die wall was zero to not only
increase abruptly outside it, at the slip surface, but also to
exceed its far field value of unity. Elasticity pulls it back
however, generating a local maximum in vz along the free
surface and then, it decreases monotonically toward unity.

FIG. 12. Contour plots of �a� vr, vz, �b� P, �prz, �c� �prr, �pzz, and �d� �p, 	̇
on the upper and lower halves, respectively, for a cylindrical die and for
Wi=5, �=0.02, �=0, l1=10, and l2=50 using mesh M4 �for clarity we only
show the region 5�z�20�.

FIG. 13. Contour plots of �a� vr, vz, �b� P, �prz, and �c� �prr, �pzz on the upper
and lower halves, respectively, for a planar die and for Wi=5, �=0.02,
�=0, l1=10, and l2=50 using mesh M4 �for clarity we only show the region
5�z�20�.
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The overshoot in vz can be seen more clearly in Fig. 14 to
display larger maximum values as fluid elasticity increases.
Additionally, it is observed that increasing fluid elasticity
delays the increase in vz downstream from the die exit. This
behavior is in complete contrast to the Newtonian case where
the variation of both vz and vr are monotonic in the
z-direction. In similar profiles studying the effect of the sol-
vent viscosity ratio, it is found that when � increases, de-
creasing fluid elasticity, the maximum value of vz decreases
and it moves to larger values of z. Similar is the effect of
decreasing the � parameter of the PTT model.30

The variation of pressure is shown on the upper half of
Figs. 12�b� and 13�b�. Inside the die, the pressure varies al-
most linearly along the z-direction, the main flow direction,
with almost no dependence on the r-direction except for a
region around the die lip, where the flow becomes two di-
mensional. We should note here that although the pressure
for a Newtonian fluid decreases abruptly near the triple con-
tact point16 because of the singularity, this is not observed in
the case of the viscoelastic fluid where its variation seems to
be smoother. This is in agreement with the findings of
Baaijens.23 On the lower half of this figure we present the
variation of the shear stress, �prz. We observe that it is non-
zero inside the die taking its maximum value at the die lip,
while it gradually tends to zero in a distance of about two die
gaps. Contour lines of �prr and �pzz are depicted on the upper
and lower halves, respectively, of Figs. 12�c� and 13�c�. The

smoothness of the contours �without any kind of postpro-
cessing� testifies to the high quality of the obtained results,
still with the M4 mesh. Clearly the variation of �prr takes
place mostly outside the die. Its minimum value arises on the
free surface near the die exit while it is maximized at the axis
or plane of symmetry about one die gap downstream from
the die exit. At the same position �pzz is minimized. This
stress component varies mainly inside the die, assuming its
maximum value at the die lip, while it gradually decreases as
the fluid exits the die. Both normal stresses exhibit a bound-
ary layer along the slip surface, which starts at the singular
point and extends to a long distance downstream, whereas
the shear stress varies mainly around the singular point.
Similar is the picture of the planar case. Moreover, in Fig.
12�d� one can see the isolines of �p �upper half� and the
rate of strain �lower half� for the cylindrical die. The azi-
muthal stress field is divided in two different regions, a com-
pressive one inside the die and an extensive and more intense
one outside the die. As for the rate of strain, it takes nonzero
values inside the die where we have a shear dominated flow,
while outside the die it takes very small values since the
flow is becoming shear- and extension-free. Similar to the
Newtonian fluid case, all variables assume their extreme val-
ues with larger magnitude in the cylindrical geometry.

As we have seen in Figs. 12�b� and 13�b� the variation of
pressure is much smoother than in the Newtonian case where
the pressure decreases abruptly at the die lip. This can be
seen more clearly in Fig. 15 where we depict the variation of
the pressure along the die wall and the free surface �r=1�
for a viscoelastic fluid with �=0.02, �=0, and various
Weissenberg numbers. Clearly we observe that the pressure
for a Newtonian fluid is singular, as expected, and assumes
much larger values, while for the viscoelastic PTT fluid the
intensity of the singularity decreases. We must note here that
setting �=0 means that there is no Newtonian contribution
and the fluid is purely elastic. If we add, however, some
Newtonian solvent contribution to the viscoelastic fluid, we

FIG. 14. Variation of the z-component of the velocity vector along the free
surface �r=1� for �=0.02, �=0, and various Wi numbers: �a� cylindrical die
and �b� planar die, mesh M2.

FIG. 15. Dependence of the pressure on z along the die wall and the free
surface of the fluid as a function of Wi for �=0.02, �=0, l1=10, l2=50.
Planar die, mesh M4.
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get a qualitative change in the pressure variation around the
singularity. This is shown in Fig. 16, where we have plotted
the pressure along r=1 for Wi=5, �=0.02, and �=0.3.
We observe that the intensity of the singularity increases
tending to the Newtonian limit as � tends to unity since the
more singular Newtonian solvent behavior dominates the
elastic one. This concurs with our findings and analysis in
Sec. IV C.

The variation of the polymeric stresses along r=1 for
Wi=2, �=0.02, and for various values of the solvent viscos-
ity ratio is shown in Fig. 17. We can see that �prr starts from
zero inside the die and decreases abruptly after the die lip
reaching a minimum value, while far from the die it in-
creases tending to zero. We observe, however, that for non-
zero values of the solvent viscosity ratio, �, the solution at
the die lip presents an oscillation, the size of which increases
significantly with �. This is a clear indication that the in-
crease in the solvent viscosity ratio makes the singularity
more intense which is in agreement with the results pre-
sented in Table V. Moreover, this oscillation is not present
for �=0 �see also Fig. 20 below� which indicates that there is
a qualitative change in the solution close to the singularity
due to the presence of the solvent. This is in agreement with
the findings of Salamon et al.21 who also noticed that the
partial-slip/slip flow for an Oldroyd-B fluid is dramatically
different from that of a UCM fluid because of the presence of
the solvent. The variation of �prz, in contrast to that of the
normal stresses, is localized mainly around the die lip and
therefore, it is drawn only in the region 9�z�11. Indica-
tively we mention that in the region 10�z�10.2 and for the
M4 mesh there are 135 elements in the axial direction in
order to resolve the flow. Inside the die �prz is nonzero due to
the shear flow whereas outside the die, it becomes zero since
the flow is shear-free on the free surface. At the die lip �prz

increases abruptly and its maximum value increases with �
due to the increasing intensity of the singularity. As previ-
ously observed the axial normal stress assumes the larger
magnitudes and, probably, causes the oscillatory variation of
both velocity components.

Finally the variation of the exit pressure losses as a func-

FIG. 16. Dependence of the pressure on z along the die wall and the free
surface of the fluid for Wi=2, �=0.02, �=0.3, l1=10, and l2=50, mesh M4.

FIG. 17. �Color online� Variation of �prr, �prz, and �pzz along the die wall and
the free surface of the fluid as a function of the solvent viscosity ratio for
Wi=2, �=0.02, l1=10, and l2=50: �a� cylindrical die and �b� planar die,
mesh M4.

FIG. 18. Dependence of the exit pressure losses on the Wi number for
�=0.05 as a function of the solvent viscosity ratio, �: �a� cylindrical die and
�b� planar die, mesh M1.
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tion of Wi for various values of the solvent viscosity ratio
and for �=0.05 is shown in Fig. 18. We observe that for all
values of � the pressure losses initially increase with Wi
while for larger Wi values, where the effect of the elasticity
of the fluid has saturated, it decreases significantly because
the effect of shear thinning has taken over. Generally, the
maximum value of ex decreases as � increases and the fluid
tends to the Newtonian limit.

Another important factor of the PTT model is the exten-
sional parameter, �. While this parameter imposes an upper
limit on the elongational viscosity, which varies inversely
with it, this parameter is also related to its shear-thinning
behavior. Setting � equal to zero, the PTT model reduces to
the well known Oldroyd-B model, which predicts no shear
thinning as well as an infinite extensional viscosity for the
fluid. We performed simulations using the UCM model
��=�=0� which however stopped at relatively low Weissen-
berg number �Wilim=1.1 for the cylindrical and Wilim=1.8
for the planar die�, as in Refs. 19 and 20. Figure 19 shows
the axial normal stress along the die wall and the free sur-
face, r=1, for various Weissenberg numbers. The infinite ex-
tensional viscosity that the UCM model predicts, results in
very high values of �pzz around the die lip, which grow rap-
idly with Wi causing probably the failure of our calculations
at even larger Wi numbers. We should note here that we
found no such limitation for Wi when we used the PTT
model. The polymeric stresses for such a case are depicted in
Fig. 20 along r=1 for �=0.02, �=0, and various Wi. More

specifically we find that the magnitude of the maximum
value of the normal stresses now decreases with the increase
in Wi because increasing the latter parameter decreases the
extensional viscosity and simultaneously increases shear
thinning. In addition, shear thinning makes the transition of
�prz from the no-slip region at the die wall to the slip surface,
smoother as Wi increases. The calculations shown in this
figure were done using our coarsest mesh M1. Comparing
the solution with the one using mesh M4 shows �see figures
in the inset of Fig. 20� that the solution is almost identical. In
order to show the effect of the elongation parameter of the
PTT model, �, the polymeric stresses are depicted in Fig. 21
for a given Weissenberg number and solvent viscosity ratio
�Wi=2 and �=0�. The figure in the inset shows a compari-
son of the solution using meshes M1 and M4 for �=0.05. We
observe that the magnitude of the minimum value of �prr

remains roughly the same, while its dependence in the
z-direction has changed significantly. Inside the die the value
of �pzz as well as its maximum value outside it decreases
significantly with � due to the decreased elongational viscos-
ity and the increased shear thinning. In general, all stress
components vary less abruptly as � increases. Indeed these
results are in agreement with the analytical works presented
by Renardy38,39 who showed that the elastic stresses for a
PTT fluid near a re-entrant corner are less singular than
Newtonian stresses, whereas the boundary layers near the
walls are much less sharp than for the UCM fluid.

Finally the variation of the exit pressure loss is examined

FIG. 19. Variation of �pzz along the line r=1 for a UCM fluid for �a� a
cylindrical die and �b� a planar die, mesh M1.

FIG. 20. �Color online� Variation of �prr, �prz, and �pzz along the die wall and
the free surface of the fluid as a function of Wi for �=0.02, �=0, l1=10, and
l2=50: �a� cylindrical die and �b� planar die, mesh M1. Inserted figures show
comparison of the solution using meshes M1 and M4 for Wi=2.
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as a function of Wi and for various values of the extensional
parameter, �, but not plotted here for conciseness, see Ref.
30. It is found that the pressure losses initially increase with
Wi, while they tend to level out for large Wi values. More-
over, the pressure losses decrease with the increase in the
extensional parameter because of the increased shear thin-
ning that this parameter introduces to the PTT model.

V. CONCLUSIONS

The purpose of this work was to elucidate the predic-
tions of the PTT fluid model in the stick-slip flow for either
a cylindrical or a planar geometry. In order to achieve this we
first performed numerical simulations for the steady stick-
slip flow for a Newtonian fluid to verify the accuracy of our
predictions in this limit. In this case the numerical calcula-
tions were performed with two different types of elements at
the singular point �OFEM and SFEM�. Our Newtonian cal-
culations were in very good agreement with the results pre-
sented already in literature. For our viscoelastic simulations
only OFEMs were used in combination with the EVSS-G
method for the calculation of the elastic stresses and the
SUPG method for the weighting of the constitutive equation.
This was done so that the global Jacobian matrix of all vari-
ables is generated which is needed for studying the stability
of this flow. We verified the convergence of our simulations
for the PTT model with mesh refinement to predictions re-

ported earlier. Subsequently, we presented a thorough study
on the form of the singularity that arises at the die lip. It is
shown that the singularity for the case of a PTT fluid be-
comes less intense than for a Newtonian one, which ensures
the integrability of all the calculated variables. It is found
that the intensity of the singularity does not depend on the
Weissenberg number whereas this is not always true for the
elongational parameter, �, as the flow field seems to be af-
fected when � takes very small values. On the other hand, the
addition of solvent viscosity has a significant effect on the
intensity of the singularity as the flow field around the die lip
tends to the Newtonian limit. Moreover, our calculations
show that the structure of the solution is different for �=0
from that predicted for finite values of the solvent viscosity.
These findings are in agreement with earlier numerical and
analytical works. In most of the latter, however, the assump-
tion of a Newtonian velocity field is usually made which is
shown here that is not accurate for a viscoelastic fluid. Fi-
nally, a parametric analysis was presented for the viscoelastic
steady stick-slip flow. The selected fluid model and solution
methodology allowed convergence up to very high Weissen-
berg numbers. We examined the effect of the elasticity, the
extensional parameter, �, which is related to the shear-
thinning behavior of the fluid, as well as the effect of the
Newtonian solvent contribution on this flow. We found that
for a PTT fluid the elastic stresses decrease with the increase
in Wi, while the variation of pressure around the singularity
becomes smoother. This is opposite to the predictions using a
UCM fluid model, where the stresses increase without bound
even for small increases in Wi. This trend very soon leads to
the failure of the UCM model.
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