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Abstract

The transient, axisymmetric squeezing of viscoplastic materials under creeping flow conditions is examined. The flow of the material even outs
the disks is followed. Both cases of the disks moving with constant velocity or under constant force are studied. This time-dependent simulat
of squeeze flow is performed for such materials in order to determine very accurately the evolution of the force or the velocity, respectively, a
the distinct differences between these two experiments, the highly deforming shape and position of all the interfaces, the effect of possible
on the disk surface, especially when the slip coefficient is not constant, and the effect of gravity. All these are impossible under the quasi-ste
state condition used up to now. The exponential constitutive model, suggested by Papanastasiou, is employed. The governing equations are s
numerically by coupling the mixed finite element method with a quasi-elliptic mesh generation scheme in order to follow the large deformatio
of the free surface of the fluid. As the Bingham number increases, large departures from the corresponding Newtonian solution are found. W
the disks are moving with constant velocity, unyielded material arises only around the two centers of the disks verifying previous works in whi
quasi-steady state conditions were assumed. The size of the unyielded region increases with the Bingham number, but decreases as time |
and the two disks approach each other. Their size also decreases as the slip velocity or the slip length along the disk wall increase. The force
must be applied on the disks in order to maintain their constant velocity increases significantly with the Bingham number and time and provide
first method to calculate the yield stress. On the other hand, when a constant force is applied on the disks, they slow down until they finally st
because all the material between them becomes unyielded. The final location of the disk and the time when it stops provide another, prob
easier, method to deduce the yield stress of the fluid.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction The deformation and flow of viscoplastic materials are very
important, since many multicomponent fluids such as suspen-
Squeeze flow is widely used as a typical experiment for thesions, pastes, paints, foodstuffs, foams and slurries, which are
rheological characterization of non-Newtonian flu[d$. It is  very frequently encountered in industrial processes, are vis-
also encountered in various engineering processes like compremplastic[9]. These materials exhibit small or no deformation
sion molding, which is used for the manufacturing of variousat all (solid-like behavior) when the applied stress is below a
industrial parts[2]. The rheological experiment can be per- particular value, which is called yield stress. Above the yield
formed in two different ways, either by measuring the forcestress, they flow with viscosity that depends on the local rate
required to push the disks at a constant velofy5] or by  of strain. Whether yield stress really exists is a subject that has
measuring the velocity of the disks towards each other when drawn some attentiofL0], however it is widely accepted that
constant force is appliefp—8]. Our efforts here are aimed at this concept, when it is used properly, can provide an accurate
developing an accurate and efficient numerical method in ordedescription of physical phenomena and industrial processes.
to simulate both versions of such a rheological experiment for The first constitutive law that was proposed for describing the
the special case of a viscoplastic material. flow of such materials is the Bingham modl]. Its application
is extended to more than one dimensions through the Von Mises
criterion for dividing the domain occupied by the material in
regions where it behaves either as rigid solid or as liquid. When
* Corresponding author. Fax: +30 2610 996 178. two such regions coexist in a domain this criterion introduces a
E-mail address: tsamo@chemeng.upatras.gr (J. Tsamopoulos). discontinuity in the constitutive law at the yield surface, which
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is the location where these two regions meet. Moreover, whewith experimental observations. The Papanastasiou model has
the flow is multi-dimensional or time-dependent, this discon-been used in transient simulations by Tsamopoulos §2@].
tinuity usually leads to considerable computational problemsto study the thinning of a viscoplastic fluid film on a rotat-
because in such cases it is very difficult to predict correctly theéng disk in the process of spin coating and by Dimakopoulos
location and the shape of the yield surface. It is characterisand Tsamopoulo$21] to study the displacement of a vis-
tic that although this model is used extensively for simple anctoplastic material by air in straight and suddenly constricted
steady flows, very few researchers have used it in more complexbes.
flows. Such an exception is the work by Beris et[aR], who The behavior of viscoplastic materials in squeeze flow has
presented a numerical simulation for the creeping flow arounattracted the attention of several researchers in the past. In early
a moving sphere. Although at first sight this problem does notheoretical studies, the most usual approach was the lubrica-
seem to be so complicated, it required a very careful analysison approximation. This approach is still used today to evaluate
in order to reveal that unyielded material arises around the twexperimental results, although it was noticed almost from the
stagnation points of flow and at some finite distance from thébeginning that it led to profound kinematic inconsistencies in
sphere. Alternatively, Frigaard and co-workers have advancetthe calculated velocity fieldgl6,22] O’Donovan and Tanner
the augmented Lagrangian method as a viable alternative to dgdk] were the first who recognized the need to solve the squeeze
with such problem§gl 3]. To avoid difficulties like these, various film problem without using the lubrication approximation. They
modifications of the Bingham constitutive equation have beesolved numerically the constant velocity problem employing the
introduced. Two such modifications are the biviscosity modelbiviscosity model for describing the viscoplastic behavior of
proposed by O’Donovan and Tanridd] and the exponential the material and they finally concluded that unyielded material
model, proposed by Papanastasjibf]. In the present analy- arises only adjacent to the center of the plates. Quite recently
sis we decided to use the Papanastasiou model which has tBenyrnaios and Tsamopoulds$] provided a qualitative analysis
following form: and accurate numerical simulations for this problem assuming
_ guasi-steady state conditions. They employed both the origi-
T,(1— -y, nal Bingham constitutive equation and the exponential one to
no + V* ] 4 (1) definitively clarify all the misleading speculations about the
position and the existence of yield surfaces in this flow field.
where the superscript (*) denotes a dimensional quantitis ~ They showed that unyielded material could only exist around the
the extra stress tensoyg is the plastic viscosityy* is the rate  two stagnation points of flow extending in this way the work by
by O’Donovan and Tanndf4]. Matsoukas and Mitsoulig3] also
= solved numerically the squeeze flow of viscoplastic materials,
ondinvarianty” = [(1/2)y* : y*]”“, andmis the stress growth  a5suming quasi-steady state, for both planar and axisymmetric
exponent. flow, confirming the earlier results by Smyrnaios and Tsamopou-
Smyrnaios and Tsamopoul§k6] have shown that for rel- |os[16]. They have also provided a more accurate correlation for
atively large values (depending on the flow at hand) of thehe force that must be applied on the disks’ surface in order to
exponent coefficienty, this model closely approximates the dis- maintain their constant velocity. The only transient simulations
continuous Bingham behavior. On the other hand, Burgos et abf non-Newtonian fluids undergoing squeeze flow that we are
[17] have suggested thatextremely large values of this coefficierfware of are those by Mavridis et 4], albeit for a power-law
should be avoided for reasons that have to do with numerical stanid.
bility and the stiffness of the resulting discrete system. The main  |n the present work, we solve the transient squeeze flow of
advantage of this constitutive equation is the fact that it is cong viscoplastic material for both cases where the disks are mov-
tinuous and it holds uniformly in yielded and unyielded regions.ing with constant velocity and under constant force. Clearly, this
Thus the determination of the shape and the location of the yielgistinction is impossible under the quasi-steady state conditions.
surface can be performed a posteriori instead of simultaneoustyhe transient simulation enables the determination of the tran-
with the flow, as required by the discontinuous Bingham modekient force or velocity, respectively, the shape of the liquid/air
[12]. We explain the method we have followed for its determi-interface, and the location of the yield surface, at every time
nation in SectiorB.4. Moreover, this model has a continuous instant. Moreover we are able to study the effect on the process
dependence of the stress ph, which has been argued to be of possible slip of the fluid on the disk surface and also the effect
more meaningful physicallfl8]. On the other hand, the yield of gravity.
surface, for example, is expected not to coincide completely The remainder of the paper is organized as follows. In Sec-
with that determined following the discontinuous Binghamtion 2, we present the governing equations and the bound-
model. ary conditions for this problem. The numerical algorithm,
Many researchers have employed the aforementioned modised in our simulations, is described in Sect®rin Section
els in order to simulate the viscoplastic behavior in complex o#, we present the results of the extensive parametric analy-
even in time-dependent flows, but we will mention here onlysis that we performed for a viscoplastic fluid that is being
some characteristic examples. Jay et[#8] have used the squeezed either with constant disk velocity or under constant
biviscosity model to study the flow through a sudden axisymmetforce. Finally, conclusions of the present study are drawn in
ric expansion and provided some very interesting comparisonSection5.

of strain tensor defined gs* = Vv* + (Vu*)T, 7* is its sec-
1/2
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Fig. 1. Schematic of the squeeze flow geometry between two parallel coaxial disks.

2. Problem formulation dimensionless form are:

Dv
We consider the axisymmetric squeeze flow of a viscoplasRe 5~ + VP +V -2+ Ste, = 0 )
tic material with a constant yield stress, and upon yielding ~0 3
a constant dynamic viscosityp. We assume that the fluid is Vou= ®)
incompressible with constant densigyand its interface with  whererz is the viscous part of the total stress tenspr
the surrounding air has an interfacial tensienFig. 1 illus- - -
trates a schematic of the flow geometry examined herein: thé = Pl+z, (4)

space between two parallel, coaxial disks with radiisfilled v, P are the axisymmetric velocity vector and the pressure,
with a viscoplastic material, which forms another cylinder coax-respectively, while D/B denotes the material derivative and
ial to the two disks. The radius of this sample is denoted withg the gradient operator. Under typical experimental conditions
b and, generallyh < a. Initially the disks are stationary and the for viscoplastic materials, creeping flow conditions prevail and
free surface of the fluid is assumed to be a perfect cylindrical ong,ereafter we will takeRe =0. To complete the description of
Consequently, the pressure inside the fluid is uniform initially,the flow problem a constitutive equation that describes the rhe-
while the ambient pressure is taken to be zero. ology of the fluid is required. In the present study we employ
Squeeze flow experiments are usually conducted in two difthe continuous constitutive equation that has been proposed by
ferent ways: the disks are moving either with constant Ve|00it343apanastasio[L15] which relates the stress tensgyto the rate

orunder constant force. Both versions are examined in this workyf strain tensory, by a simple exponential relation. The dimen-
At startup of the constant velocity experiment, the velocity Ofsionless form of this constitutive equation is

the disks is increased abruptly from zeroitowhereas at start _
up of the constant force problem, the constant fétézapplied B { 1- e—NV]

on the surface of the disks. In both cases therefore, the disk di&-~ 1+ Bn v Y ®)

placement sets the fluid in motion and deforms the domain of o ) i ) T

the material. We scale all lengths with half the initial distance'VNe€rey is the rate of strain tensor defined jas= Vo + Vo',

of the two disks[, and time withL/V", whereV" is the charac- 7 is its second invariani; = [(1/2)j : ¥]¥/? andN is the stress
teristic velocity. For the constant velocity case the choice of the - -

characteristic velocity” is obvious and it is the constant veloc- Taple 1

ity of the disksV. On the other hand, although no characteristicDefinitions of dimensionless numbers arising in the present model and their
velocity exists for the constant force case, due to the deceleratirigpical values

nature Of the ﬂOW, we have Chosen as SLICh the |n|t|a| Ve|OCIty Obimension]ess number Definition Realistic values
the disksV(r=0%). In addition, both pressure and stress compo- VL
nents are scaled with a viscous sca&” /L, whereas the force Reynolds Re = o Re<1
applied on the disk is scaled witjpV* Lz/e?. Thus, the dimen- oL
sionless groups that arise are the Reynolds number, the Binghdffgnam Bn=2v 0<Bn<100
number, the capillary number, the Stokes number, when grav-_ . noV
L. . . . ._Capillary Ca=— Ca>1
ity is taken under consideration, and, finally, the aspect ratios o
of the volume initially pccupied by'the material or pf the total gyes S = pgL? si<1
volume between the disks, respectively. The definitions of these L’70V
numbers and their typical values are givermable 1 Initial disk aspect ratio £= 4 O0<exl
The flow of an incompressible fluid is governed by the .. ) . a )

. . . : |nitial material aspect ratio w=— eTr>w>»1

momentum and mass conservation equations, which in their L
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Table 2 while for the constant force problem the conditions that must be
Bingham numbers and corresponding dimensionless values for the exponent'ﬁlhposed are

factor in the Papanastasiou model

Rc
Bn 1 10 30 50 100 F — Znozzrdr -0 (15a)
N 500 500 300 300 300 0

whereR. is the radial distance of the triple contact point from the

growth exponenty = mV* /L. In the simulations to be presented axis of symmetry, seig. 1 In addition, the fluid in contact with

in this paper, after careful evaluation, for the reasons explaineﬁ1e disk must move with the same (instantaneous) disk velocity,

earlier, we have chosen the valuesvtdepending on the values WNICh changes with time according (b5a)
of the Bingham number as shownTable 2 n-v=const (15b)
2.1. Boundary conditions The vectors: andt in Egs.(8)—(15)are defined with respect to
the surface on which they apply. In the radial direction either
Along the free surface the velocity field should satisfy a localthe usual no-slip conditiony. = 0, or a suitable slip model is
force balance between surface tension and viscous stressesajpplied. Slip is very often encountered in processing of non-
the liquid, setting the pressure in the surrounding gas to zerblewtonian materials. Especially in the flow of solid suspensions,
(datum pressure) which in many cases exhibit viscoplastic behavior, an additional
o reason for apparent slip is the displacement of the dispersed
—n (6) phase away from the solid boundaries, leaving a layer of liquid
Ca with lower effective viscosity near them. Thus, the separated
wheren is the outward unit normal to the free surface arifl 2 liquid near the wall acts like a lubricant for the rest of the mate-
is its mean curvature which is defined as rial and this is often interpreted as slip5]. Another reason
for introducing slip arises from the fact that when the triple
contact points (or rather contact lines, at the intersection of the
{'gateriallair interface with the disks) are moving and a no-slip
condition is applied along the solid walls, the velocity there is
not single-valued, which gives rise to a hon-physical stress sin-

2H=-Vg-n, Vg=(L—-nn)-V (7)

Taking the tangential and normal to the free surface componen
of this force balance we obtain

tn:o=0 (8)  gularity. Although the resolution of this problem is still under
B investigation, the most common approach is the assumption of
R 2H 9) local slip between the liquid and the solid surface near the con-
= Ca tact point, in order to eliminate the stress singularity.
In addition, the boundary conditions that must be imposed at A number of slip conditions with variable degrees of com-
the axis of symmetryr(= 0) are plexity have been employed in the past for modeling flows of
non-Newtonian materia[6,27] In the present study, we adopt
n-v=0 (10)  amaodification of the slip model that was originally proposed by
mio=0 (11) Kamal et al.[28]. This model divides the wall boundary into a

slip region and a no-slip region. To this end, the slip coefficient

When gravity is taken into consideration no other symmetryS &n exponential function of the radial distance from the triple

arises and the studied domain is the right half of the domaigontact pointand in this way it achieves a continuous transition
shown inFig. 1 However, we have also performed simulationsPetween the slip and the no-slip region. Thus, the slip model has
assuming that gravity is negligible and in that case a plane dhe following form:

symmetry arises as well. The studied domain now becomes the a(r—

uxp;per—rig);n quarter of the space occupied by the material andt 2= poie ey (16)

the following conditions are imposed on the plane of symmetryyhereg is a parameter used to adjust the level of slip velocity

(z=0) in comparison to the wall shear ang is a second parameter
nov=0 (12) used to adjust the length of the slip region. Furthermore, this
- - model reduces to the no-slip condition as these two parameters
tm:o0=0 (13)  increase, whereas when becomes zero the model reduces to

) N the standard Navier slip modg9] and slip occurs over the
On the surface of the disk, two boundary conditions aresptire wall boundary with a constant slip coefficient.
imposed. In the axial direction, the boundary condition actually The model is completed by assuming that the fluid initially
depends on the problem that is examined each time. In particys 4t restu(r, z, 1 = 0) = 0, the free surface is flat with dimen-

lar, for the constant velocity problem the fluid has the same axiadjon|ess radius/L and that the fluid is under constant pressure
velocity with the disks, and thus

n-v=-1 (14) P(V,Z,IZO):é 17)
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3. Numerical implementation We approximate the velocity vector with quadratic Lagrangian
basis functionsg’, and the pressure as well as the position vec-
In order to solve numerically the above set of equations weor with linear Lagrangian basis functiong!. We employ the

have chosen the mixed finite element method combined witfinite element/Galerkin method, which results into the following

an elliptic grid generation scheme for the discretization of theveak forms of the momentum and mass balances

transient physical domain. Dv . ) ‘

/ [Rqub’ +V¢'-a+¢' Ste, | d2

3.1. Elliptic grid generation $ !
_ | + [ oo gidr=o (21)

We employ the quasi-elliptic mesh generation scheme that r

has been recently developed and applied in various problems

by Dimakopoulos and Tsamopoul@)—32] Here we will only )

present our adaptation of its essential features to the current V'V -vd2 =0 (22)

problem. The interested reader may refer to Dimakopoulos and”

Tsamopoulo$30] for further details on all the important issues Where d2 and d™ are the differential volume and surface area,

of the method. With this scheme the time-dependent physicdespectively. The surface integral that appears in the momen-

domain ¢, z) is mapped onto a fixed with time computational tum equation is split into four parts, each one corresponding to

one @, £). A fixed computational mesh is generated in the lat-a boundary of the physical domain and the relevant boundary

ter Wh”e, through the mapping’ the Corresponding mesh in théondition is applled therein. In order to avoid dealing with the

physical domain follows its deformations. Since the mesh in théecond order derivatives that arise in the boundary integral of

physical domain moves, but not necessarily with the local fluidhe interface, through the definition of the mean curvatjrere

velocity, this method belongs to the group of ALE (Arbitrary Use the following formulation, first proposed by Ruscfa®):

Langrangian—Eulerian) methods. As computational domain we d n
choose here the volume that is initially occupied by the fluid.2Hn = R (23)
. L . : s  Ro
This mapping is based on the solution of the following system
of quasi-elliptic partial differential equations: where the first term describes the change of the tangential vector

along the free surface artp is the second principal radius of
the curvatureR, = r, /rg2 + Zg/zg.

v (18) We must also derive the weak form of the mesh genera-
tion equations. Thus after applying the divergence theorem we

V-Vn= (19)  obtain.

where the subscripts denote the differentiation with respect to, ,

the variable indicated ane} is a parameter that controls the / £1 +(1—e1) | VE-VY'd2 =0 (24)

smoothness of the mapping relative to the degree of orthogona £

ity demanded and it is adjusted by trial and error; here itis set to '

0.1. In order to solve the above system of differential equationf( Vn-Vy'dR2=0 (25)

appropriate boundary conditions must be imposed. On the fixed®

boundaries, we impose the equations that define their positiohhe resulting set of algebraic equations is solved with the follow-
and the remaining degrees of freedom are used for equidistribuitig two-step Newton—Raphson/non-linear Gauss—Seidel itera-
ing the nodes along the boundaries. In addition, along the movingon scheme. At each time step the momentum and mass balances

interface we impose the kinematic equation are solved until convergence using the physical domain from the

DF previous time step. Then, once the velocities and pressure are

ﬁ =0 (20)  known, the new locations of the mesh points can be determined
t

from the mesh generation equations and their boundary condi-
whereF = re, + ze, is the position vector of the free surface, tions. This procedure continues until convergence is achieved for
together with a condition that requires the uniform distributionboth the flow and mesh equations. This is an effective method for

of the nodes along the free surface. decoupling the flow from the mesh generation problem because
it results in considerably smaller Jacobian matrices, which are
3.2. Mixed finite element method easier to handle. Finally, the set of algebraic equations is inte-

grated in time with the Predictor-Corrector Euler method intro-
The computational domain is discretized using triangular eleducing an automatic adaptation of the time step for ensuring the
ments, by carefully splitting in two elements each rectangulaconvergence of the above iteration scheme and optimizing code
element generated by the previous method, because trianglpsrformance. The iterations are terminated using a tolerance for
conform better to the large deformations of the transient physithe absolute error of the residual vector, which is set a10he
cal domain and, when significantly distorted, they do not creatdacobian matrix that results for the constant velocity case after
the computational problems that the rectangular elements deach Newton iteration has a banded structure and the linearized
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system is solved by Gaussian elimination using a banded matriand Tsamopould84,35]to model the contact line motion in the
solver. However, the Jacobian matrix in the constant force cagalow molding process, i.e. the inflation of fluid annular menisci
does not have a banded structure becaus€lBymust be used  within a mold.

which couples all the (unknown) velocities on the disk surface, The basic idea of the method is to predict the time step
instead of Eq(14), which sets the velocity at each one of the such that only the nearest to the wall node of the free surface,
nodes on the disk. This happens because the numbering of thich at timer is at some small distance away from the wall,
nodes proceeds in the axial direction first, since the number ofill just reach the solid boundary at time Az. To this end, the
elements in that direction is much less than in the radial direcfollowing first-order approximation is used.

tion, and Eq(15) gives to the Jacobian an “arrow” structure. In

order to invert it efficiently and still take advantage of its large Ar = min l:(Zw - zf)/azf} (29)
banded segment we split the Jacobian in four submatrices and o
the linear system becomes whereZ,, denotes the position of the disk walk is the axial
position of the free surface node aé®d;/ar is obtained by the
A B xl] — [bll (26)  following first-order formula:
C D||x b
2 2 0Zs  Zi— Zio (30)
whereb;, is the single residual of E{15), C andD its contribu- o t—19

tions to the Jacobian matrix ad is the residual vector of the - \yhere7, is the axial position of the free surface node at the pre-
rest of_ the equ_atlons_ al andB_lts cont”b_Ut'OnS to the same ;5 time step. After a few iterations the distance between the
Jacobian matrix. This system is solved in a two-step procesgisik wall and the free surface node becorfigg— Z| <1075,

solving first forxz and then fow At the next time step, the force balance which was imposed

Sx»=by— CA~'b~1, whereS=D— CA'B (7) On this node is replaced by the slip condition and the essential
' conditionv, = —1 in the case of the constant velocity prob-
x1=A"1b — A" 1Bx, (28) lem or Eq.(15) in the case of a constant force simulation. As

for the mesh generation, the kinematic equation is replaced by
! the essential condition=Z,. If, in spite of these careful steps,

a blanded matrix, we need to compute the_prodAct%B and  the free surface node is displaced beyond the disk wall, the con-
A™"b1 and this can be easily done by applying the back substiyerged solution is rejected and the calculations are repeated with
tution step for multiple right-hand sides which are formed by, smajler time step. Of course, as nodes from the free surface
the columns of the matrik and the vectab;. The computation  come into contact with the disk, their density on the free surface

of the vectorCA*lb; and of the matriX, when the matrbC' gecreases, but not to the extend that the accuracy of the calcu-
is rather small, as it is in our case, is trivial. Having computedasions is not acceptable. Clearly, this procedure is redundant
the vectorx; we can easily compute the remaining part of the\yhen the material/air interface contacts the disks at their edge

unknownsy;. _ from the beginning, then the triple point is fixedRjt = a.
In order to compute accurately the large deformations of

the physical domain we used 50 elements on &firection
(axial) and 200 elements on thedirection (radial), resulting

in 20000 triangular elements in the upper-right quarter of the  There are two different criteria that have been employed by
domain and 50 752 unknowns including the two coordinates 0feyerq| researchers in the past for determining the location of

the grid points. The initial time step in all the simulations is the vield surface. The first one determines this surface as the
Ar=107°. The code was written in Fortran 90 and was run on ocation wherej* = 0, while the second one as the location

workstation yvith duaI. Xeon CP'U at2.8GHzin the LaboraForyWheret* =7,. Quite recently Dimakopoulos and Tsamopoulos
of Computational Fluid Dynamics. Each run typically required [21] argued that, following the Papanastasiou model, the two

2-3 days to complete. criteria are not equivalent and that it is more appropriate to use
the second one, i.e. that the material flows when the second
3.3. Motion of the material/air interface towards the wall invariant of the extra stress tensor exceeds the yield stress. This

criterion in its dimensionless form becomes
While the disks move towards each other and as long as the

free surface of the material moves inside the space between thepi¢lded material : 7 > Bn (31)

itis bei_ng deformed, and later on parts of it come very close tcbnyielded material © 7 < Bn (32)

the solid wall and, eventually, into contact with it. Therefore,

besides the usual motion of the contact point, a new contact Consequently, in order to determine the yield surface, the
point may be created ahead of the previous one. The calculatiaecond invariant of the stress tensor must be calculated and
of this new contact point of the free surface with the disk wall,this includes the computation of the velocity gradient tensor.
introduces an important technical difficulty to the simulation As mentioned earlier however, the velocity field is discretized
of the transient squeeze flow problem. This wetting process igsing Lagrangian basis functions, which means that the veloc-
simulated following the technique that was used by Poslinskity gradient tensor is not continuous on the element sides and,

Once we compute the LU decomposition of matfixwhich is

3.4. Yield surface determination
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Fig. 3. Comparison of the predictions of the unyielded area with the present
model forBn =100,Re =0, Ca =10, w = 10,¢ =0.1,N = 300 with results from
the quasi-steady analysis and under the no-slip condition.

Fig. 2. Comparison of the predictions for the radial velocity profile at different
radial positions forBn=100,Re=0, Ca=1C, w = 10, e=0.1, N=300 with
results from the quasi-steady analysis and under the no-slip condition.

consequently, the direct computation at the nodes of the stred =100, Ca = 10°, N=300 and when the no-slip condition is
tensor is not possible. The most appropriate way to do this ispplied throughout the disk wall. The aspect ratiossr®.1
to find a continuous approximation of the extra stress tensor bgndw = 10, which means that the initial radial distance of the
using the Galerkin projection method, that is free surface is 10 times the half distance between the two disks
and the material initially occupies all the space between them.
| #@-nae=o (33)
2

Of course, in the transient problem the distance between the two

disks as well as the shape and radial distance of the free sur-
whereT denotes the continuous approximation of the stress terface from the axis of symmetry change with time, in contrast
sor z. Now that the nodal values of the extra stress tensor aro the quasi-steady state problem, where they are assumed to
calculated the position of the yield surface can be easily detebe constant. Because of this and in order to make the compari-
mined. A similar procedure is followed to obtain contour linesson possible and meaningful we have to make it at the very early
of v (e.g. on the yield surface, ség. 25. stages of the transient simulation. To this end, we present a snap-
shot of the present simulations after the first time stefd,0~>.
Clearly, the two studies provide virtually the same result for the
radial velocity profiles.

The squeeze flow of a liquid between two moving parallel To validate further our new code, we compared the location
coaxial disks depends on the dimensionless numbers that weasd the size of the unyielded area, for the same (initial) time
mentioned earlier. More specifically, we examine the effects ofnstant and values of all the other parameters. Based on the dis-
the yield stress, the geometric aspect ratios, gravity and the magussion above, it is anticipated that the largest error will arise
nitude of the slip coefficients on the disk walls. We start byin calculating the yield surfacédzig. 3 focuses on only a part
validating our finite element code. Subsequently, in Seeti@n  of the upper quarter of the domain between the disks in order
we present simulations for the case that the disks are movin illustrate that the two results are very similar, in spite of the
with constant velocity, while in Sectiof.3 we present simu- different formulations, mesh generation techniques and types of
lations for the case where the disks are moving under constastements used in each one. The largest deviation in the yield
force. surface location arises near the disk surfacg {.1) and there
the current results are closer to those in R28], where the
Papanastasiou model was used, as well. One could conclude that
the quasi-steady state assumption, although it has certain short-

First, we verify the accuracy of our finite element code bycomings, like the inability to take into consideration the fluid/air
comparing our results against the ones given by Smyrnaiogiterface and the actual deformation of the material, it provides
and TsamopouloElL6]. They used primarily the discontinuous a good understanding of the flow problem at least in its initial
Bingham model for solving the usual quasi-steady state modeitage.
for the axisymmetric squeeze flow of a viscoplastic material Finally, inFig. 4, we present a blowup of the physical domain
with a constant disk velocity. In all quasi-steady models pub{0 <z < zq, 7.7< r] toillustrate the quality of the mesh produced
lished so far, the presence and deformation of the free surfadellowing our method, even at so large deformations. For clar-
has been ignoredtig. 2 compares their predictions with ours ity reasons, we depict rectangular elements, although these have
for the radial velocity profile at different radial positions, for been divided in half to form triangular elements in order to bet-

4. Results and discussion

4.1. Code validation



42 G. Karapetsas, J. Tsamopoulos / J. Non-Newtonian Fluid Mech. 133 (2006) 35-56

MM

LMY

Fig. 4. The deformation of the meshrat0.4 forBn=1,Re=0, Ca= 1%, S1=0, w = 10,¢ =0.1. For clarity we show rectangular elementsifor7.7.

ter conform to large interface changes and avoid using highly The axial velocity has its smallest (negative) values at the
deformed rectangular elements with all their negative consedpper disk because there the fluid follows the motion of the
quences. Clearly, the mesh faithfully follows the interface andlisks in the axial direction. However, its values monotonically
within the domain generates elements that vary in shape and sirecrease towards zero at the mid-plane. In the three snapshots of
very smoothly. Moreover, they are more concentrated where theis figure, the £ 1, 0] range of axial velocities between the disk

are needed the most: at edge of the disk. and the mid-plane is divided in ten, eight and five equal inter-
vals, respectively, by the lines of constant axial velocity. The

4.2. Constant velocity case total number of contour lines in this and all subsequent similar
plots is 20. The axial velocity field changes drastically outside

4.2.1. Effect of the yield stress the disks. There, the squeezed out material is displaced slightly

To set the stage for the discussion that follows, it is useful taupwards near the upper disk due to the rearranging of the veloc-
examine first the evolution of certain variables when a Newtoities and stresses, similarly to the extrudate swell phenomenon.
nian fluid (8n = 0) is undergoing squeeze floRig. 5illustrates  This appears intensified by the downward motion of the corre-
the flow field in a fluid that initially fills completely the space sponding disk. Therefore, the axial velocity has its largest and
between the disks, thatis wher 5 = 10L. Moreover capillarity ~ positive value near the edge of the upper disk and this value
is rather weak as is often the case in this proagss; 10°, grav-  increases with time. At larger radial locations from where the
ity is negligible,Sr=0, and the no-slip condition is applied on axial velocity has its maximum (ségg. 5), its values decrease
the surface of the disks. The snapshots are taken at ti®&, towards zero, since no axial force is applied on the material there
t=0.4,:=0.7 and each one of them shows the contour plots o&nd viscous forces dissipate the flow.
the axial velocity, on the upper half, and the radial velocity, on As for the radial velocity component, it becomes zero on the
the lower half. On the left hand side of each plot, we can see thaxis of symmetry and on the surface of the disks because of the
axis of symmetry, while on the right-hand side we can see theymmetry and the no-slip condition, respectively, while near the
interface between the fluid and air. We observe that the free suexit of the disks and at the mid-plane it has its largest values as
face, which initially was cylindrical, deforms everywhere eventhe fluid is displaced primarily outwards in the radial direction.
at early times. Its maximum value increases with time, as it should, because of

Fig. 5. Contour plots of the axial, upper half, and the radial, lower half, velocity componert0a,=0.4,r=0.7 forBn=0, Re=0, Ca=10%, S1=0, w = 10,
£=0.1 and under the no-slip condition.
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Fig. 6. Contour plots of the pressure, upper half, andiower half, atr= 0.4 forBn=0,Re =0, Ca=10%, St=0,w = 10, =0.1 and under the no-slip condition.

the decreasing distance between the disks. The range of radia¢ar the edge of the disks. Fig. 6for example, we present the
velocities from zero to its maximum value is divided in 20 equalpressure (upper half) and shear stress (lower half) contour lines
intervals by the contour lines shown in each snapshot. Because ofider the same conditions askig. 5, but fors=0.4 only, for
the radial and (smaller) axial expansion of the material outsideonciseness. We can observe the 1D character of the pressure
the disks, mass conservation enforces a decrease of the radii@ld almost up to the edge of the disk and the strong singularity
velocity, which however, remains much larger than the axiain the shear stress at the edge of the disk where the transition
component throughout the material. Away from the disk edgefrom the no slip to the shear free condition takes place. Of course,
the radial velocity drastically changes its spatial variation andhis should have been expected because the basic assumption of
decreases in the radial direction only. Even though interfaciathe lubrication approximatiom,» L, breaks down in that region,
tension is relatively small, it is still sufficient to make only the necessitating a two-dimensional analysis there.
edge of the cross section of the free surface nearly semi-circular It is anticipated that changing the rheological properties of
for this Newtonian fluid case, but leaves the material’'s upper anthe material should directly affect some of the characteristics of
lower sides nearly straight and undeformed. the flow.Fig. 7illustrates the contour plots of the pressure on the
In spite of the initially small and decreasing aspect ratio,upper half and the second invariant of the rate of strain tensor,
which should make the lubrication approximation even morey, on the lower half for a viscoplastic material wir = 100, at
accurate with time, it is evident froig. 5 that this approxi- timesr=0.2,¢=0.4,r=0.6. The same geometric, capillary and
mation is never accurate enough near the disk edge and forgaavitational parameters are used as in the previous Newtonian
distance of the order of the disks’ distance. The same is alscase, while the dimensionless constant in the exponent of the
evident in figures depicting the pressure or the stress distriblPapanastasiou model is large enough based on ourtes80,
tion in the gap between the disks. Such plots demonstrate thaeeTable 2 As one can see clearly, the shape of the free surface
the pressure is a function of the radial coordinate only, excephtas changed. The viscoplastic property of the present material
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Fig. 7. Contour plots of the pressure field, upper half, and the second invariant of the rate of strain tensor, lower=@l, &t 0.4,7=0.6 for Bn=100,Re =0,
Ca=10, §t=0,w = 10, =0.1,N =300 and under the no-slip condition.



44 G. Karapetsas, J. Tsamopoulos / J. Non-Newtonian Fluid Mech. 133 (2006) 35-56

-1.000 0.363
N\

0.000 9.221

Fig. 8. Contour plots of the axial, upper half, and the radial, lower half, velocity componen0at for Bn =100,Re =0, Ca=50,5t=0, w = 10,¢=0.1,N=300
and under the no-slip condition.

turns the smaller and smaller stresses that it experiences as
exits the disks into larger and larger effective viscosity and thus
the material becomes “frozen”. As a result, it retains the thick-
ness it had nearly when it exited and before the disks moved
further towards each other. In addition, the pressure field still
varies mainly in the radial direction, the main flow direction. 0,6 o O

However, its axial variation has become significant, especially e

. . 05 | e s B
near the surface of the disks, where the shear rate is stronges L — t=10 ]
decreasing the effective viscosity. As time passes and the aspec 04 7 T t:g-i .
ratio decreases, the pressure varies less in the axial directionfol o[ .- :;o'e ]

lowing closer the lubrication theory. Again, close to the edge of
the disks the pressure variation deviates from the pattern estab I ]
lished further inside the disks. As for the shear rate, it has its 0.1 .
smallest values near the axis of symmetry where, aswewilldis- oo . o+ . + . v .+ . v . v v o 0 ]
cuss shortly, unyielded regions arise. Its largest values are closc 00 02 04 06 08 10 12 14 16 18 20
to the edge of the disks, and they decrease with time. r

In order to examine the importance of the capillary forcesrig. 9. Evolution of the unyielded area with time fw = 100,Re =0, Ca = 1C%,
on squeeze flow, we decreasédby a factor of 20 taCa =50, St=0,w = 10,£=0.1,N=300 and under the no-slip condition.
which is lower than the prevailing values for typical viscoplastic
materials in squeeze flow, keeping the rest of the parameters bsr. It is expected that viscoplasticity will have an important
in Fig. 7. In Fig. 8, we only present the case corresponding toeffect on the flow field as welFig. 11shows the radial veloc-
the intermediate time ifrig. 7, t=0.4, but the behavior is the ity profile at three different radial positions and for varidtis
same at all times. It is very interesting that the free surface ohumbers. These profiles are taken at the first time instant of the
the material is identical to that ifig. 7o and that the maximum transient simulations as wetl= 10-° and for the same parame-
radial and axial velocities differ by less than 0.1% from that caseter values. The profile of the radial velocity of a Newtonian fluid
In other words, the yield stress is dominant over capillary forces(Bn = 0) is parabolic at every radial location. However, as the
even when the latter is increased above its typical values andBingham number increases, the profile changes becoming flatter
rounded surface at the edge cannot be generated, in contrast to
the simulations with a Newtonian fluiFig. 6). 100

Fig. Qillustrates the time evolution of the unyielded domain

02| -

for the case of a viscoplastic material wigh = 100. The rest of 095 ]
the parameters are the same with thodeign 7, while the snap- 0,90 -
shots are taken at times 1075, t=0.2,=0.4 ands=0.6. For 0.85 | ]

clarity, the solution is given between the upper disk and the mid-
plane and only in a portion of the radial extent of the disks. The I
figure clearly shows that at all times the unyielded region sur- , 075
rounds the center of the disk surface and that there is an obviou: o[
reduction of its size with time. Smyrnaios and Tsamopo[i6§
have also noticed a decrease of the size of the unyielded domail I
as the aspect ratio decreases. Clearly, the different aspect ratic 060 - .
in their quasi-steady state analysis correspond to different time o5 [
instants in our transient simulation. S
Fig. 10 shows again only part of the upper quarter of the " 00 02 04 06 08 1,0 1,2 1.4
domain and the shape of the yield surface there, as a function o r
the Bn number lsmder the same values for the rest of the_pararrlg-ig. 10. Yield surfaces foRe =0, Ca=1GF, $1=0. w — 10, £=0.1, under the
eters and =107 only. As we can see, the size of the unyieldednq_sjip condition and variou: numbers and the corresponding values/afs
regions increases substantially with the increase oBtheum-  given inTable 1at timer=10"5.

0,80

0,65




G. Karapetsas, J. Tsamopoulos / J. Non-Newtonian Fluid Mech. 133 (2006) 35-56 45

T T T T T T T T T T T T T T T
500 |- 4
400 |- 4
> —1t=02
J £300F 0 - t=0.6 g
£
s
z o 2001 i
- 5]
-4
100
0
(a)
A\
r 5000
Fig. 11. Radial velocity profiles for variou: numbers and the corresponding 4500
values ofN as given iriTable 1at three different radial locationss 3, 6, 9, for 2000 |

Re=0,Ca=10%Sr=0,w = 10, =0.1,N = 300 and under the no-slip condition. 3500 |

3000
around the plane of symmetry and exhibiting a steeper increase 559 [
from its zero value at the disk wall. Another demonstration of 0 [
the quality of our results is given iRig. 12 It shows either the P
y or the pressure along the upper disk surface (G< 10) and
the upper free surface of the squeezed out materfallQ) at
two time instants. Near the center of the disks, both variables
are nearly constant, whilg increases an@ decreases mono-
tonically with r up to the disk edge and both with a slope that [ ]
increases with time. The singularity at the disk edge induces -1000 —'/—-i—+r7 v —t—7>———\——L——_——
very sharp spikes in both variables, which increase with time, as(b) r
eXpECte_d’ but are well resolved by our code. Outside the dISkilg. 12. Dependence of (a) the second invariant of the rate of sia(b)
both variables are nearly zero. the pressure with the radial distance from the axis of symmetry along the disk

wall and the free surface at 0.2,r=0.6 forBn=100,Re=0, Ca=10%, St=0,
w = 10,¢=0.1,N =300 and under the no-slip condition.

1500
1000
500

-500 |

4.2.2. Effect of slip
Because of the reasons mentioned in the introduction, we
studied also the effect of a slip condition at the disk wall. InNewtonian case. Onthe contraryFiy. 13, the material outside
particular, we chose to employ a slip model that would maximizethe disk is narrower and its free surface is flatter, resembling
the ratio of the slip velocity over the shear stress where the latterases with larger yield stress. The reason for this variation is
is largest and would smoothly reduce the slip velocity to zerahat the introduction of wall-slip helps reducing the stresses in
away from this point. This slip model is given by H46). Ina  the material even before it exits the area between the disks. Thus,
first set of simulations, we assumed that the material completelghe effective viscosity increases locally, “freezing” the shape of
fills the volume between the disks from the beginning of thethe squeezed out material and surface tension is not sufficient
simulation. Then, the slip velocity compared to the local sheato give it its rounded shape. This is verified by the decrease in
stress will be largest at the disk edge and decrease to zero towattthe value of the maximum of the axial velocity by an order of
the disk center. In a second set of simulations, we assumed thatagnitude and by the decrease of its variation near the exit of the
the material only partially fills the same volume and then thedisks. The magnitude and the variation of the radial velocity are
slip velocity will be largest at the triple contact point, but will not affected as much, but clearly,kig. 13 the radial velocity

vary in the same way in the radial direction. deviates from zero at the disk surface as we approach the edge
Fig. 13shows two snapshots at the same time insta®,4,  of the disks.
both with Bn =1, but with the no-slip condition ifig. 13 and Fig. 14shows two snapshots under corresponding conditions,

the slip condition irFig. 13. The parameter values used in the but with Bn=100. Again, the introduction of the slip model
slip model are such that slip effectively takes place in a smalmakes the outer edge of the material flatter for the reasons
fraction of the radius of the disks near their edge. In the firsexplained above and the axial velocity never becomes positive
shapshot, we observe that the free surface of the material ia the upper half of the material. Its maximum value is zero at
rounded, in spite of the finite, but small value of the yield stressthe mid-plane. Moreover, the introduction of slip reduces the
In other words, its shape does not deviate too much from thetresses on the material and its high yield stress induces a more
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Fig. 13. Contour plots of the axial, upper half, and the radial, lower half, velocity component at=ifné forBn=1, Re=0, Ca=10%, 5t=0, w = 10,£=0.1,
N =500 with (a) no-slip condition, and (I8 =1, ag =5.

uniform velocity even within the disks. Their combination nul- disks. This configuration can be easily attained experimentally
lifies the mechanism leading to material swelling outside theby first placing the material at the center of the lower disk and
disks to the extend that the axial velocity remains slightly negthen lowering the upper disk until it partially squeezes the mate-
ative even outside the disks but very near their edge. As in thaal up to the point that its radial extenths< a. Fig. 15depicts
previous case, the magnitude of the radial velocity is not affectedontour plots of the axial and radial velocity on the upper and
to the same degree by the slip condition. The employment of thiwwer half, respectively, at timess=0.2,7=0.5,7=0.6 and for
slip condition is confined in a region too distant from the axis ofBn =10, N=500,w = 15,¢=0.1, and slip coefficientss =5,
symmetry to affect the area occupied by the unyielded materiasj= 1. Here the slip condition also helps in resolving the stress
For this large value of the Bingham number this area extendsingularity at the triple contact point. At early times, the fluid
axially from the disk surface to about a third of the distance tomoves inside the space between the disks, while later it exits
the plane of symmetry, even at this late time instant, see alsthis area. Soon after initiation of flow, the free surface becomes
Fig. 9. By closely comparingrig. 14a with Fig. 8 we can con- nearly parabolic with an increasing curvature as time increases
firm that decreasin@a by a factor of 20 has no effect on the and the distance between the disks decreases. One can observe
flow and the moving boundary. that the flow field resembles the ones discussed earlier, except
Next, we examine the effect of placing less material tharfor an area of about 1-2 gap widths from the instantaneous posi-
what is required to fill completely the space between the twdion of the triple contact point. As we can see, the radial velocity
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Fig. 14. Contour plots of the axial, upper half, and the radial, lower half, velocity component at=tié for Bn = 100,Re =0, Ca=10%, St=0,w = 10,¢=0.1,
N=300 with (a) no slip condition, and (8 =1, ag = 5.
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Fig. 15. Contour plots of the axial, upper half, and the radial, lower half, velocity componer®a,:=0.5,= 0.6 and fotBn = 10,Re =0, Ca = 10%, $t=0,w = 15,
£=0.1,a5=5, Bs1 =1, N=500.

on the surface of the disks deviates from zero in a region neahear field is generated closer to the axis of symmetry, which
the triple contact point, where slip occurs. This deviation alsdorces more material to yield in that region.
affects the axial velocity. Although the disks force the fluid It is anticipated that the flow field will depend somewhat on
to move in the axial direction, the fluid follows only partially the values of the slip coefficientg, Bs. Fig. 17depicts the con-
their motion in the slip region because it is also allowed to sliptour plot of the axial velocity in the upper quarter of the domain
in the radial direction. On the other hand, the axial velocitybetween the disks fa8n =30 atr=0.3. In order to magnify the
near the axis of symmetry remains equal to the velocity of theeffect of the slip coefficients we have taken the disks to be fur-
disk up to almost half the distance of the disk from the mid-ther apart from each other=0.5, and the fluid between them
plane and this happens because unyielded material arises in tleattends only to 40% of their radiug; = 5, while a5 =5 and
region. Bsl is either (a) 100 or (b) 10. As mentioned earlier, the latter
This can be seen more clearly fg. 16 where we have parameter adjusts the level of the local slip velocity in compar-
plotted the liquid/air interface and the yield surface for the saméson to the wall shear. More specifically, when the valuggf
parameters and time instants. We can see that the viscoplastitcreases the level of the slip velocity decreasedrith 17a
material behaves as rigid solid around the disk center, confirmingshere the no-slip condition is approached the free surface is
the predictions of previous research§td,16,23] Moreover, more curved and the contact angle with the disk wall is quite
one can notice that the size of the unyielded region decreaséarger than 90. Fig. 17 shows that as the slip velocity increases,
monotonically with time. This happens because as time passéise axial velocity becomes more uniform near the triple con-
and the distance between the two disks decreases, a more intetiaet point. This makes the shape of the fluid/air interface flatter

(b)

(c)

Fig. 16. Evolution of the yield surface and the material/air interface with tim&#er10,Re =0, Ca= 103, 5r=0,w = 15,6 =0.1,a¢ =5, B = 1, N=500 at times
t=0.2,:=0.4,1=0.6.
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Fig. 17. Contour plots of the axial velocity at time 0.3 forBn=30,Re =0, Ca=10®, St=0,w = 5,¢=0.5,a5 =5, N=300 with (a)8s/= 100, and (b)8s = 10.

and the contact angle of the free surface with the disk waltlisappears completely. Clearly, the same would happen, if the
approaches 90 Navier slip model was used throughout the diskg=0. This

We also performed simulations for different valuesogf. occurs because as the slip length increases and slip is allowed
This parameter controls the rate of decrease of the slip velocitgt a larger portion of the disk surface, the fluid follows only
and, consequently, it can adjust the length of the slip regionpartially the axial motion of the disks towards the mid-plane
The smaller the value afg, the larger the slip length along the and flows in the radial direction as well. Thus, the flow has
wall. Simulations have shown that,, in contrast to8s, has  an extensional portion even very near the disk surface and the
a small effect on the shape of the fluid/air interface, whereaaxis of symmetry, which prohibits the formation of unyielded
it has an important effect on the size of the unyielded regionmaterial.
Fig. 18 shows the shape of the yield surface for two different A very general analysis of the effect of partial wall-slip on
values ofag. We observe that when the slip region is longer, thethe squeeze flow problem, irrespective of the constitutive law,
domain of the unyielded material decreases and for even smalles presented in Ref36]. A most interesting result given there,
valuesgpg = 2.5, which is not presented here, the unyielded aredased on straight-forward lubrication analysis, is that the radial
velocity on the disk surface varies linearly with the radial dis-
tance assuming its maximum value at the edge of the disks,
the only triple contact point in that analysis. We examined the
applicability of this result in our more general case, where the
. triple contact point may move, the slip condition is applied in
only a part of the disk surface and where the distance between
the disks is rather large invalidating the lubrication assumptions.
Fig. 19shows the dependence of the radial velocity on the radial
""" @, =3 § distance at various instants as obtained from our simulations.
— =10 ] Indeed, we observe a gratifying agreement with the analysis in
[36]. The radial velocity at all times remains zero where it should
be, according to our slip model, but increases linearly with the

060 |- T radial distance where the slip condition is applied and there is
055 | i a smooth transition between these two regions. Only very close
oso et ] to the triple point there is a slight deviation from linearity, but
00 02 04 06 08 10 12 14 16 18 20 there the flow is not one-dimensional any more and the lubri-
r cation predictions irj36] do not apply. The radial velocity at

Fig. 18. Yield surfaces at time= 105 for Ba=30, Re=0, Ca=1C%, St=0 the triple contact point increases with time simply because of
w =5,e=0.5, 5 =10, N =300 and different values of. mass conservation and, since the slip region remains approxi-
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the viscoplastic material exits the area between the two disks.
I P For this reason, we decided to present only the case where the
aL I' ) fluid initially fills completely the space between the two disks.
/ So we have takew = 2 ande=0.5, which result inSt=2.5.
[ Moreover, we assume that gravity acts downwards in the axial
3  =10° ; I,' direction. Now, there is no plane of symmetry for the flow field
P e t=0.3 FA ] and only axial symmetry can be employed to reduce the size of
v L t=0.6 ,,,/ / i the examined domain. Furthermore, for convenience we assume
/ I," that the lower disk is stationary and that only the upper disk
; FE ] moves. Of course, sindRe =0, this change of coordinates has
r R / 7 no effect on the shape of the free surface or the flow fkélgl.20
- o ’ p g : depicts the contour plots of the axial velocity at time$.5 and
ol giietg i +=0.47 for two different values afr number and foBn =5,
T Bsi=100,a51=5 andN=500. As we can see ilRig. 20a and b,
0,0 05 1,0 15 20 25 30 35 whereSt=0, the flow is totally symmetric about the instanta-
r neous mid-plane as it should be. On the other hand, one can see
Fig. 19. Distribution of the radial velocity on the disk surface under slip condi—In Fig. 20c and d that When gravity is taken into con3|derat|qn
tions s = 5, 85 = 10 at different times, wit#n = 30,6 = 0.5,w = 5andv = 300. (§=2.5) the flow loses its plane of symmetry and _th‘? mate_rlal
accelerates downwards. Although the effect of gravity is obvious
mately constant according to our slip model, the slope of th qutside the disks, inter_estingly, one could observe that the_ﬂov_v
linear section increases with time as well ' field between the two disks remains the same and even reta_ms its
' plane of symmetry. Moreover, early on, although the flow field
outside the disks is not symmetric anymore, it still resembles the
4.2.3. Effect of gravity one withSt=0 and the shape of the free surface remains almost
Typically, the gravitational force is ignored in squeeze flowthe same. Nevertheless, later on, when more material has exited
experiments on the basis that the gap is small making the Stokege disks, the flow field and the shape of material clearly change.

number much smaller than unity. However, given the versatility

of our computer code, it would be interesting to examine the

effect of gravity, even if that required to place the disks furtherd.2.4. Required squeeze force

apart than what is usually the case. Even then, our simulations In a typical squeeze flow experiment under constant velocity,
have shown that the flow between the disks is not affected signithe most important measurable variable is the force that must be

icantly by gravity and that the most interesting effects arise whempplied on the disks in order to maintain their velocity constant.

5 T T T T T T T T T T T T T

-2.000

(a)

(c)
Fig. 20. Contour plots of the axial velocity at times0.5 andr=0.7 forBn =5, Re =0, Ca=10°, w = 2,£=0.5,a/=5, Bs; = 100,N =500, andsz= 0 (for (a) and

(b)) andSt=2.5 (for (c) and (d)).
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J ' ' ' : ' ' ' ' ] as indicated above. Clearly, the force we calculate is initially
A 4 slightly higher than the one obtained from the quasi-steady state
10 b Matsoukas & Mitsoulis (2003) i analysis, but this is easily explained by the small capillary force,

EON - present work for =0.1, w=10 3 acting on the perimeter of the sample, which we have included
g, 0 eee present work for £=0.05, w=20 ] in our model, but was absent [23]. However, as time pro-

1 ceeds and the disk gap decreases, the force we calculate becomes
E much smaller than the one resulting from a quasi-steady
] analysis.

The same is observed in a second simulation we performed
with w = 20, £=0.05, i.e. by halving the disk gap, while it
remains initially completely filled with material. The force is
slightly larger initially, but turns much smaller later on than
the corresponding one from the quasi-steady analysis. This may
10* ! : ; - : : ; : : seem puzzling, but it can be explained by noticing that, in our

0,02 0,04 0,06 0,08 0,10 . . . . . .

dynamic simulations, the material already outside the disks has
e a large radial velocity and the related momentum assists the out-

ward flow of the material still between the disks, which as a
result, requires less axial force to be squeezed out. Thisis a very

] important observation and it holds irrespective of the constitutive

— Matsoukas & Mitsoulis (2003) ] equation for the material. It implies that, if during the squeeze
10° b N present work 4 flow experiment, the disk gap decreases by, say over 10%, the

g ] force measured must be adjusted accordingly, before it is com-
pared to quasi-steady state analysis to extract rheological data.
In other words, the quasi-steady state analysis cannot be applied
E directly and consecutively many times in order to approximate a
] truly unsteady experiment. Fig. 21b, we show that we predict
a smaller deviation of the applied force with our dynamic sim-
ulations from its value under the quasi-steady analysis, when
the gap between them was partially filled with material and
] before any material exited the gap between the disks. This small
00z o004 oo 008 o010 deviation is probably due to the slip condition applied on the

(b) 7,/R disk wall, which results in smaller velocity gradients there and
especially closer to the disk exit (compa#ig. 13a and 14&
Fig. 21. Comparison of the squeeze force with the results by Matsoukas anpigs_ 13b and 14b

gi'gscc’;‘r']'ji[ﬂzj’r]] ;Or:é?gf?b;ig’fg;eg’:%” Ej(flg?;l:o 280' f:ﬁjg%ggix Fig. 22a shows the dependence of the squeeze force on time
the slip condition with parameter valueg =5, fg = 1. and for variousBn numbers, when the gap between the disks
is completely filled with material, so that = 10,=0.1. We
observe that the squeeze force increases significantly with time
) . . _ because of the decreased distance of the disks in accordance
We calculate this force by integrating the normal to the disksyjith basic Iubrication ideas. Furthermore, we notice that there
component of the total stress tenseg, over the portion of the  i5 5 substantial increase in the force that must be applied on the

Dimensionlees Force, F

Dimensionlees Force, F

-
(=]
S
T
1

Re: was also noted by previous research@&23] The variation
Re of the force is almost one order of magnitude asBheaumber
F= /o 2ro.r dr (34)  increases from 1 to 100, making this experiment a valuable one

for determining the yield stress for a viscoplastic fluid. Finally,
Fig. 21a shows the comparison of our calculations for the forca~ig. 22 shows the same dependence of this force, when the slip
against the results that were given in R3] for Bn=10 and  condition is applied and when the radius of the disks is twice
N=500. It must be noted that Matsoukas and Mitso(2i3] as that in the previous case, while the material initially occupies
assumed a quasi-steady state model and calculated the time inaedy part of the gap so that = 20, =0.1. Clearly, for the same
pendent force at different aspect ratios. Thus, in order to maksn this force is initially smaller than that shown Fg. 223,
the comparison possible we calculated the force at different timbecause the slip condition on the disk surface facilitates the flow
instants, found the corresponding ragigRc, wherezq denotes in every direction. However, the force now increases faster, so
the instantaneous axial position of the upper disk, and comparaduch so that at= 0.5 itis larger than the force for the saBwein
our resultstotheirs for the same aspectratioBign2laweindi-  Fig. 22a under no-slip. This occurs because in the present case,
cate with a solid line the results from R3] and with a dash- as time passes more material contacts the disk walls increasing
dotted line our present results with= 10, £=0.1, converted the total resistance to flow.
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Fig. 23. Evolution of the squeeze velocity and the distance of the upper disk
from the mid-planeZg, with time forBn=50,Re =0,Ca=10°, w = 10,6 =0.1,
N=300 and under the no-slip condition.

at timer=2.4. At that time instant the disk has approached a
little more the plane of symmetryyg=0.785. The motion of

the disks essentially stops there because, as it will be shown
further below, all the material beyond the edge of the two disks
behaves as a rigid solid. It should be noted that having used the
. Papanastasiou constitutive law, which models all the material
] as liquid even with arbitrarily large viscosity where unyielded
material should exist, the disks never stop moving, even under
the constant force experiment.

Fig. 24 shows contour plots of the axial and radial veloc-
ity fields with Bn=10, w = 10, ¢=0.1 at three time instants.
The axial velocity varies only axially except near the axis of
symmetry where the unyielded region arises and near the disk
edge where the lubrication approximation fails. Both its min-
imum (negative) and maximum (positive) values decrease by
one order of magnitude between the three snapshots. Similarly,
the maximum of the radial velocity, which arises at the plane of
symmetry and near the exit of the disks, decreases by an order
of magnitude. This is opposite to the case of a constant velocity
experiment where the maximum of the radial velocity increased

The easiest to measure quantities in a squeeze flow experiith time. The curvature of the edge of the material is in between
ment conducted under constant force are the axial velocity ahe curvature oBr =1 (Fig. 13) andBn =100 Fig. 14).
the disks and their position as a function of time. The motion Most revealing of the changing state of the material during
of the disks in such an experiment is decelerating because ntite squeezing under constant force are the five snapshots given
only the resistance of the fluid continuously increases as thein Fig. 25 under the same parameter values dsign 24 In the
approach each other, according to lubrication theory, but alsapper quarter of the domain we give the yield surface and in
the effective viscosity of the material increases as the velocityhe lower quarter contours ¢f as long as it takes values below
and its gradients decrease. The latter effect eventually forces tte014 (for reasons that will become clear shortly). In these plots,
disks to stop moving in a finite tim&ig. 23shows the evolution we denote with a letter A and B the regions where the mate-
of the axial velocity and position of the upper disk with time for rial behaves as solid and fluid, respectively. At the first time
the case of a viscoplastic fluid wiz = 50,w = 10,6 =0.1,and instant, unyielded material, according to the condition given by
N=300. Indeed, one can observe that the velocity of the diskkq. (32), arises only around the stagnation points of flow as in
decreases towards zero very rapidly, especially at early timesqueezing under constant velocity. This area, indicated hy A
It is characteristic that the disk axial velocity has decreased bghanges very little in the next two snapshots. The rest of the
slightly over 90% from its initial value by the time= 0.70, while  material yields and is indicated by B. As the flow decelerates
the distance of the upper disk from the mid-plane has decreaseserywhere, another domain with unyielded material arises at
to only zg = 0.825. After that point the disk velocity decreasesthe edge of the squeezed out material and its bounding yield
at a much smaller rate and it finally becomes practically zersurface moves inwards between the second and the third snap-

-
o
o
T

Dimensionless Force, F
3
T

01 00 01 02 03 04 05 06 07 08
(b) Dimensionless Time, t

Fig. 22. Evolution of the squeeze force with time for variBusiumbers and the

corresponding values of as given inTable 1for (@) Re=0, Ca=10°, w = 10,

£=0.1, and the no-slip condition and for (8y =0, Ca=10%, w = 20,¢=0.1
and the slip condition with parameter valuag=>5, s = 1.

4.3. Constant force case
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Fig. 24. Contour plots of the axial, upper half, and the radial, lower half, velocity componenBai3,7=6.49,r=17.16 forBn=10,Re=0, Ca=10%, 5t=0,
w = 10,¢=0.1 and under the no-slip condition.

shot increasing this unyielded domain, whichis indicated py A with 0 < y < 0.014 expands inwards following the displace-
At the fourth snapshot, the unyielded domain has moved furthement of the yield surface in the upper quarter. Clearly, even
inwards covering a large area around the plane of symmetrgt the very edge of the material the even smaller valug of
but it has not reached the axis of symmetry. Up to this instantiemainsy # 0 and strictly speaking very slow radial flow still
the domain B with yielded material is continuous and extend®ccurs even there (sédg. 24). In the fourth snapshot, values
from the axis of symmetry all the way to slightly outside the 0 < y < 0.014 arise around the plane of symmetry and, in the
disks, permitting flow and deformation. Finally, in the fifth snap- fifth one, they reach the axis of symmetry and the two domains
shot the inward moving unyielded domain has merged with thevith 0 < y < 0.014 merge. Interestingly, remains larger than
unyielded domain around the disk centers. After this instant, th8.014 around the edge of the disks in all time instants shown.
disks should have stopped moving and this is the point where w&herefore, the flow effectively stops not because all the mate-
consider that the simulation ends. As explained earlier howeverijal outside the disks becomes unyielded, but because unyielded
according to the Papanastasiou model, even now, finite motiomaterial extends from the axis of symmetry, the stagnation points
of the material is allowed, albeit with very large viscosity andaround the disk and most of the plane of symmetry all the way
the condition for the yield surface given by Bn is not equiv-  to its outer edge. Now we can go back and look more closely at
alent toy = 0. Therefore, in principle, simulations could have the radial velocity profiles at three different radial positions and
continued and it should not be expected that the yield surfacesvo time instances, the first one when unyielded material exists
given in the upper quarter correspond to surfaces withO in  only around the disk centers and the second one when it covers
the lower quarter. In fact, one can readily show thatBn is ~ most of the domain. These are giverHig. 27and clearly show

equivalent to that early on the velocity profile resembles that showign 11,
o VB 35 whereas towards the end of the experiment the radial velocity is
v exp(Ny) = Bn (35) nearly flat for the largest part of the gap between the disks. As

This dependence of on N is given inFig. 26 for Bn=10  noted already, even for 17.16 when we consider that the flow
and shows thaf will approach zero only asymptotically for has stopped, the radial velocity is not zero at any cross section
extremely large values a¥, but such values must be avoided as it should, because of the employment of the Papanastasiou
as explained by Burgos et #1.7]. In the present case, we have model.

takenN =500 and since = Bn = 10 at the yield surface, we find From the practical point of view, it is important to study
that therey = 0.0133, clearlyy # 0. For this reason, we have the effect of the Bingham number on the evolution of either
plotted inFig. 25 contours ofy in the lower-right quarters of the velocity or the position of the disk and, especially, their
the domain in the range (0, 0.014). In the first time instant, wdinal position. For higher clarity of the results, this variation is
observe thay = 0.014 arises just outside the unyielded materialshown inFig. 28 by plotting the instantaneous velocity versus
at the stagnation point, but also near the edge of the squeez#fte instantaneous axial position of the disks, for three different
out material. In the second and third snapshots the latter domaialues of the Bingham number and the same values for the rest
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Fig. 25. Evolution of the yielded and unyielded domains, upper half, and contour plots of the second invariant of the rate of strain teaspr<d@.014, lower
half, with time forBn=10,Re =0, Ca=10%, w = 10,¢=0.1, andV =500, under the no-slip condition at times5.03,r=5.21,:=6.49,:=13.06,: = 17.16.

— of the parameters. The calculations under constant force were
performed using either 39 150 (M1) or 40x 300 (M2) axial

and radial elements. For the caseBaf=50 it was impossible

to achieve convergence with M2 and thus we performed our
0015 | ] calculations with M1. In order to check that our solution has
converged we have also performed the simulations for the case
of Bn=10 using both meshes M1 and M2 and as we can see in
Fig. 28the results are identical. Clearly, in the case of the low-
est value of the Bingham numb@, = 1, where the Newtonian
behavior is approached, the disk distance can decrease to less
0,005 |- . than 15% of its initial value and their velocity seems to approach
zero asymptotically. Increasing the Bingham number, forces the
disks to practically stop moving before they come so close to
each other and at the highest value shown heues 50, their
motion seems to stop more abruptly. This happens because the
size of the unyielded regions increases significantly withBie

Fig. 26. Dependence of the second invariant of the rate of strain tensor at thgumber and, consequently, these regions grow faster and merge
yield surface on the stress growth exponaor Br = 10. earlier forcing the disks to finally stop moving much earlier. We
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T T T T final distance as we predict it to that given in R@&8]. To this
H ——t=5.03 1 end, we make E(2) in that reference dimensionless using our
05 . definitions for characteristic variables and find that the final half
distance between the disks is
04 i T Bn
L .“ .“ | H; = %F (36)
” o3 | ' [ The results are given ifable 3and show a qualitative agree-
0zl § ' r=6.0 r=90 i ment, but the numerical values systematically overpredict the
' i final distance and more so for the smaBamumber. This can be
o L i E i attributed to the well-known deficiencies of the analysis in Ref.
" lr=30] | [38], to the possible presence of slip in the experiment and to the
0oL . . ] fact that we have employed the Papanastasiou model, which may
' L have led us to assume cessation of disk motion somewhat prema-
0,00 0,02 0,04 0,06 0,08 0,10 0,12 turely. Another more recent experimental work is presented in
Ur [39]. Here the disk velocity and the disk distance are given versus

Fia. 27, Radial velocity profiles at three different radial locations. 6.  at time inlog—log plots. We have converted our results to such plots
19. . Raadial velocity protiles at three different radial locatierRss, o, 9 a . . . _
1=5.03.1=17.16 forBn = 10,Re =0, Ca=10%, Si=0, w — 10, =0.1, N =500 and we obtained qualitatively the_ same depen.dence. Unfortu
and under the no-slip condition. nately, we cannot perform a quantitative comparison because the
material viscosity is not reported jB9]. Moreover, we decided

D L e B B B not to report herein extensions of our simulations to as small
B disk velocities as iff39], where the final velocities were 3—4
09 7 orders of magnitude smaller than the initial ones. The reason
08| - for this is that thery becomes very small and the exponét,
07 L ] in the Papanastasiou model ceases to be large enough for accu-
- . racy of the simulations and fidelity of this viscoplastic model.
06 ] Therefore, simulations in that low velocity range are question-
2 051 Bn= 1(M2) R able, although they exhibit even the breaking in the curve as in
. Bn = 10 (M2) . ] :
04+ - Bn=10(Ml) A Fig. 7 of Ref[39]
sl Bn = 50 (M1) L]
5. Conclusions
02} -
01| . We examined the transient squeeze flow of a viscoplastic
ool v v v v v s e material between two parallel coaxial disks. Both the case of the
-0 -09 -08 07 06 -05 -04 -03 -02 01 00 disks moving with constant velocity and under constant force
v, were studied. This transient simulation of squeeze flow for vis-

Fig. 28. Evolution of the squeeze velocity with the distance of the upper diskCOpIaStIC_materlal allows U_S to determine the eVOIUtIOn O_f (a)
from the mid-planezg for Re=0, Ca=10%, w = 10,¢=0.1, under the no-slip  the velocity and pressure fields, (b) the shape of the liquid/air
condition and variousn numbers and the corresponding valuesvafs given  interface, (c) the domain of the unyielded material and (d) the
in Table 1 force on or the velocity of the plates. All these were impossible
with the quasi-steady state models used up to now. The simula-
believe that measuring the rate of decrease of the axial velocitjon of the process is based on the mixed finite element method
of the disks and, more easily, locating the final position of thefor the discretization of the governing equations coupled with
disks can become a valuable rheological test to deduce read-quasi-elliptic mesh generation scheme in order to follow the
ily the yield stress of a fluid. This method for measuring thelarge deformations of the physical domain.
rheological properties of the material has some similarities to Results from a complete parametric analysis have been pre-
the one proposed in RgB7], and, although it is not as cheap, sented. We examined the effect of the yield stress, the slip
it provides increased control over the experimental conditionsoefficients, the amount of material initially placed between the
and accuracy in the measured variables. Finally, we compare thiisks and gravity. In the constant velocity problem it is shown

Table 3

Comparison of the final distance between the disks under constant applied force as givefi38]Refl predicted by the present analysis (the best fit for our results
is given byH = 0.863 [1-exp(—0.165B1°-687)])

Bingham number&n) 1 10 20 50 80 100
Dimensionless applied forcé) 45 94 147 301.5 452 554.7
Final distance between disks (present analysis) 0.130 0.479 0.626 0.785 0.834 0.846

Final distance between disks (RE58]) 0.074 0.355 0.453 0.551 0.590 0.601




G. Karapetsas, J. Tsamopoulos / J. Non-Newtonian Fluid Mech. 133 (2006) 35-56 55

that unyielded material arises around the disk centers where thg] C. Servais, A. Luciani, J.A.E. Manson, Squeeze flow of concentrated
two stagnation points of flow would have been, verifying pre- long fibre suspensions experiments and model, J. Non-Newtonian Fluid

vious quasi-steady state calculations. The size of these domains Mech. 104 (2002) 165-184. ) ,
. ith the Binaham number. but decreases with time[9] R.B. Bird, G.C. Dai, B.J. Yarusso, The rheology and flow of viscoplastic
increases wi g , ' materials, Rev. Chem. Eng. 1 (1983) 1-70.

becéuse the decreased diStanC? bewve?” the (_jiSks amplifies pigy H.A. Barnes, The yield stres— a review or fravra pev’ — everything
marily the shear stress. The radial velocity profile changes from  flows? J. Non-Newtonian Fluid Mech. 81 (1999) 133-178.
almost parabolic, for the case of a Newtonian fluid, to almostl1] E.C. Bingham, Fluidity and Plasticity, McGraw-Hill, 1922.

plug flow, as the Bingham number increases. The force thdtZ A-N. Beris, J.A. Tsamopoulos, R.C. Armstrong, R.A. Brown, Creeping
' motion of a sphere through a Bingham plastic, J. Fluid Mech. 158 (1985)

must be applied on the surface of the disks in order to maintain = 5,4 544

their constant velocity increases substantially with the Bing{13] m.A. Moyers-Gonzalez, I.A. Frigaard, Numerical solution of duct flows
ham number and with time. The slip condition on the surface  of multiple visco-plastic fluids, J. Non-Newtonian Fluid Mech. 122
of the disks affects the flow field only locally. Moreover, as the ~ (2004) 227-241.

length of the slip region increases, the size of the unyielded ard&¥ E-J- O'Donovan, R.l. Tanner, Numerical study of the Bingham squeeze

d ianifi tlv. Under tvpical itati | diti film problem, J. Non-Newtonian Fluid Mech. 15 (1984) 75-83.
ecreases signiicantly. Lnder Typical graviiational condi IOn?ls] T.C. Papanastasiou, Flows of materials with yield, J. Rheol. 31 (1987)

the flow inside the two disks is not affected appreciably, whereas ~ 3g5_404.
when the gap between them is sufficiently large and enough fluigdé] D.N. Smyrnaios, J.A. Tsamopoulos, Squeeze flow of Bingham plastics,
has exited the space between them, the effect of gravity on the J. Non-Newtonian Fluid Mech. 100 (2001) 165-190.

flow field as well as on the shape of the free surface becomdd’] G:R. Burgos, A.N. Alexandrou, N.M. Entov, On the determination
of yield surfaces in Herschel-Bulkley fluids, J. Rheol. 43 (3) (1999)

clear. 463-483

Finally, when a constant force is applied on the disks theif1g] H.a. Barnes, K. Walters, The yield stress myth? Rheol. Acta 24 (1985)
motion is decelerating until they finally stop, since at thattime  323-326.
most of the material between them behaves as rigid solid. Indeeld?] P. Jay, A. Magnin, J.M. Piau, Viscoplastic fluid flow through a sudden

unyielded regions arise first around the two stagnation points of _ 2xisymmetric expansion, AIChE J. 47 (10) (2001) 2155-2166.
fl dlat tth t d fth terial. As ti éZO] J.A. Tsamopoulos, M.F. Chen, A.V. Borkar, On the spin coating of
owand lateron atine outer edge ot the material. AS Ume PasSes = ;s |agtic fluids, Rheol. Acta 35 (1996) 597—615.

their size increases and they extend towards the axis and plapg) v. pimakopoulos, J. Tsamopoulos, Transient displacement of a vis-
of symmetry, eventually merging with the former unyielded coplastic material by air in straight and suddenly constricted tubes, J.
domain to form a continuous solid-like domain. The time thatis  Non-Newtonian Fluid Mech. 112 (2003) 43-75.

needed for the disks to stop moving as well as their final positioff2] G-G- Lipscomb, M.M. Denn, Flow of Bingham fluids in complex geome-

d nds stronalv on the vi lasticity of the material. As th tries, J. Non-Newtonian Fluid Mech. 14 (1984) 337-346.
€pendas strongly o € viscoplasticity of the material. AS 3] A. Matsoukas, E. Mitsoulis, Geometry effects in squeeze flow of

Bingham number increases, this time decreases, while the final * gjngham plastics, J. Non-Newtonian Fluid Mech. 109 (2003) 231—
distance between the disks increases. 240.
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