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Transient squeeze flow of viscoplastic materials
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Abstract

The transient, axisymmetric squeezing of viscoplastic materials under creeping flow conditions is examined. The flow of the material even outside
the disks is followed. Both cases of the disks moving with constant velocity or under constant force are studied. This time-dependent simulation
of squeeze flow is performed for such materials in order to determine very accurately the evolution of the force or the velocity, respectively, and
the distinct differences between these two experiments, the highly deforming shape and position of all the interfaces, the effect of possible slip
on the disk surface, especially when the slip coefficient is not constant, and the effect of gravity. All these are impossible under the quasi-steady
state condition used up to now. The exponential constitutive model, suggested by Papanastasiou, is employed. The governing equations are solved
numerically by coupling the mixed finite element method with a quasi-elliptic mesh generation scheme in order to follow the large deformations
of the free surface of the fluid. As the Bingham number increases, large departures from the corresponding Newtonian solution are found. When
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he disks are moving with constant velocity, unyielded material arises only around the two centers of the disks verifying previous work
uasi-steady state conditions were assumed. The size of the unyielded region increases with the Bingham number, but decreases a
nd the two disks approach each other. Their size also decreases as the slip velocity or the slip length along the disk wall increase. T
ust be applied on the disks in order to maintain their constant velocity increases significantly with the Bingham number and time and

rst method to calculate the yield stress. On the other hand, when a constant force is applied on the disks, they slow down until they
ecause all the material between them becomes unyielded. The final location of the disk and the time when it stops provide anoth
asier, method to deduce the yield stress of the fluid.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Squeeze flow is widely used as a typical experiment for the
heological characterization of non-Newtonian fluids[1]. It is
lso encountered in various engineering processes like compres-
ion molding, which is used for the manufacturing of various
ndustrial parts[2]. The rheological experiment can be per-
ormed in two different ways, either by measuring the force
equired to push the disks at a constant velocity[3–5] or by
easuring the velocity of the disks towards each other when a

onstant force is applied[6–8]. Our efforts here are aimed at
eveloping an accurate and efficient numerical method in order

o simulate both versions of such a rheological experiment for
he special case of a viscoplastic material.

∗ Corresponding author. Fax: +30 2610 996 178.
E-mail address: tsamo@chemeng.upatras.gr (J. Tsamopoulos).

The deformation and flow of viscoplastic materials are v
important, since many multicomponent fluids such as sus
sions, pastes, paints, foodstuffs, foams and slurries, whic
very frequently encountered in industrial processes, are
coplastic[9]. These materials exhibit small or no deforma
at all (solid-like behavior) when the applied stress is belo
particular value, which is called yield stress. Above the y
stress, they flow with viscosity that depends on the local
of strain. Whether yield stress really exists is a subject tha
drawn some attention[10], however it is widely accepted th
this concept, when it is used properly, can provide an acc
description of physical phenomena and industrial process

The first constitutive law that was proposed for describing
flow of such materials is the Bingham model[11]. Its application
is extended to more than one dimensions through the Von M
criterion for dividing the domain occupied by the materia
regions where it behaves either as rigid solid or as liquid. W
two such regions coexist in a domain this criterion introduc
discontinuity in the constitutive law at the yield surface, wh
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is the location where these two regions meet. Moreover, when
the flow is multi-dimensional or time-dependent, this discon-
tinuity usually leads to considerable computational problems,
because in such cases it is very difficult to predict correctly the
location and the shape of the yield surface. It is characteris-
tic that although this model is used extensively for simple and
steady flows, very few researchers have used it in more complex
flows. Such an exception is the work by Beris et al.[12], who
presented a numerical simulation for the creeping flow around
a moving sphere. Although at first sight this problem does not
seem to be so complicated, it required a very careful analysis
in order to reveal that unyielded material arises around the two
stagnation points of flow and at some finite distance from the
sphere. Alternatively, Frigaard and co-workers have advanced
the augmented Lagrangian method as a viable alternative to deal
with such problems[13]. To avoid difficulties like these, various
modifications of the Bingham constitutive equation have been
introduced. Two such modifications are the biviscosity model,
proposed by O’Donovan and Tanner[14] and the exponential
model, proposed by Papanastasiou[15]. In the present analy-
sis we decided to use the Papanastasiou model which has the
following form:

τ∗ = −
[
η0 + τy(1 − e−mγ̇∗

)

γ̇∗

]
γ̇∗ (1)
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with experimental observations. The Papanastasiou model has
been used in transient simulations by Tsamopoulos et al.[20]
to study the thinning of a viscoplastic fluid film on a rotat-
ing disk in the process of spin coating and by Dimakopoulos
and Tsamopoulos[21] to study the displacement of a vis-
coplastic material by air in straight and suddenly constricted
tubes.

The behavior of viscoplastic materials in squeeze flow has
attracted the attention of several researchers in the past. In early
theoretical studies, the most usual approach was the lubrica-
tion approximation. This approach is still used today to evaluate
experimental results, although it was noticed almost from the
beginning that it led to profound kinematic inconsistencies in
the calculated velocity fields[16,22]. O’Donovan and Tanner
[14] were the first who recognized the need to solve the squeeze
film problem without using the lubrication approximation. They
solved numerically the constant velocity problem employing the
biviscosity model for describing the viscoplastic behavior of
the material and they finally concluded that unyielded material
arises only adjacent to the center of the plates. Quite recently
Smyrnaios and Tsamopoulos[16] provided a qualitative analysis
and accurate numerical simulations for this problem assuming
quasi-steady state conditions. They employed both the origi-
nal Bingham constitutive equation and the exponential one to
definitively clarify all the misleading speculations about the
position and the existence of yield surfaces in this flow field.
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here the superscript (*) denotes a dimensional quantity,τ∗ is
he extra stress tensor,η0 is the plastic viscosity,̇γ∗ is the rate

f strain tensor defined aṡγ∗ = ∇v∗ + (∇v∗)T, γ̇∗ is its sec

nd invariant,̇γ∗ = [(1/2)γ̇∗ : γ̇∗]1/2, andm is the stress growt
xponent.

Smyrnaios and Tsamopoulos[16] have shown that for re
tively large values (depending on the flow at hand) of
xponent coefficient,m, this model closely approximates the d
ontinuous Bingham behavior. On the other hand, Burgos
17] have suggested that extremely large values of this coeffi
hould be avoided for reasons that have to do with numerica
ility and the stiffness of the resulting discrete system. The
dvantage of this constitutive equation is the fact that it is

inuous and it holds uniformly in yielded and unyielded regio
hus the determination of the shape and the location of the
urface can be performed a posteriori instead of simultane
ith the flow, as required by the discontinuous Bingham m

12]. We explain the method we have followed for its deter
ation in Section3.4. Moreover, this model has a continuo
ependence of the stress onγ̇∗, which has been argued to
ore meaningful physically[18]. On the other hand, the yie

urface, for example, is expected not to coincide compl
ith that determined following the discontinuous Bingh
odel.
Many researchers have employed the aforementioned

ls in order to simulate the viscoplastic behavior in comple
ven in time-dependent flows, but we will mention here o
ome characteristic examples. Jay et al.[19] have used th
iviscosity model to study the flow through a sudden axisym
ic expansion and provided some very interesting compar
l.
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hey showed that unyielded material could only exist aroun
wo stagnation points of flow extending in this way the work
’Donovan and Tanner[14]. Matsoukas and Mitsoulis[23] also
olved numerically the squeeze flow of viscoplastic mate
ssuming quasi-steady state, for both planar and axisymm
ow, confirming the earlier results by Smyrnaios and Tsamo
os[16]. They have also provided a more accurate correlatio
he force that must be applied on the disks’ surface in ord
aintain their constant velocity. The only transient simulat
f non-Newtonian fluids undergoing squeeze flow that we
ware of are those by Mavridis et al.[24], albeit for a power-law
uid.

In the present work, we solve the transient squeeze flo
viscoplastic material for both cases where the disks are

ng with constant velocity and under constant force. Clearly
istinction is impossible under the quasi-steady state condi
he transient simulation enables the determination of the
ient force or velocity, respectively, the shape of the liquid
nterface, and the location of the yield surface, at every
nstant. Moreover we are able to study the effect on the pro
f possible slip of the fluid on the disk surface and also the e
f gravity.

The remainder of the paper is organized as follows. In
ion 2, we present the governing equations and the bo
ry conditions for this problem. The numerical algorith
sed in our simulations, is described in Section3. In Section
, we present the results of the extensive parametric a
is that we performed for a viscoplastic fluid that is be
queezed either with constant disk velocity or under con
orce. Finally, conclusions of the present study are draw
ection5.
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Fig. 1. Schematic of the squeeze flow geometry between two parallel coaxial disks.

2. Problem formulation

We consider the axisymmetric squeeze flow of a viscoplas-
tic material with a constant yield stress,τy, and upon yielding
a constant dynamic viscosity,η0. We assume that the fluid is
incompressible with constant density,ρ and its interface with
the surrounding air has an interfacial tension,σ. Fig. 1 illus-
trates a schematic of the flow geometry examined herein: the
space between two parallel, coaxial disks with radiusa is filled
with a viscoplastic material, which forms another cylinder coax-
ial to the two disks. The radius of this sample is denoted with
b and, generally,b ≤ a. Initially the disks are stationary and the
free surface of the fluid is assumed to be a perfect cylindrical one.
Consequently, the pressure inside the fluid is uniform initially,
while the ambient pressure is taken to be zero.

Squeeze flow experiments are usually conducted in two dif-
ferent ways: the disks are moving either with constant velocity
or under constant force. Both versions are examined in this work.
At startup of the constant velocity experiment, the velocity of
the disks is increased abruptly from zero toV, whereas at start
up of the constant force problem, the constant forceF is applied
on the surface of the disks. In both cases therefore, the disk dis-
placement sets the fluid in motion and deforms the domain of
the material. We scale all lengths with half the initial distance
of the two disks,L, and time withL/V* , whereV* is the charac-
teristic velocity. For the constant velocity case the choice of the
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dimensionless form are:

Re
Dv

Dt
+ ∇P + ∇ · τ + St ez = 0 (2)

∇ · v = 0 (3)

whereτ is the viscous part of the total stress tensorσ,

σ = PI + τ, (4)

v, P are the axisymmetric velocity vector and the pressure,
respectively, while D/Dt denotes the material derivative and
� the gradient operator. Under typical experimental conditions
for viscoplastic materials, creeping flow conditions prevail and
hereafter we will takeRe = 0. To complete the description of
the flow problem a constitutive equation that describes the rhe-
ology of the fluid is required. In the present study we employ
the continuous constitutive equation that has been proposed by
Papanastasiou[15] which relates the stress tensor,τ, to the rate
of strain tensor,̇γ, by a simple exponential relation. The dimen-
sionless form of this constitutive equation is

τ = −
[
1 + Bn

1 − e−Nγ̇

γ̇

]
γ̇ (5)

whereγ̇ is the rate of strain tensor defined asγ̇ = ∇v+ ∇vT,

γ̇ is its second invariant,̇γ = [(1/2)γ̇ : γ̇]1/2 andN is the stress
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haracteristic velocityV* is obvious and it is the constant velo
ty of the disksV. On the other hand, although no character
elocity exists for the constant force case, due to the decele
ature of the flow, we have chosen as such the initial veloc

he disksV(t = 0+). In addition, both pressure and stress com
ents are scaled with a viscous scaleη0V* /L, whereas the forc
pplied on the disk is scaled withη0V* Lπ/ε2. Thus, the dimen
ionless groups that arise are the Reynolds number, the Bin
umber, the capillary number, the Stokes number, when

ty is taken under consideration, and, finally, the aspect r
f the volume initially occupied by the material or of the to
olume between the disks, respectively. The definitions of t
umbers and their typical values are given inTable 1.

The flow of an incompressible fluid is governed by
omentum and mass conservation equations, which in
g
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efinitions of dimensionless numbers arising in the present model and

ypical values

imensionless number Definition Realistic val

eynolds Re = ρVL

η0
Re � 1

ingham Bn = τyL

η0V
0 <Bn < 100

apillary Ca = η0V

σ
Ca � 1

tokes St = ρgL2

η0V
St < 1

nitial disk aspect ratio ε = L

b
0 <ε� 1

nitial material aspect ratio w = a

L
ε−1 ≥w� 1
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Table 2
Bingham numbers and corresponding dimensionless values for the exponential
factor in the Papanastasiou model

Bn 1 10 30 50 100
N 500 500 300 300 300

growth exponent,N = mV* /L. In the simulations to be presented
in this paper, after careful evaluation, for the reasons explained
earlier, we have chosen the values ofN depending on the values
of the Bingham number as shown inTable 2.

2.1. Boundary conditions

Along the free surface the velocity field should satisfy a local
force balance between surface tension and viscous stresses in
the liquid, setting the pressure in the surrounding gas to zero
(datum pressure)

n · σ = 2H

Ca
n (6)

wheren is the outward unit normal to the free surface and 2H

is its mean curvature which is defined as

2H = −∇s · n, ∇s = (I − nn) · ∇ (7)

Taking the tangential and normal to the free surface component
of this force balance we obtain

tn : σ = 0 (8)

nn : σ = 2H

Ca
(9)
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while for the constant force problem the conditions that must be
imposed are

F −
∫ Rc

0
2πσzzr dr = 0 (15a)

whereRc is the radial distance of the triple contact point from the
axis of symmetry, seeFig. 1. In addition, the fluid in contact with
the disk must move with the same (instantaneous) disk velocity,
which changes with time according to(15a):

n · v = const. (15b)

The vectorsn andt in Eqs.(8)–(15)are defined with respect to
the surface on which they apply. In the radial direction either
the usual no-slip condition,vr = 0, or a suitable slip model is
applied. Slip is very often encountered in processing of non-
Newtonian materials. Especially in the flow of solid suspensions,
which in many cases exhibit viscoplastic behavior, an additional
reason for apparent slip is the displacement of the dispersed
phase away from the solid boundaries, leaving a layer of liquid
with lower effective viscosity near them. Thus, the separated
liquid near the wall acts like a lubricant for the rest of the mate-
rial and this is often interpreted as slip[25]. Another reason
for introducing slip arises from the fact that when the triple
contact points (or rather contact lines, at the intersection of the
material/air interface with the disks) are moving and a no-slip
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In addition, the boundary conditions that must be impos
he axis of symmetry (r = 0) are

· v = 0 (10)

n : σ = 0 (11)

hen gravity is taken into consideration no other symm
rises and the studied domain is the right half of the do
hown inFig. 1. However, we have also performed simulati
ssuming that gravity is negligible and in that case a plan
ymmetry arises as well. The studied domain now become
pper-right quarter of the space occupied by the materia

he following conditions are imposed on the plane of symm
z = 0)

· v = 0 (12)

n : σ = 0 (13)

On the surface of the disk, two boundary conditions
mposed. In the axial direction, the boundary condition actu
epends on the problem that is examined each time. In pa

ar, for the constant velocity problem the fluid has the same
elocity with the disks, and thus

· v = −1 (14)
s

t

f
e
d

-
l

ondition is applied along the solid walls, the velocity ther
ot single-valued, which gives rise to a non-physical stress
ularity. Although the resolution of this problem is still un

nvestigation, the most common approach is the assumpti
ocal slip between the liquid and the solid surface near the
act point, in order to eliminate the stress singularity.

A number of slip conditions with variable degrees of co
lexity have been employed in the past for modeling flow
on-Newtonian materials[26,27]. In the present study, we ado
modification of the slip model that was originally propose
amal et al.[28]. This model divides the wall boundary into
lip region and a no-slip region. To this end, the slip coeffic
s an exponential function of the radial distance from the t
ontact point and in this way it achieves a continuous trans
etween the slip and the no-slip region. Thus, the slip mode

he following form:

n : σ = βsl e
−αsl(r−Rc)t · v (16)

hereβsl is a parameter used to adjust the level of slip velo
n comparison to the wall shear andαsl is a second paramet
sed to adjust the length of the slip region. Furthermore,
odel reduces to the no-slip condition as these two param

ncrease, whereas whenαsl becomes zero the model reduce
he standard Navier slip model[29] and slip occurs over th
ntire wall boundary with a constant slip coefficient.

The model is completed by assuming that the fluid initi
s at restv(r, z, t = 0) = 0, the free surface is flat with dime
ionless radiusb/L and that the fluid is under constant press

(r, z, t = 0) = ε

Ca
(17)
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3. Numerical implementation

In order to solve numerically the above set of equations we
have chosen the mixed finite element method combined with
an elliptic grid generation scheme for the discretization of the
transient physical domain.

3.1. Elliptic grid generation

We employ the quasi-elliptic mesh generation scheme that
has been recently developed and applied in various problems
by Dimakopoulos and Tsamopoulos[30–32]. Here we will only
present our adaptation of its essential features to the current
problem. The interested reader may refer to Dimakopoulos and
Tsamopoulos[30] for further details on all the important issues
of the method. With this scheme the time-dependent physical
domain (r, z) is mapped onto a fixed with time computational
one (η, ξ). A fixed computational mesh is generated in the lat-
ter while, through the mapping, the corresponding mesh in the
physical domain follows its deformations. Since the mesh in the
physical domain moves, but not necessarily with the local fluid
velocity, this method belongs to the group of ALE (Arbitrary
Langrangian–Eulerian) methods. As computational domain we
choose here the volume that is initially occupied by the fluid.
This mapping is based on the solution of the following system
of quasi-elliptic partial differential equations:

∇

∇
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We approximate the velocity vector with quadratic Lagrangian
basis functions,φi, and the pressure as well as the position vec-
tor with linear Lagrangian basis functions,ψi. We employ the
finite element/Galerkin method, which results into the following
weak forms of the momentum and mass balances∫
Ω

[
Re

Dv

Dt
φi + ∇φi · σ + φi St ez

]
dΩ

+
∫
Γ

[
n · σ]

φi dΓ = 0 (21)

∫
Ω

ψi∇ · vdΩ = 0 (22)

where dΩ and dΓ are the differential volume and surface area,
respectively. The surface integral that appears in the momen-
tum equation is split into four parts, each one corresponding to
a boundary of the physical domain and the relevant boundary
condition is applied therein. In order to avoid dealing with the
second order derivatives that arise in the boundary integral of
the interface, through the definition of the mean curvatureH, we
use the following formulation, first proposed by Ruschak[33]:

2Hn = dt

ds
− n

R2
(23)

where the first term describes the change of the tangential vector
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t
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·

ε1

√√√√ r2ξ + z2
ξ

r2η + z2
η

+ (1 − ε1)


 ∇ξ = 0 (18)

· ∇η = 0 (19)

here the subscripts denote the differentiation with respe
he variable indicated andε1 is a parameter that controls t
moothness of the mapping relative to the degree of orthog
ty demanded and it is adjusted by trial and error; here it is s
.1. In order to solve the above system of differential equa
ppropriate boundary conditions must be imposed. On the
oundaries, we impose the equations that define their po
nd the remaining degrees of freedom are used for equidist

ng the nodes along the boundaries. In addition, along the m
nterface we impose the kinematic equation

DF

Dt
= v (20)

hereF = rer + zez is the position vector of the free surfa
ogether with a condition that requires the uniform distribu
f the nodes along the free surface.

.2. Mixed finite element method

The computational domain is discretized using triangular
ents, by carefully splitting in two elements each rectang
lement generated by the previous method, because tria
onform better to the large deformations of the transient p
al domain and, when significantly distorted, they do not cr
he computational problems that the rectangular element
l-

d
n
t-
g

s
-

.

long the free surface andR2 is the second principal radius

he curvature,R2 = r

√
r2ξ + z2

ξ/zξ.

We must also derive the weak form of the mesh gen
ion equations. Thus after applying the divergence theorem
btain.

Ω


ε1

√√√√ r2ξ + z2
ξ

r2η + z2
η

+ (1 − ε1)


 ∇ξ · ∇ψi dΩ = 0 (24)

Ω

∇η · ∇ψi dΩ = 0 (25)

he resulting set of algebraic equations is solved with the fol
ng two-step Newton–Raphson/non-linear Gauss–Seidel
ion scheme. At each time step the momentum and mass ba
re solved until convergence using the physical domain from
revious time step. Then, once the velocities and pressu
nown, the new locations of the mesh points can be determ
rom the mesh generation equations and their boundary c
ions. This procedure continues until convergence is achieve
oth the flow and mesh equations. This is an effective metho
ecoupling the flow from the mesh generation problem bec

t results in considerably smaller Jacobian matrices, which
asier to handle. Finally, the set of algebraic equations is
rated in time with the Predictor-Corrector Euler method in
ucing an automatic adaptation of the time step for ensurin
onvergence of the above iteration scheme and optimizing
erformance. The iterations are terminated using a toleran

he absolute error of the residual vector, which is set at 10−9. The
acobian matrix that results for the constant velocity case
ach Newton iteration has a banded structure and the linea
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system is solved by Gaussian elimination using a banded matrix
solver. However, the Jacobian matrix in the constant force case
does not have a banded structure because Eq.(15)must be used
which couples all the (unknown) velocities on the disk surface,
instead of Eq.(14), which sets the velocity at each one of the
nodes on the disk. This happens because the numbering of the
nodes proceeds in the axial direction first, since the number of
elements in that direction is much less than in the radial direc-
tion, and Eq.(15)gives to the Jacobian an “arrow” structure. In
order to invert it efficiently and still take advantage of its large
banded segment we split the Jacobian in four submatrices and
the linear system becomes[

A B

C D

] [
x1

x2

]
=

[
b1

b2

]
(26)

whereb2 is the single residual of Eq.(15), C andD its contribu-
tions to the Jacobian matrix andb1 is the residual vector of the
rest of the equations andA andB its contributions to the same
Jacobian matrix. This system is solved in a two-step process
solving first forx2 and then forx1

Sx2 = b2 − CA−1b−1, whereS = D − CA−1B (27)

x1 = A−1b1 − A−1Bx2 (28)

Once we compute the LU decomposition of matrixA, which is
a
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and Tsamopoulos[34,35]to model the contact line motion in the
blow molding process, i.e. the inflation of fluid annular menisci
within a mold.

The basic idea of the method is to predict the time step�t
such that only the nearest to the wall node of the free surface,
which at timet is at some small distance away from the wall,
will just reach the solid boundary at timet +�t. To this end, the
following first-order approximation is used.

�t = min

[
(Zw − Zf )/

∂Zf

∂t

]
(29)

whereZw denotes the position of the disk wall,Zf is the axial
position of the free surface node and∂Zf /∂t is obtained by the
following first-order formula:

∂Zf

∂t
= Zf − Zf0

t − t0
(30)

whereZf0 is the axial position of the free surface node at the pre-
vious time step. After a few iterations the distance between the
disk wall and the free surface node becomes|Zw − Zf | < 10−5.
At the next time step, the force balance which was imposed
on this node is replaced by the slip condition and the essential
condition vz = −1 in the case of the constant velocity prob-
lem or Eq.(15) in the case of a constant force simulation. As
for the mesh generation, the kinematic equation is replaced by
t s,
t con-
v d with
a rface
c face
d calcu-
l dant
w edge
f

3

d by
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banded matrix, we need to compute the productsA−1B and
−1b1 and this can be easily done by applying the back su

ution step for multiple right-hand sides which are formed
he columns of the matrixB and the vectorb1. The computatio
f the vectorCA−1b1 and of the matrixS, when the matrixC

s rather small, as it is in our case, is trivial. Having compu
he vectorx2 we can easily compute the remaining part of
nknowns,x1.

In order to compute accurately the large deformation
he physical domain we used 50 elements on theξ-direction
axial) and 200 elements on theη-direction (radial), resultin
n 20 000 triangular elements in the upper-right quarter o
omain and 50 752 unknowns including the two coordinate

he grid points. The initial time step in all the simulations
t = 10−5. The code was written in Fortran 90 and was run
orkstation with dual Xeon CPU at 2.8 GHz in the Labora
f Computational Fluid Dynamics. Each run typically requ
–3 days to complete.

.3. Motion of the material/air interface towards the wall

While the disks move towards each other and as long a
ree surface of the material moves inside the space between
t is being deformed, and later on parts of it come very clos
he solid wall and, eventually, into contact with it. Therefo
esides the usual motion of the contact point, a new co
oint may be created ahead of the previous one. The calcu
f this new contact point of the free surface with the disk w

ntroduces an important technical difficulty to the simula
f the transient squeeze flow problem. This wetting proce
imulated following the technique that was used by Posl
-
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,
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he essential conditionz = Zw. If, in spite of these careful step
he free surface node is displaced beyond the disk wall, the
erged solution is rejected and the calculations are repeate
smaller time step. Of course, as nodes from the free su

ome into contact with the disk, their density on the free sur
ecreases, but not to the extend that the accuracy of the

ations is not acceptable. Clearly, this procedure is redun
hen the material/air interface contacts the disks at their

rom the beginning, then the triple point is fixed atR∗
c = a.

.4. Yield surface determination

There are two different criteria that have been employe
everal researchers in the past for determining the locati
he yield surface. The first one determines this surface a
ocation whereγ̇∗ = 0, while the second one as the locat
hereτ* = τy. Quite recently Dimakopoulos and Tsamopou

21] argued that, following the Papanastasiou model, the
riteria are not equivalent and that it is more appropriate to
he second one, i.e. that the material flows when the se
nvariant of the extra stress tensor exceeds the yield stress
riterion in its dimensionless form becomes

ielded material : τ > Bn (31)

nyielded material : τ ≤ Bn (32)

Consequently, in order to determine the yield surface
econd invariant of the stress tensor must be calculate
his includes the computation of the velocity gradient ten
s mentioned earlier however, the velocity field is discret
sing Lagrangian basis functions, which means that the v

ty gradient tensor is not continuous on the element sides
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Fig. 2. Comparison of the predictions for the radial velocity profile at different
radial positions forBn = 100, Re = 0, Ca = 103, w = 10, ε= 0.1, N = 300 with
results from the quasi-steady analysis and under the no-slip condition.

consequently, the direct computation at the nodes of the stress
tensor is not possible. The most appropriate way to do this is
to find a continuous approximation of the extra stress tensor by
using the Galerkin projection method, that is∫
Ω

φi(T − τ) dΩ = 0 (33)

whereT denotes the continuous approximation of the stress ten-
sor τ. Now that the nodal values of the extra stress tensor are
calculated the position of the yield surface can be easily deter-
mined. A similar procedure is followed to obtain contour lines
of γ̇ (e.g. on the yield surface, seeFig. 25).

4. Results and discussion

The squeeze flow of a liquid between two moving parallel
coaxial disks depends on the dimensionless numbers that were
mentioned earlier. More specifically, we examine the effects of
the yield stress, the geometric aspect ratios, gravity and the mag-
nitude of the slip coefficients on the disk walls. We start by
validating our finite element code. Subsequently, in Section4.2,
we present simulations for the case that the disks are moving
with constant velocity, while in Section4.3 we present simu-
lations for the case where the disks are moving under constant
force.
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Fig. 3. Comparison of the predictions of the unyielded area with the present
model forBn = 100,Re = 0,Ca = 103,w = 10,ε= 0.1,N = 300 with results from
the quasi-steady analysis and under the no-slip condition.

Bn = 100,Ca = 103, N = 300 and when the no-slip condition is
applied throughout the disk wall. The aspect ratios areε= 0.1
andw = 10, which means that the initial radial distance of the
free surface is 10 times the half distance between the two disks
and the material initially occupies all the space between them.
Of course, in the transient problem the distance between the two
disks as well as the shape and radial distance of the free sur-
face from the axis of symmetry change with time, in contrast
to the quasi-steady state problem, where they are assumed to
be constant. Because of this and in order to make the compari-
son possible and meaningful we have to make it at the very early
stages of the transient simulation. To this end, we present a snap-
shot of the present simulations after the first time step,t = 10−5.
Clearly, the two studies provide virtually the same result for the
radial velocity profiles.

To validate further our new code, we compared the location
and the size of the unyielded area, for the same (initial) time
instant and values of all the other parameters. Based on the dis-
cussion above, it is anticipated that the largest error will arise
in calculating the yield surface.Fig. 3 focuses on only a part
of the upper quarter of the domain between the disks in order
to illustrate that the two results are very similar, in spite of the
different formulations, mesh generation techniques and types of
elements used in each one. The largest deviation in the yield
surface location arises near the disk surface (r ∼= 1.1) and there
t
P e that
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f clar-
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.1. Code validation

First, we verify the accuracy of our finite element code
omparing our results against the ones given by Smyrn
nd Tsamopoulos[16]. They used primarily the discontinuo
ingham model for solving the usual quasi-steady state m

or the axisymmetric squeeze flow of a viscoplastic mat
ith a constant disk velocity. In all quasi-steady models p

ished so far, the presence and deformation of the free su
as been ignored.Fig. 2 compares their predictions with ou

or the radial velocity profile at different radial positions,
s

l

e

he current results are closer to those in Ref.[23], where the
apanastasiou model was used, as well. One could conclud

he quasi-steady state assumption, although it has certain
omings, like the inability to take into consideration the fluid
nterface and the actual deformation of the material, it prov

good understanding of the flow problem at least in its in
tage.

Finally, inFig. 4, we present a blowup of the physical dom
0 ≤ z ≤ zd, 7.7≤ r] to illustrate the quality of the mesh produc
ollowing our method, even at so large deformations. For
ty reasons, we depict rectangular elements, although these
een divided in half to form triangular elements in order to
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Fig. 4. The deformation of the mesh att = 0.4 forBn = 1, Re = 0, Ca = 103, St = 0,w = 10,ε= 0.1. For clarity we show rectangular elements forr ≥ 7.7.

ter conform to large interface changes and avoid using highly
deformed rectangular elements with all their negative conse-
quences. Clearly, the mesh faithfully follows the interface and
within the domain generates elements that vary in shape and size
very smoothly. Moreover, they are more concentrated where they
are needed the most: at edge of the disk.

4.2. Constant velocity case

4.2.1. Effect of the yield stress
To set the stage for the discussion that follows, it is useful to

examine first the evolution of certain variables when a Newto-
nian fluid (Bn = 0) is undergoing squeeze flow.Fig. 5 illustrates
the flow field in a fluid that initially fills completely the space
between the disks, that is whena = b = 10L. Moreover capillarity
is rather weak as is often the case in this process,Ca = 103, grav-
ity is negligible,St = 0, and the no-slip condition is applied on
the surface of the disks. The snapshots are taken at timest = 0.2,
t = 0.4, t = 0.7 and each one of them shows the contour plots of
the axial velocity, on the upper half, and the radial velocity, on
the lower half. On the left hand side of each plot, we can see the
axis of symmetry, while on the right-hand side we can see the
interface between the fluid and air. We observe that the free sur-
face, which initially was cylindrical, deforms everywhere even
at early times.

The axial velocity has its smallest (negative) values at the
upper disk because there the fluid follows the motion of the
disks in the axial direction. However, its values monotonically
increase towards zero at the mid-plane. In the three snapshots of
this figure, the [−1, 0] range of axial velocities between the disk
and the mid-plane is divided in ten, eight and five equal inter-
vals, respectively, by the lines of constant axial velocity. The
total number of contour lines in this and all subsequent similar
plots is 20. The axial velocity field changes drastically outside
the disks. There, the squeezed out material is displaced slightly
upwards near the upper disk due to the rearranging of the veloc-
ities and stresses, similarly to the extrudate swell phenomenon.
This appears intensified by the downward motion of the corre-
sponding disk. Therefore, the axial velocity has its largest and
positive value near the edge of the upper disk and this value
increases with time. At larger radial locations from where the
axial velocity has its maximum (seeFig. 5), its values decrease
towards zero, since no axial force is applied on the material there
and viscous forces dissipate the flow.

As for the radial velocity component, it becomes zero on the
axis of symmetry and on the surface of the disks because of the
symmetry and the no-slip condition, respectively, while near the
exit of the disks and at the mid-plane it has its largest values as
the fluid is displaced primarily outwards in the radial direction.
Its maximum value increases with time, as it should, because of
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ig. 5. Contour plots of the axial, upper half, and the radial, lower half,
= 0.1 and under the no-slip condition.
ity component, att = 0.2, t = 0.4, t = 0.7 for Bn = 0, Re = 0, Ca = 103, St = 0,w = 10,
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Fig. 6. Contour plots of the pressure, upper half, andτrz, lower half, att = 0.4 forBn = 0, Re = 0, Ca = 103, St = 0,w = 10,ε= 0.1 and under the no-slip condition.

the decreasing distance between the disks. The range of radial
velocities from zero to its maximum value is divided in 20 equal
intervals by the contour lines shown in each snapshot. Because of
the radial and (smaller) axial expansion of the material outside
the disks, mass conservation enforces a decrease of the radial
velocity, which however, remains much larger than the axial
component throughout the material. Away from the disk edge,
the radial velocity drastically changes its spatial variation and
decreases in the radial direction only. Even though interfacial
tension is relatively small, it is still sufficient to make only the
edge of the cross section of the free surface nearly semi-circular
for this Newtonian fluid case, but leaves the material’s upper and
lower sides nearly straight and undeformed.

In spite of the initially small and decreasing aspect ratio,
which should make the lubrication approximation even more
accurate with time, it is evident fromFig. 5 that this approxi-
mation is never accurate enough near the disk edge and for a
distance of the order of the disks’ distance. The same is also
evident in figures depicting the pressure or the stress distribu-
tion in the gap between the disks. Such plots demonstrate that
the pressure is a function of the radial coordinate only, except

near the edge of the disks. InFig. 6for example, we present the
pressure (upper half) and shear stress (lower half) contour lines
under the same conditions as inFig. 5, but for t = 0.4 only, for
conciseness. We can observe the 1D character of the pressure
field almost up to the edge of the disk and the strong singularity
in the shear stress at the edge of the disk where the transition
from the no slip to the shear free condition takes place. Of course,
this should have been expected because the basic assumption of
the lubrication approximation,b »L, breaks down in that region,
necessitating a two-dimensional analysis there.

It is anticipated that changing the rheological properties of
the material should directly affect some of the characteristics of
the flow.Fig. 7illustrates the contour plots of the pressure on the
upper half and the second invariant of the rate of strain tensor,
γ̇, on the lower half for a viscoplastic material withBn = 100, at
timest = 0.2, t = 0.4, t = 0.6. The same geometric, capillary and
gravitational parameters are used as in the previous Newtonian
case, while the dimensionless constant in the exponent of the
Papanastasiou model is large enough based on our tests,N = 300,
seeTable 2. As one can see clearly, the shape of the free surface
has changed. The viscoplastic property of the present material
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ig. 7. Contour plots of the pressure field, upper half, and the second invarian
a = 103, St = 0,w = 10,ε= 0.1,N = 300 and under the no-slip condition.
t of the rate of strain tensor, lower half, att = 0.2, t = 0.4, t = 0.6 forBn = 100,Re = 0,
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Fig. 8. Contour plots of the axial, upper half, and the radial, lower half, velocity component att = 0.4 forBn = 100,Re = 0, Ca = 50,St = 0,w = 10,ε= 0.1,N = 300
and under the no-slip condition.

turns the smaller and smaller stresses that it experiences as it
exits the disks into larger and larger effective viscosity and thus
the material becomes “frozen”. As a result, it retains the thick-
ness it had nearly when it exited and before the disks moved
further towards each other. In addition, the pressure field still
varies mainly in the radial direction, the main flow direction.
However, its axial variation has become significant, especially
near the surface of the disks, where the shear rate is strongest
decreasing the effective viscosity. As time passes and the aspect
ratio decreases, the pressure varies less in the axial direction fol-
lowing closer the lubrication theory. Again, close to the edge of
the disks the pressure variation deviates from the pattern estab-
lished further inside the disks. As for the shear rate, it has its
smallest values near the axis of symmetry where, as we will dis-
cuss shortly, unyielded regions arise. Its largest values are close
to the edge of the disks, and they decrease with time.

In order to examine the importance of the capillary forces
on squeeze flow, we decreasedCa by a factor of 20 toCa = 50,
which is lower than the prevailing values for typical viscoplastic
materials in squeeze flow, keeping the rest of the parameters as
in Fig. 7. In Fig. 8, we only present the case corresponding to
the intermediate time inFig. 7, t = 0.4, but the behavior is the
same at all times. It is very interesting that the free surface of
the material is identical to that inFig. 7b and that the maximum
radial and axial velocities differ by less than 0.1% from that case.
In other words, the yield stress is dominant over capillary forces,
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Fig. 9. Evolution of the unyielded area with time forBn = 100,Re = 0,Ca = 103,
St = 0,w = 10,ε= 0.1,N = 300 and under the no-slip condition.

ber. It is expected that viscoplasticity will have an important
effect on the flow field as well.Fig. 11shows the radial veloc-
ity profile at three different radial positions and for variousBn
numbers. These profiles are taken at the first time instant of the
transient simulations as well,t = 10−5 and for the same parame-
ter values. The profile of the radial velocity of a Newtonian fluid
(Bn = 0) is parabolic at every radial location. However, as the
Bingham number increases, the profile changes becoming flatter
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ven when the latter is increased above its typical values
ounded surface at the edge cannot be generated, in cont
he simulations with a Newtonian fluid (Fig. 6).

Fig. 9 illustrates the time evolution of the unyielded dom
or the case of a viscoplastic material withBn = 100. The rest o
he parameters are the same with those inFig. 7, while the snap
hots are taken at timest = 10−5, t = 0.2, t = 0.4 andt = 0.6. For
larity, the solution is given between the upper disk and the
lane and only in a portion of the radial extent of the disks.
gure clearly shows that at all times the unyielded region
ounds the center of the disk surface and that there is an ob
eduction of its size with time. Smyrnaios and Tsamopoulos[16]
ave also noticed a decrease of the size of the unyielded d
s the aspect ratio decreases. Clearly, the different aspect

n their quasi-steady state analysis correspond to different
nstants in our transient simulation.

Fig. 10 shows again only part of the upper quarter of
omain and the shape of the yield surface there, as a funct

heBn number under the same values for the rest of the pa
ters andt = 10−5 only. As we can see, the size of the unyiel
egions increases substantially with the increase of theBn num-
ig. 10. Yield surfaces forRe = 0, Ca = 10 , St = 0,w = 10, ε= 0.1, under th
o-slip condition and variousBn numbers and the corresponding values ofN as
iven inTable 1at timet = 10−5.
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Fig. 11. Radial velocity profiles for variousBn numbers and the corresponding
values ofN as given inTable 1at three different radial locations,r = 3, 6, 9, for
Re = 0,Ca = 103, St = 0,w = 10,ε= 0.1,N = 300 and under the no-slip condition.

around the plane of symmetry and exhibiting a steeper increase
from its zero value at the disk wall. Another demonstration of
the quality of our results is given inFig. 12. It shows either the
γ̇ or the pressure along the upper disk surface (0≤ r ≤ 10) and
the upper free surface of the squeezed out material (r > 10) at
two time instants. Near the center of the disks, both variables
are nearly constant, whilėγ increases andP decreases mono-
tonically with r up to the disk edge and both with a slope that
increases with time. The singularity at the disk edge induces
very sharp spikes in both variables, which increase with time, as
expected, but are well resolved by our code. Outside the disks,
both variables are nearly zero.

4.2.2. Effect of slip
Because of the reasons mentioned in the introduction, we

studied also the effect of a slip condition at the disk wall. In
particular, we chose to employ a slip model that would maximize
the ratio of the slip velocity over the shear stress where the latter
is largest and would smoothly reduce the slip velocity to zero
away from this point. This slip model is given by Eq.(16). In a
first set of simulations, we assumed that the material completely
fills the volume between the disks from the beginning of the
simulation. Then, the slip velocity compared to the local shear
stress will be largest at the disk edge and decrease to zero towards
the disk center. In a second set of simulations, we assumed that
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Fig. 12. Dependence of (a) the second invariant of the rate of strainγ̇, (b)
the pressure with the radial distance from the axis of symmetry along the disk
wall and the free surface att = 0.2,t = 0.6 forBn = 100,Re = 0, Ca = 103, St = 0,
w = 10,ε= 0.1,N = 300 and under the no-slip condition.

Newtonian case. On the contrary, inFig. 13b, the material outside
the disk is narrower and its free surface is flatter, resembling
cases with larger yield stress. The reason for this variation is
that the introduction of wall-slip helps reducing the stresses in
the material even before it exits the area between the disks. Thus,
the effective viscosity increases locally, “freezing” the shape of
the squeezed out material and surface tension is not sufficient
to give it its rounded shape. This is verified by the decrease in
the value of the maximum of the axial velocity by an order of
magnitude and by the decrease of its variation near the exit of the
disks. The magnitude and the variation of the radial velocity are
not affected as much, but clearly, inFig. 13b the radial velocity
deviates from zero at the disk surface as we approach the edge
of the disks.

Fig. 14shows two snapshots under corresponding conditions,
but with Bn = 100. Again, the introduction of the slip model
makes the outer edge of the material flatter for the reasons
explained above and the axial velocity never becomes positive
in the upper half of the material. Its maximum value is zero at
the mid-plane. Moreover, the introduction of slip reduces the
stresses on the material and its high yield stress induces a more
he material only partially fills the same volume and then
lip velocity will be largest at the triple contact point, but w
ary in the same way in the radial direction.

Fig. 13shows two snapshots at the same time instant,t = 0.4,
oth withBn = 1, but with the no-slip condition inFig. 13a and

he slip condition inFig. 13b. The parameter values used in
lip model are such that slip effectively takes place in a s
raction of the radius of the disks near their edge. In the
napshot, we observe that the free surface of the mate
ounded, in spite of the finite, but small value of the yield str
n other words, its shape does not deviate too much from



46 G. Karapetsas, J. Tsamopoulos / J. Non-Newtonian Fluid Mech. 133 (2006) 35–56

Fig. 13. Contour plots of the axial, upper half, and the radial, lower half, velocity component at timet = 0.4 for Bn = 1, Re = 0, Ca = 103, St = 0,w = 10, ε= 0.1,
N = 500 with (a) no-slip condition, and (b)βsl = 1,αsl = 5.

uniform velocity even within the disks. Their combination nul-
lifies the mechanism leading to material swelling outside the
disks to the extend that the axial velocity remains slightly neg-
ative even outside the disks but very near their edge. As in the
previous case, the magnitude of the radial velocity is not affected
to the same degree by the slip condition. The employment of the
slip condition is confined in a region too distant from the axis of
symmetry to affect the area occupied by the unyielded material.
For this large value of the Bingham number this area extends
axially from the disk surface to about a third of the distance to
the plane of symmetry, even at this late time instant, see also
Fig. 9. By closely comparingFig. 14a with Fig. 8, we can con-
firm that decreasingCa by a factor of 20 has no effect on the
flow and the moving boundary.

Next, we examine the effect of placing less material than
what is required to fill completely the space between the two

disks. This configuration can be easily attained experimentally
by first placing the material at the center of the lower disk and
then lowering the upper disk until it partially squeezes the mate-
rial up to the point that its radial extent isb < a. Fig. 15depicts
contour plots of the axial and radial velocity on the upper and
lower half, respectively, at timest = 0.2, t = 0.5, t = 0.6 and for
Bn = 10, N = 500,w = 15, ε= 0.1, and slip coefficientsαsl = 5,
βsl = 1. Here the slip condition also helps in resolving the stress
singularity at the triple contact point. At early times, the fluid
moves inside the space between the disks, while later it exits
this area. Soon after initiation of flow, the free surface becomes
nearly parabolic with an increasing curvature as time increases
and the distance between the disks decreases. One can observe
that the flow field resembles the ones discussed earlier, except
for an area of about 1–2 gap widths from the instantaneous posi-
tion of the triple contact point. As we can see, the radial velocity
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ig. 14. Contour plots of the axial, upper half, and the radial, lower half,
= 300 with (a) no slip condition, and (b)βsl = 1,αsl = 5.
ity component at timet = 0.4 forBn = 100,Re = 0, Ca = 103, St = 0,w = 10, ε= 0.1,
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Fig. 15. Contour plots of the axial, upper half, and the radial, lower half, velocity component att = 0.2,t = 0.5,t = 0.6 and forBn = 10,Re = 0,Ca = 103, St = 0,w = 15,
ε= 0.1,αsl = 5,βsl = 1, N = 500.

on the surface of the disks deviates from zero in a region near
the triple contact point, where slip occurs. This deviation also
affects the axial velocity. Although the disks force the fluid
to move in the axial direction, the fluid follows only partially
their motion in the slip region because it is also allowed to slip
in the radial direction. On the other hand, the axial velocity
near the axis of symmetry remains equal to the velocity of the
disk up to almost half the distance of the disk from the mid-
plane and this happens because unyielded material arises in that
region.

This can be seen more clearly inFig. 16, where we have
plotted the liquid/air interface and the yield surface for the same
parameters and time instants. We can see that the viscoplastic
material behaves as rigid solid around the disk center, confirming
the predictions of previous researchers[14,16,23]. Moreover,
one can notice that the size of the unyielded region decreases
monotonically with time. This happens because as time passes
and the distance between the two disks decreases, a more intense

shear field is generated closer to the axis of symmetry, which
forces more material to yield in that region.

It is anticipated that the flow field will depend somewhat on
the values of the slip coefficientsαsl,βsl. Fig. 17depicts the con-
tour plot of the axial velocity in the upper quarter of the domain
between the disks forBn = 30 att = 0.3. In order to magnify the
effect of the slip coefficients we have taken the disks to be fur-
ther apart from each other,ε= 0.5, and the fluid between them
extends only to 40% of their radius,w = 5, while αsl = 5 and
βsl is either (a) 100 or (b) 10. As mentioned earlier, the latter
parameter adjusts the level of the local slip velocity in compar-
ison to the wall shear. More specifically, when the value ofβsl
increases the level of the slip velocity decreases. InFig. 17a
where the no-slip condition is approached the free surface is
more curved and the contact angle with the disk wall is quite
larger than 90◦. Fig. 17b shows that as the slip velocity increases,
the axial velocity becomes more uniform near the triple con-
tact point. This makes the shape of the fluid/air interface flatter
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ig. 16. Evolution of the yield surface and the material/air interface with t
= 0.2,t = 0.4,t = 0.6.
or= 10,Re = 0, Ca = 103, St = 0,w = 15,ε= 0.1,αsl = 5,βsl = 1, N = 500 at times
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Fig. 17. Contour plots of the axial velocity at timet = 0.3 forBn = 30,Re = 0, Ca = 103, St = 0,w = 5, ε= 0.5,αsl = 5, N = 300 with (a)βsl = 100, and (b)βsl = 10.

and the contact angle of the free surface with the disk wall
approaches 90◦.

We also performed simulations for different values ofαsl.
This parameter controls the rate of decrease of the slip velocity
and, consequently, it can adjust the length of the slip region.
The smaller the value ofαsl, the larger the slip length along the
wall. Simulations have shown thatαsl, in contrast toβsl, has
a small effect on the shape of the fluid/air interface, whereas
it has an important effect on the size of the unyielded region.
Fig. 18shows the shape of the yield surface for two different
values of�sl. We observe that when the slip region is longer, the
domain of the unyielded material decreases and for even smaller
values,αsl = 2.5, which is not presented here, the unyielded area

F
w

disappears completely. Clearly, the same would happen, if the
Navier slip model was used throughout the disks,αsl = 0. This
occurs because as the slip length increases and slip is allowed
at a larger portion of the disk surface, the fluid follows only
partially the axial motion of the disks towards the mid-plane
and flows in the radial direction as well. Thus, the flow has
an extensional portion even very near the disk surface and the
axis of symmetry, which prohibits the formation of unyielded
material.

A very general analysis of the effect of partial wall-slip on
the squeeze flow problem, irrespective of the constitutive law,
is presented in Ref.[36]. A most interesting result given there,
based on straight-forward lubrication analysis, is that the radial
velocity on the disk surface varies linearly with the radial dis-
tance assuming its maximum value at the edge of the disks,
the only triple contact point in that analysis. We examined the
applicability of this result in our more general case, where the
triple contact point may move, the slip condition is applied in
only a part of the disk surface and where the distance between
the disks is rather large invalidating the lubrication assumptions.
Fig. 19shows the dependence of the radial velocity on the radial
distance at various instants as obtained from our simulations.
Indeed, we observe a gratifying agreement with the analysis in
[36]. The radial velocity at all times remains zero where it should
be, according to our slip model, but increases linearly with the
radial distance where the slip condition is applied and there is
a close
t but
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c at
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m proxi-
ig. 18. Yield surfaces at timet = 10−5 for Bn = 30, Re = 0, Ca = 103, St = 0,
= 5, ε= 0.5,βsl = 10,N = 300 and different values ofαsl.
smooth transition between these two regions. Only very
o the triple point there is a slight deviation from linearity,
here the flow is not one-dimensional any more and the l
ation predictions in[36] do not apply. The radial velocity
he triple contact point increases with time simply becaus
ass conservation and, since the slip region remains ap
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Fig. 19. Distribution of the radial velocity on the disk surface under slip condi-
tions,αsl = 5,βsl = 10 at different times, withBn = 30,ε= 0.5,w = 5 andN = 300.

mately constant according to our slip model, the slope of the
linear section increases with time as well.

4.2.3. Effect of gravity
Typically, the gravitational force is ignored in squeeze flow

experiments on the basis that the gap is small making the Stokes
number much smaller than unity. However, given the versatility
of our computer code, it would be interesting to examine the
effect of gravity, even if that required to place the disks further
apart than what is usually the case. Even then, our simulation
have shown that the flow between the disks is not affected signif
icantly by gravity and that the most interesting effects arise when

the viscoplastic material exits the area between the two disks.
For this reason, we decided to present only the case where the
fluid initially fills completely the space between the two disks.
So we have takenw = 2 andε= 0.5, which result inSt = 2.5.
Moreover, we assume that gravity acts downwards in the axial
direction. Now, there is no plane of symmetry for the flow field
and only axial symmetry can be employed to reduce the size of
the examined domain. Furthermore, for convenience we assume
that the lower disk is stationary and that only the upper disk
moves. Of course, sinceRe = 0, this change of coordinates has
no effect on the shape of the free surface or the flow field.Fig. 20
depicts the contour plots of the axial velocity at timest = 0.5 and
t = 0.47 for two different values ofSt number and forBn = 5,
βsl = 100,αsl = 5 andN = 500. As we can see inFig. 20a and b,
whereSt = 0, the flow is totally symmetric about the instanta-
neous mid-plane as it should be. On the other hand, one can see
in Fig. 20c and d that when gravity is taken into consideration
(St = 2.5) the flow loses its plane of symmetry and the material
accelerates downwards. Although the effect of gravity is obvious
outside the disks, interestingly, one could observe that the flow
field between the two disks remains the same and even retains its
plane of symmetry. Moreover, early on, although the flow field
outside the disks is not symmetric anymore, it still resembles the
one withSt = 0 and the shape of the free surface remains almost
the same. Nevertheless, later on, when more material has exited
the disks, the flow field and the shape of material clearly change.

4
city,

t st be
a tant.

F 5, Re
(

ig. 20. Contour plots of the axial velocity at timest = 0.5 andt = 0.7 forBn =
b)) andSt = 2.5 (for (c) and (d)).
s
-

.2.4. Required squeeze force
In a typical squeeze flow experiment under constant velo

he most important measurable variable is the force that mu
pplied on the disks in order to maintain their velocity cons

= 0, Ca = 103, w = 2, ε= 0.5,αsl = 5,βsl = 100,N = 500, andSt = 0 (for (a) and
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Fig. 21. Comparison of the squeeze force with the results by Matsoukas an
Mitsoulis [23] for (a)Bn = 10,Re = 0,Ca = 103,w = 10,ε= 0.1,N = 500 and no
slip condition and for (b)Bn = 10,Re = 0,Ca = 103,w = 20,ε= 0.1,N = 500 and
the slip condition with parameter valuesαsl = 5,βsl = 1.

We calculate this force by integrating the normal to the disks
component of the total stress tensor,σzz, over the portion of the
disk surface which comes into contact with the fluid, i.e. up to
Rc:

F =
∫ Rc

0
2πσzzr dr (34)

Fig. 21a shows the comparison of our calculations for the force
against the results that were given in Ref.[23] for Bn = 10 and
N = 500. It must be noted that Matsoukas and Mitsoulis[23]
assumed a quasi-steady state model and calculated the time ind
pendent force at different aspect ratios. Thus, in order to mak
the comparison possible we calculated the force at different time
instants, found the corresponding ratiozd/Rc, wherezd denotes
the instantaneous axial position of the upper disk, and compare
our results to theirs for the same aspect ratios. InFig. 21a we indi-
cate with a solid line the results from Ref.[23] and with a dash-
dotted line our present results withw = 10, ε= 0.1, converted

as indicated above. Clearly, the force we calculate is initially
slightly higher than the one obtained from the quasi-steady state
analysis, but this is easily explained by the small capillary force,
acting on the perimeter of the sample, which we have included
in our model, but was absent in[23]. However, as time pro-
ceeds and the disk gap decreases, the force we calculate becomes
much smaller than the one resulting from a quasi-steady
analysis.

The same is observed in a second simulation we performed
with w = 20, ε= 0.05, i.e. by halving the disk gap, while it
remains initially completely filled with material. The force is
slightly larger initially, but turns much smaller later on than
the corresponding one from the quasi-steady analysis. This may
seem puzzling, but it can be explained by noticing that, in our
dynamic simulations, the material already outside the disks has
a large radial velocity and the related momentum assists the out-
ward flow of the material still between the disks, which as a
result, requires less axial force to be squeezed out. This is a very
important observation and it holds irrespective of the constitutive
equation for the material. It implies that, if during the squeeze
flow experiment, the disk gap decreases by, say over 10%, the
force measured must be adjusted accordingly, before it is com-
pared to quasi-steady state analysis to extract rheological data.
In other words, the quasi-steady state analysis cannot be applied
directly and consecutively many times in order to approximate a
truly unsteady experiment. InFig. 21b, we show that we predict
a im-
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smaller deviation of the applied force with our dynamic s
lations from its value under the quasi-steady analysis, w

he gap between them was partially filled with material
efore any material exited the gap between the disks. This
eviation is probably due to the slip condition applied on
isk wall, which results in smaller velocity gradients there
specially closer to the disk exit (compareFig. 13a and 14ato
igs. 13b and 14b).

Fig. 22a shows the dependence of the squeeze force on
nd for variousBn numbers, when the gap between the d

s completely filled with material, so thatw = 10, ε= 0.1. We
bserve that the squeeze force increases significantly with
ecause of the decreased distance of the disks in accor
ith basic lubrication ideas. Furthermore, we notice that t

s a substantial increase in the force that must be applied o
isks as theBn number increases especially at early times.
as also noted by previous researchers[16,23]. The variation
f the force is almost one order of magnitude as theBn number

ncreases from 1 to 100, making this experiment a valuable
or determining the yield stress for a viscoplastic fluid. Fina
ig. 22b shows the same dependence of this force, when th
ondition is applied and when the radius of the disks is t
s that in the previous case, while the material initially occu
nly part of the gap so thatw = 20,ε= 0.1. Clearly, for the sam
n this force is initially smaller than that shown inFig. 22a,
ecause the slip condition on the disk surface facilitates the

n every direction. However, the force now increases faste
uch so that att = 0.5 it is larger than the force for the sameBn in
ig. 22a under no-slip. This occurs because in the present
s time passes more material contacts the disk walls incre

he total resistance to flow.
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Fig. 22. Evolution of the squeeze force with time for variousBn numbers and the
corresponding values ofN as given inTable 1for (a) Re = 0, Ca = 103,w = 10,
ε= 0.1, and the no-slip condition and for (b)Re = 0, Ca = 103, w = 20, ε= 0.1
and the slip condition with parameter valuesαsl = 5,βsl = 1.

4.3. Constant force case

The easiest to measure quantities in a squeeze flow experi-
ment conducted under constant force are the axial velocity of
the disks and their position as a function of time. The motion
of the disks in such an experiment is decelerating because not
only the resistance of the fluid continuously increases as they
approach each other, according to lubrication theory, but also
the effective viscosity of the material increases as the velocity
and its gradients decrease. The latter effect eventually forces th
disks to stop moving in a finite time.Fig. 23shows the evolution
of the axial velocity and position of the upper disk with time for
the case of a viscoplastic fluid withBn = 50,w = 10,ε= 0.1, and
N = 300. Indeed, one can observe that the velocity of the disks
decreases towards zero very rapidly, especially at early times
It is characteristic that the disk axial velocity has decreased by
slightly over 90% from its initial value by the timet = 0.70, while
the distance of the upper disk from the mid-plane has decrease
to only zd ∼= 0.825. After that point the disk velocity decreases
at a much smaller rate and it finally becomes practically zero

Fig. 23. Evolution of the squeeze velocity and the distance of the upper disk
from the mid-plane,Zd, with time forBn = 50,Re = 0,Ca = 103,w = 10,ε= 0.1,
N = 300 and under the no-slip condition.

at time t = 2.4. At that time instant the disk has approached a
little more the plane of symmetry,zd ∼= 0.785. The motion of
the disks essentially stops there because, as it will be shown
further below, all the material beyond the edge of the two disks
behaves as a rigid solid. It should be noted that having used the
Papanastasiou constitutive law, which models all the material
as liquid even with arbitrarily large viscosity where unyielded
material should exist, the disks never stop moving, even under
the constant force experiment.

Fig. 24 shows contour plots of the axial and radial veloc-
ity fields with Bn = 10,w = 10, ε= 0.1 at three time instants.
The axial velocity varies only axially except near the axis of
symmetry where the unyielded region arises and near the disk
edge where the lubrication approximation fails. Both its min-
imum (negative) and maximum (positive) values decrease by
one order of magnitude between the three snapshots. Similarly,
the maximum of the radial velocity, which arises at the plane of
symmetry and near the exit of the disks, decreases by an order
of magnitude. This is opposite to the case of a constant velocity
experiment where the maximum of the radial velocity increased
with time. The curvature of the edge of the material is in between
the curvature ofBn = 1 (Fig. 13a) andBn = 100 (Fig. 14a).

Most revealing of the changing state of the material during
the squeezing under constant force are the five snapshots given
in Fig. 25, under the same parameter values as inFig. 24. In the
upper quarter of the domain we give the yield surface and in
t ow
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w ate-
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i n by
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e es at
t yield
s snap-
e

.
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he lower quarter contours ofγ̇, as long as it takes values bel
.014 (for reasons that will become clear shortly). In these p
e denote with a letter A and B the regions where the m

ial behaves as solid and fluid, respectively. At the first t
nstant, unyielded material, according to the condition give
q. (32), arises only around the stagnation points of flow a
queezing under constant velocity. This area, indicated b1,
hanges very little in the next two snapshots. The rest o
aterial yields and is indicated by B. As the flow deceler

verywhere, another domain with unyielded material aris
he edge of the squeezed out material and its bounding
urface moves inwards between the second and the third
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Fig. 24. Contour plots of the axial, upper half, and the radial, lower half, velocity component att = 5.03, t = 6.49, t = 17.16 forBn = 10, Re = 0, Ca = 103, St = 0,
w = 10,ε= 0.1 and under the no-slip condition.

shot increasing this unyielded domain, which is indicated by A2.
At the fourth snapshot, the unyielded domain has moved further
inwards covering a large area around the plane of symmetry,
but it has not reached the axis of symmetry. Up to this instant,
the domain B with yielded material is continuous and extends
from the axis of symmetry all the way to slightly outside the
disks, permitting flow and deformation. Finally, in the fifth snap-
shot the inward moving unyielded domain has merged with the
unyielded domain around the disk centers. After this instant, the
disks should have stopped moving and this is the point where we
consider that the simulation ends. As explained earlier however,
according to the Papanastasiou model, even now, finite motion
of the material is allowed, albeit with very large viscosity and
the condition for the yield surface given byτ = Bn is not equiv-
alent toγ̇ = 0. Therefore, in principle, simulations could have
continued and it should not be expected that the yield surfaces
given in the upper quarter correspond to surfaces withγ̇ = 0 in
the lower quarter. In fact, one can readily show thatτ = Bn is
equivalent to

γ̇ exp(Nγ̇) = Bn (35)

This dependence oḟγ on N is given in Fig. 26 for Bn = 10
and shows thaṫγ will approach zero only asymptotically for
extremely large values ofN, but such values must be avoided
as explained by Burgos et al.[17]. In the present case, we have
takenN = 500 and sinceτ = Bn = 10 at the yield surface, we find
t ve
p f
t , we
o rial
a eeze
o ma

with 0< γ̇ ≤ 0.014 expands inwards following the displace-
ment of the yield surface in the upper quarter. Clearly, even
at the very edge of the material the even smaller value ofγ̇

remainsγ̇ 	= 0 and strictly speaking very slow radial flow still
occurs even there (seeFig. 24). In the fourth snapshot, values
0< γ̇ ≤ 0.014 arise around the plane of symmetry and, in the
fifth one, they reach the axis of symmetry and the two domains
with 0< γ̇ ≤ 0.014 merge. Interestingly,̇γ remains larger than
0.014 around the edge of the disks in all time instants shown.
Therefore, the flow effectively stops not because all the mate-
rial outside the disks becomes unyielded, but because unyielded
material extends from the axis of symmetry, the stagnation points
around the disk and most of the plane of symmetry all the way
to its outer edge. Now we can go back and look more closely at
the radial velocity profiles at three different radial positions and
two time instances, the first one when unyielded material exists
only around the disk centers and the second one when it covers
most of the domain. These are given inFig. 27and clearly show
that early on the velocity profile resembles that shown inFig. 11,
whereas towards the end of the experiment the radial velocity is
nearly flat for the largest part of the gap between the disks. As
noted already, even fort = 17.16 when we consider that the flow
has stopped, the radial velocity is not zero at any cross section
as it should, because of the employment of the Papanastasiou
model.

From the practical point of view, it is important to study
t ther
t heir
fi n is
s sus
t rent
v e rest
hat thereγ̇ = 0.0133, clearlyγ̇ 	= 0. For this reason, we ha
lotted inFig. 25 contours ofγ̇ in the lower-right quarters o

he domain in the range (0, 0.014). In the first time instant
bserve thaṫγ = 0.014 arises just outside the unyielded mate
t the stagnation point, but also near the edge of the squ
ut material. In the second and third snapshots the latter do
d
in

he effect of the Bingham number on the evolution of ei
he velocity or the position of the disk and, especially, t
nal position. For higher clarity of the results, this variatio
hown inFig. 28by plotting the instantaneous velocity ver
he instantaneous axial position of the disks, for three diffe
alues of the Bingham number and the same values for th
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Fig. 25. Evolution of the yielded and unyielded domains, upper half, and contour plots of the second invariant of the rate of strain tensor for 0< γ̇ ≤ 0.014, lower
half, with time forBn = 10,Re = 0, Ca = 103, w = 10,ε= 0.1, andN = 500, under the no-slip condition at timest = 5.03,t = 5.21,t = 6.49,t = 13.06,t = 17.16.

Fig. 26. Dependence of the second invariant of the rate of strain tensor at the
yield surface on the stress growth exponent,N, for Bn = 10.

of the parameters. The calculations under constant force were
performed using either 30× 150 (M1) or 40× 300 (M2) axial
and radial elements. For the case ofBn = 50 it was impossible
to achieve convergence with M2 and thus we performed our
calculations with M1. In order to check that our solution has
converged we have also performed the simulations for the case
of Bn = 10 using both meshes M1 and M2 and as we can see in
Fig. 28the results are identical. Clearly, in the case of the low-
est value of the Bingham number,Bn = 1, where the Newtonian
behavior is approached, the disk distance can decrease to less
than 15% of its initial value and their velocity seems to approach
zero asymptotically. Increasing the Bingham number, forces the
disks to practically stop moving before they come so close to
each other and at the highest value shown here,Bn = 50, their
motion seems to stop more abruptly. This happens because the
size of the unyielded regions increases significantly with theBn
number and, consequently, these regions grow faster and merge
earlier forcing the disks to finally stop moving much earlier. We
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Fig. 27. Radial velocity profiles at three different radial locationsr = 3, 6, 9 at
t = 5.03,t = 17.16 forBn = 10,Re = 0, Ca = 103, St = 0,w = 10,ε= 0.1,N = 500
and under the no-slip condition.

Fig. 28. Evolution of the squeeze velocity with the distance of the upper disk
from the mid-planezd for Re = 0, Ca = 103, w = 10, ε= 0.1, under the no-slip
condition and variousBn numbers and the corresponding values ofN as given
in Table 1.

believe that measuring the rate of decrease of the axial velocit
of the disks and, more easily, locating the final position of the
disks can become a valuable rheological test to deduce read
ily the yield stress of a fluid. This method for measuring the
rheological properties of the material has some similarities to
the one proposed in Ref.[37], and, although it is not as cheap,
it provides increased control over the experimental conditions
and accuracy in the measured variables. Finally, we compare th

Table 3
Comparison of the final distance between the disks under constant applied for sults
is given byH = 0.863 [1−exp(−0.165Bn0.687)])

Bingham number (Bn) 1 10
Dimensionless applied force (F) 45 94
Final distance between disks (present analysis) 0.130 0 0.846
Final distance between disks (Ref.[38]) 0.074 0.355 01

final distance as we predict it to that given in Ref.[38]. To this
end, we make Eq.(2) in that reference dimensionless using our
definitions for characteristic variables and find that the final half
distance between the disks is

HL = Bn

3εF
(36)

The results are given inTable 3and show a qualitative agree-
ment, but the numerical values systematically overpredict the
final distance and more so for the smallerBn number. This can be
attributed to the well-known deficiencies of the analysis in Ref.
[38], to the possible presence of slip in the experiment and to the
fact that we have employed the Papanastasiou model, which may
have led us to assume cessation of disk motion somewhat prema-
turely. Another more recent experimental work is presented in
[39]. Here the disk velocity and the disk distance are given versus
time in log–log plots. We have converted our results to such plots
and we obtained qualitatively the same dependence. Unfortu-
nately, we cannot perform a quantitative comparison because the
material viscosity is not reported in[39]. Moreover, we decided
not to report herein extensions of our simulations to as small
disk velocities as in[39], where the final velocities were 3–4
orders of magnitude smaller than the initial ones. The reason
for this is that theṅγ becomes very small and the exponent,N,
in the Papanastasiou model ceases to be large enough for accu-
racy of the simulations and fidelity of this viscoplastic model.
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. Conclusions

We examined the transient squeeze flow of a viscopl
aterial between two parallel coaxial disks. Both the case o
isks moving with constant velocity and under constant f
ere studied. This transient simulation of squeeze flow for
oplastic material allows us to determine the evolution o
he velocity and pressure fields, (b) the shape of the liqui
nterface, (c) the domain of the unyielded material and (d
orce on or the velocity of the plates. All these were imposs
ith the quasi-steady state models used up to now. The si

ion of the process is based on the mixed finite element me
or the discretization of the governing equations coupled

quasi-elliptic mesh generation scheme in order to follow
arge deformations of the physical domain.

Results from a complete parametric analysis have been
ented. We examined the effect of the yield stress, the
oefficients, the amount of material initially placed between
isks and gravity. In the constant velocity problem it is sh
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that unyielded material arises around the disk centers where the
two stagnation points of flow would have been, verifying pre-
vious quasi-steady state calculations. The size of these domains
increases with the Bingham number, but decreases with time,
because the decreased distance between the disks amplifies pri-
marily the shear stress. The radial velocity profile changes from
almost parabolic, for the case of a Newtonian fluid, to almost
plug flow, as the Bingham number increases. The force that
must be applied on the surface of the disks in order to maintain
their constant velocity increases substantially with the Bing-
ham number and with time. The slip condition on the surface
of the disks affects the flow field only locally. Moreover, as the
length of the slip region increases, the size of the unyielded area
decreases significantly. Under typical gravitational conditions
the flow inside the two disks is not affected appreciably, whereas
when the gap between them is sufficiently large and enough fluid
has exited the space between them, the effect of gravity on the
flow field as well as on the shape of the free surface becomes
clear.

Finally, when a constant force is applied on the disks their
motion is decelerating until they finally stop, since at that time
most of the material between them behaves as rigid solid. Indeed,
unyielded regions arise first around the two stagnation points of
flow and later on at the outer edge of the material. As time passes
their size increases and they extend towards the axis and plane
of symmetry, eventually merging with the former unyielded
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