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A slip boundary condition (SBC) has been known to occur at solid boundaries in a variety of materials pro-
cessing including polymer processing. In the present work, implementation of the SBC has been tested for
viscous and viscoelastic fluids obeying integral constitutive equations of the K-BKZ type. The Finite Ele-
ment Method (FEM) is used to provide numerical results for tapered dies where sometimes slip is
neglected in the reservoir and the converging entry section and applied only in the die. The present
results show that this is valid for small values of a dimensionless slip coefficient Bsl (Bsl < 1). However, slip
must be applied to all the walls when Bsl > 1, or the contraction angle or the contraction ratio is small;
otherwise the pressure drops in the system are severely overpredicted. Viscoelasticity enhances those
trends.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Slip has been known to occur at solid boundaries for a variety of
materials including polymers [1]. The slip boundary condition was
proposed originally by Navier [2] to take into account a non-zero
velocity at solid boundaries. Although the vast majority of prob-
lems in fluid mechanics have been solved with a no-slip boundary
condition, another great variety of problems has been solved with
the Navier slip condition [3–6].

The works by Silliman and Scriven [7,8] were the first to apply
slip at the solid boundaries for Newtonian fluids and show how
this alleviates the stresses in the extrudate swell problem and re-
duces the swelling. In polymer processing, the work by Vlachopo-
ulos and Hrymak [9] applied a 1-D non-linear slip model in
calendering of PVC employing slip data measured experimentally.
The 2-D implementation of this data was employed by Mitsoulis
et al. [10] in the same problem. Since then slip has been routinely
used in several problems, such as wire-coating [11], extrusion [12–
16], including non-Newtonian materials such as pastes [17,18].

In polymer rheology and processing, slip has been found to oc-
cur under a wide range of conditions and it has been the subject of
major research efforts, notably by Ramamurthy [19], Kalika and
Denn [20], Piau’s group [21–23], and Hatzikiriakos and Dealy
[24–26]. Other works combine rheological measurements with
numerical simulations for a polypropylene (PP) melt [27] and for
a HDPE melt [28]. In the last two works the dies used were abrupt
contractions, and slip was implemented at all the solid walls,
namely in the reservoir and the die.

There have been arguments in the literature stating that slip is a
local phenomenon occurring mostly near singularities, such as at
the entrance corner in an abrupt contraction and at the exit of a
die. Kamal et al. [29] assume that slip diminishes exponentially
from a singularity, while in other cases only the two elements shar-
ing the singular node employ slip [30,31]. Another assumption
states that slip takes place only in the die, since shear stresses
are most important there, and ignore slip on the rest of the walls
[16]. However, as it will be shown in the present paper this
assumption is valid only under certain conditions.

It is therefore the purpose of the present work to impose the
slip boundary condition in viscous and viscoelastic flows with ta-
pered boundaries and show the discrepancies when assuming that
slip is only applied in the straight die. Furthermore, the formula-
tion is given in some detail and results are produced for a certain
viscoelastic melt (HDPE) for which experimental data is available
[28].
2. Mathematical modelling

2.1. Governing equations

We consider the conservation equations of mass, momentum
and energy for weakly compressible fluids under non-isothermal,
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creeping (Reynolds number Re = 0), steady flow conditions. These
are written as [14,17]:
�u � rqþ qðr � �uÞ ¼ 0; ð1Þ
0 ¼ �rpþr � ��s; ð2Þ
qCp�u � rT ¼ kr2T þ ��s : r�u; ð3Þ

where q is the density, �u is the velocity vector, p is the pressure, ��s is
the extra stress tensor, T is the temperature, Cp is the heat capacity,
and k is the thermal conductivity. For a weakly compressible fluid,
pressure and density are connected as a first approximation
through a simple linear thermodynamic equation of state [17]:

q ¼ q0ð1þ bcpÞ; ð4Þ

where bc is the isothermal compressibility with the density to be q0

at a reference pressure p0 (=0).
The viscous stresses are given for inelastic non-Newtonian com-

pressible fluids by the relation [14,17]:

��s ¼ gðj _cjÞð��_c� 2
3
ðr � �uÞIÞ; ð5Þ

where gðj _cjÞ is the apparent non-Newtonian viscosity, which is a
function of the magnitude j _cj of the rate-of-strain tensor
��_c ¼ r�uþr�uT , which is given by:

j _cj ¼
ffiffiffiffiffiffiffiffiffi
1
2

II _c

r
¼ 1

2
ð��_c :

��_cÞ
� �1=2

; ð6Þ

where II _c is the second invariant of ��_c

II _c ¼ ð��_c :
��_cÞ ¼

X
i

X
j

_cij _cij; ð7Þ

The tensor I in Eq. (5) is the unit tensor.
A popular model for purely viscous fluids is the Cross model,

which is written as [28]:

g ¼ g0

1þ ðk _cÞ1�n ; ð8Þ

where g0 is the zero-shear-rate viscosity, k is a time constant, and n
is the power-law index.

The viscosity may be dependent on temperature and pressure
[1,28]. The temperature-dependence of viscosity is usually given
by the Arrhenius relationship [1]:

aTðTÞ ¼
g
g0
¼ exp

E
Rg

1
T
� 1

T0

� �� �
; ð9Þ

where aT is the temperature-shift factor, g0 is the zero-shear viscos-
ity at T0, E is the activation energy constant, Rg is the ideal gas con-
stant, and T0 is a reference temperature (in K).

The pressure-dependence of viscosity can be taken into account
by multiplying the constitutive relation with a pressure-shift fac-
tor, ap, defined by the Barus equation, that is [1,28]:

ap �
g
gp0
¼ expðbppÞ; ð10Þ

where g is the viscosity at absolute pressure p, gp0 is the viscosity at
ambient pressure, and bp is the pressure coefficient.

In the case of viscoelastic polymer melts, a popular rheological
model for the stresses is the integral K-BKZ constitutive equation
proposed by Papanastasiou et al. [32] and modified by Luo and
Tanner [33]. This is written as:

s ¼ 1
1� h

Z t

�1

XN

k¼1

ak

kk

� exp � t � t0

kk

� �
a

ða� 3Þ þ bIC�1 þ ð1� bÞIC
C�1

t ðt0Þ þ hCtðt0Þ
h i

dt0

ð11Þ
where t is the current time, kk and ak are the relaxation times and
relaxation modulus coefficients, N is the number of relaxation
modes, a and b are material constants, and IC , I�1

C are the first invari-
ants of the Cauchy–Green tensor Ct and its inverse C�1

t , the Finger
strain tensor. The material constant h is given by

N2

N1
¼ h

1� h
; ð12Þ

where N1 and N2 are the first and second normal stress differences,
respectively. It is noted that h is not zero for polymer melts, which
possess a non-zero second normal stress difference. Its usual range
is between �0.1 and �0.2 in accordance with experimental findings
[1,3].

The K-BKZ model reduces to the integral Maxwell model with
an appropriate choice of parameters, namely for one relaxation
mode (N = 1), with the parameter a set equal to a big number
(say, a = 10,000) and the parameter b set equal to a small number
(say, b = 0.001). When the parameter h = 0, then we obtain the inte-
gral form of the Upper-Convected Maxwell (UCM) model, while
when h – 0, we obtain a combination of the upper- and lower-con-
vected derivatives, leading simply to the Integral Maxwell model
(IMX) [34,35].

2.2. Boundary conditions

The above system of equations is closed once boundary condi-
tions have been imposed on all boundaries (elliptic boundary-va-
lue problems at steady-state conditions) [1]. These are:

(i) Along the walls and in cases where there is no slip, we
impose the usual no-penetration, no-slip conditions
�u ¼ 0: ð13Þ
In the case of slip at the wall, the slip boundary condition (SBC)
becomes:
ðno penetrationÞ �n � �u ¼ 0; ð14aÞ
ðslipÞ �t � ð�u� VBÞ ¼ bslð�t�n : ��rÞb; ð14bÞ
where �n is the unit outward normal vector, �t is the unit tangential
vector in the direction of flow, VB is the velocity of the boundary
(=0 when the boundary is stationary), ��r ¼ �pI þ ��s is the total stress
tensor, bsl is a slip coefficient, and b is the slip exponent. When b = 1,
the slip law is linear. It is convenient to write the slip law as:
�t � ð�u� VBÞ
bsl

 !1
b 1
ð�t � ð�u� VBÞÞ

2
4

3
5ð�t � ð�u� VBÞÞ ¼ ð�t�n : ��rÞ;

ð15aÞ
or
kslð�t � ð�u� VBÞÞ ¼ ð�t�n : ��rÞ; ð15bÞ
where ksl is a function of the velocities in the general nonlinear case
(ksl = 1/bsl for a linear slip law). It is noted here that the slip law as-
sumed is valid for all wall shear stresses (no cut-off stress value)
and is not pressure-dependent because no such relation was found
for the HDPE melt at hand [28]. However, if experimental data exist
for a cut-off shear stress [24,36–38] or for pressure-dependence
[39–41], these modifications can be easily accommodated.

(ii) Along the centerline, we impose symmetry conditions:
ur ¼ 0; srz ¼ 0; ð16Þ
where ur is the radial component of velocity and srz is the shear
stress.
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(iii) Along the outflow boundary, we apply the free boundary con-
dition (FBC) [42–44] by evaluating the relevant terms of the
momentum Eq. (2) and the energy Eq. (3) as follows:
Z

C
ð�n � ð�pI þ ��sÞÞdC; ð17aÞZ

C
ð�n � rTÞdC; ð17bÞ
outer wall 

0n u⋅ =

inner wall 
( : )slt u B tn σ⋅ =

n

t

n

t
0n u⋅ =

( : )sl σt u B tn⋅ =

flow in 

Fig. 1. The slip boundary condition along two walls. Its implementation is along the
sides of the finite elements coinciding with the walls.
where C is the outflow boundary length.
(iv) Along the inflow boundary, we apply either a fully-developed

velocity profile corresponding to a given flow rate Q or the
free boundary condition (FBC) as modified to apply also at
inlet boundaries [45].

2.3. Dimensionless groups

To make the variables dimensionless, we take as a characteristic
velocity the outflow average velocity U, and as a characteristic
length the die radius R. Then a characteristic apparent shear rate
_cA is defined as:

_cA ¼
4U
R
: ð18Þ

All velocities are then scaled by U, all lengths by R, and all pressures
and stresses by �gU=R, where �g ¼ f ðU=RÞ is a nominal viscosity given
by the Cross model (Eq. (8)) at a nominal shear rate of U/R and ref-
erence temperature T0, or for Newtonian fluids equal to a constant
viscosity l.

Viscoelasticity is usually assessed by the Weissenberg number,
Ws. This is defined as:

Ws ¼ kU
R
: ð19Þ

The pressure-dependence of the viscosity gives rise to the
dimensionless pressure-shift parameter, Bp. This is defined as:

Bp ¼
bp �gU

R
: ð20Þ

Similarly, the compressibility coefficient bc gives rise to the
dimensionless compressibility parameter, Bc. This is defined as:

Bc ¼
bc �gU

R
: ð21Þ

The corresponding dimensionless slip parameter, Bsl, is a mea-
sure of fluid slip at the wall:

Bsl ¼
bsl �gb

U
U
R

� �b

: ð22Þ

The various thermal and flow parameters are combined to give
appropriate dimensionless numbers [45]. The relevant ones here
are the Peclet number, Pe, and the Nahme–Griffith number, Na.
These are defined as:

Pe ¼ qCpUR
k

; ð23Þ

Na ¼
�gEU2

kRgT2
0

: ð24Þ

The Pe number represents the ratio of heat convection to conduc-
tion, and the Na number represents the ratio of viscous dissipation
to conduction and indicates the extent of coupling between the
momentum and energy equations.
3. Method of solution

3.1. Finite element formulation

The numerical solution of the above sets of governing equations
and boundary conditions has been obtained with the Finite Ele-
ment Method (FEM), using two different programs. The first (called
uvpth) has been developed and used mainly for non-Newtonian
(pseudoplastic and viscoplastic) problems, for which it has been
found more suitable [46]. The second (called caves) has been devel-
oped and used for non-Newtonian viscoelastic problems, governed
by integral constitutive equations of the K-BKZ type [47,48]. Both
programs employ as primary variables the two velocities, pressure,
temperature and free-surface location (u-v-p-T-h formulation), and
use a Picard (direct substitution) iterative scheme. The viscoelastic
program caves can also accommodate purely viscous models for
checking purposes against uvpth.

The major features of the codes are as follows. The physical do-
main is discretized using quadrilateral elements. The velocity vec-
tor, the temperature, and the stream function are approximated by
9-node Lagrangian basis functions, /i, and the pressure is approx-
imated with 4-node Lagrangian basis functions, wi. In the caves
code, the 9-node Lagrangian element has been substituted by an
8-node serendipity element for faster calculations [47] (see Fig. 1).

For the governing conservation Eqs. (1)–(3), the finite element/
Galerkin method is employed, which after applying the divergence
theorem results in the following weak forms:Z

X
ð�u � rqÞ þ qðr � �uÞ½ �wi dX ¼ 0; ð25ÞZ

X
½ð�pI þ ��sÞ � r/i�dX ¼

Z
C

�n � ð�pI þ ��sÞ/i dC; ð26ÞZ
X
ðPe�u � rTÞ/i þrT � r/i � ð��s : r�uÞ/i
h i

dX

¼
Z

C
ð�n � rTÞ/i dC; ð27Þ

where dX and dC are the differential volume and surface area,
respectively. In the above, the surface integrals that appear in the
right-hand side (RHS) of Eqs. (26) and (27) are applied as the free
boundary conditions (FBC) [42–44] at the outflow according to:Z

C
ð�n � ð�pI þ ��sÞÞuidC ¼

Z
CFBC

nrð�pþ srrÞ þ nzsrz

nrsrz þ nzð�pþ szzÞ

� �
uidC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

free boundary condition

;
ð28aÞ

Z
C
ð�n � rTÞ/idC ¼

Z
CFBC

nr
@T
@r
þ nz

@T
@z

� �
uidC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

free boundary condition

: ð28bÞ
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3.2. Implementation of the slip boundary condition (SBC) along an
Inclined Wall

In past works with purely viscous [10,11,17,18] or viscoelastic
models [27,28], slip was implemented making use of the rotation
tensor [R], which pre- and post-multiplies the ‘‘stiffness’’ matrix
[S] and pre-multiplies the ‘‘load’’ vector {B} in a Picard scheme
[49]. In the present work, we adopt another approach, where the
differential equations for the SBC are written explicitly. Both pro-
grams were modified to implement the SBC along the following
lines.

The two equations needed are Eqs. (14a) and (14b). In an axi-
symmetric coordinate system (r,z,h), one equation will give contri-
butions to the r-component and the other to the z-component of
the momentum equation.

The no penetration condition, Eq. (14a), gives at the slip wall:

�n � �u ¼ nrur þ nzuz ¼ 0: ð29Þ

This equation will be used to replace the r-component of the
momentum equation and therefore will be used for the evaluation
of the radial velocity, ur.

The z-component of the surface integral term in the momentum
Eq. (26) gives at the slip wall:Z

C
ð�ez � ð�n � ��rÞÞuidC ¼

Z
C
ðnrrrz þ nzrzzÞuidC: ð30Þ

The slip law (Eq. 15b) gives in dimensionless form:

Kslð�t � ð�u� VBÞÞ ¼ ð�t�n : ��rÞ; ð31Þ

where Ksl is given by:

Ksl ¼
�t � ð�u� VBÞ

Bsl

 !1
b 1
ð�t � ð�u� VBÞÞ

2
4

3
5: ð32Þ

The use of Ksl is convenient because it employs the velocities from a
previous solution. Also note that in 2-D flows, ð�t � ð�u� VBÞÞ ¼

ð�u� VBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ður � VBrÞ2 þ ðuz � VBzÞ2

q
.

In long-hand notation we have:

Kslðtrður � VBrÞ þ tzðuz � VBzÞÞ
¼ trðnrrrr þ nzrrzÞ þ tzðnrrrz þ nzrzzÞ½ �: ð33Þ

Hence, combining Eqs. (30) and (33) yields:Z
C
ð�ez � ð�n � ��rÞÞuidC¼Z

C

1
tz

Kslðtrður�VBrÞþ tzðuz�VBzÞÞ½ �� tr

tz
ðnrrrrþnzrrzÞ

� �
uidC: ð34Þ

It should be noted that in the above we have for the compo-
nents of the total stress ��r:

rrr ¼ �pþ 2
@ur

@r
þ sel;rr ; ð35aÞ

rzz ¼ �pþ 2
@uz

@z
þ sel;zz; ð35bÞ

rrz ¼
@ur

@z
þ @uz

@r

� �
þ sel;rz; ð35cÞ

where ��sel is the elastic stress tensor with components given by Eq.
(11). This occurs because with viscoelastic models, we apply the
elastic-viscous split stress (EVSS) [50] (or adaptive elastic-viscous
split stress, AVSS) [51], where a Newtonian contribution is added
and subtracted from the extra stress tensor. Detailed information
about the discrete formulation implemented in the two codes is gi-
ven in the Appendix.

4. Results and discussion

4.1. Poiseuille flow of a Maxwell fluid (Test #1)

The very first test was done for simple pressure-driven (Poiseu-
ille) flow in a tube or between flat plates for a Newtonian fluid with
both codes. Fig. 2 shows the solution domain and boundary condi-
tions, together with a 5x5 finite element grid in the understanding
that if the method is correct it should work even with the sparsest
of grids. By assuming both at inlet and outlet the FBC and setting
the mean velocity equal to 1 at one inlet node (the centreline uz

dof), the results reproduced the analytical velocity profile every-
where and the linear pressure drop according to the well-known
analytical solution for any value of Bsl from 0 to 1000.

We then tested the implementation of the SBC with the visco-
elastic Maxwell fluid in Poiseuille flow in a tube for further code
validation. The integral constitutive equation is written as [1]:

s ¼ 1
1� h

Z t

�1

a
k

exp � t � t0

k

� �
C�1

t ðt0Þ þ hCtðt0Þ
h i

dt0; ð36Þ

where k is a single relaxation time and a is a single relaxation mod-
ulus. Due to the presence of a non-zero h-value, there are both first
and second normal stress differences, N1 and N2, respectively. It is
well known that in the limit of zero shear rate one must have �1/
4 6 N2/N1 6 0 for every fluid which climbs a rod and bulges in a
tilted trough [34].

It is not difficult to obtain the analytical solution for Poiseuille
flow in the presence of linear slip for the above integral Maxwell
fluid with a non-zero second normal-stress difference (h – 0).
The solution for the velocity is the same as for a Newtonian fluid:

ðaxisymmetric; r � zÞ uzðrÞ ¼
2

1þ 4Bsl
ð1� r2 þ 2BslÞ; ð37aÞ

ðplanar; x� yÞ uxðyÞ ¼
3

2ð1þ 3BslÞ
ð1� y2 þ 2BslÞ; ð37bÞ

while for the stresses is as follows:

srrðrÞ ¼ 2Ws
h

1� h

� �
_c2

rz; syyðyÞ ¼ 2Ws
h

1� h

� �
_c2

xy; ð37cÞ

szzðrÞ ¼ 2Ws
1

1� h

� �
_c2

rz; sxxðyÞ ¼ 2Ws
1

1� h

� �
_c2

xy; ð37dÞ

srzðrÞ ¼ _crz; sxyðyÞ ¼ _cxy; ð37eÞ

dP
dz
¼ � 8

1þ 4Bsl
;

dP
dx
¼ � 3

1þ 3Bsl
; ð37fÞ

where _crz ¼ @uz=@r ð _cxy ¼ @ux=@yÞ is the shear rate. The values of the
pressure gradient were derived by imposing the average velocity
equal to unity. Setting h = �1/3(N2/N1 = �0.25), Ws = 1 and Bsl = 1,
we find:

ðaxisymmetricÞ uzð1Þ ¼ 0:8; srzð1Þ ¼ �0:8; srrð1Þ
¼ �0:32; szzð1Þ ¼ 0:96; dP=dz ¼ �1:6

ðplanarÞ uxð1Þ ¼ 0:75; sxyð1Þ ¼ �0:75; syyð1Þ
¼ �0:28125; sxxð1Þ ¼ 0:84375; dP=dx ¼ �0:75

For h = 0 the solution of the K-BKZ model reduces to the solution of
the upper-convected Maxwell (UCM) model.
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The results for Ws = 1, Bsl = 1 and h = �1/3 are given in Fig. 3 for
the contours of various flow variables, which are the pressure P,
the normal stresses szz and srr, and the shear stress, srz. The con-
Fig. 3. Contours of field variables in Poiseuille tube flow of an integral Maxwell fluid at
shear stress srz.
tours are given as 11 equidistant lines between the minimum
and maximum values (not shown). We observe that all contours
(except the pressure) are perfectly parallel to the flow, as they
Ws = 1, Bsl = 1, h = �1/3: (a) isobars P, (b) radial stress srr, (c) axial stress szz, and (d)
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are analytical results and symbols are numerical results.
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Fig. 7. (a) A typical finite element grid for the simulations in an 12.5:1 tapered
circular contraction with L/R = 20 and 2/ = 90�. The upper grid (M1) consists of
1700 elements and 5461 nodes, while the lower grid is created by subdivision of
each M1 element into 4 sub-elements to form a denser grid for checking the results
for grid-independence and (b) detailed grids near the die entry.
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should, since this is a fully-developed shear flow. The pressure con-
tours (isobars) show the distinct curvature associated with a non-
zero N2. When N2 = 0, the isobars are perfectly vertical.

Fig. 4 shows the radial distributions for the axial velocity and
the stresses for Ws = 1, Bsl = 1 and h = �1/3. The results coincide
with the analytical solutions given in Eq. (37). The axial pressure
distributions of an integral Maxwell fluid at Ws = 1, Bsl = 1 are given
in Fig. 5 for (a) h = 0 and (b) h = �1/3. In both cases, the axial pres-
sure distribution is linear. However, when h = 0, the axial pressure
distribution along the wall and the centreline coincide. When
h – 0, there is a radial distribution of pressure, which is quadratic
in r, and the results between the wall and the centreline are
different. In both cases, the numerical results agree exactly with
the analytical solutions of Eq. (37).
4.2. Flow of Newtonian fluids in a tapered die (Test #2)

We continue our numerical tests for a Newtonian fluid flowing
under pressure in a tapered circular die making an angle / of 45�
with the horizontal as shown in Fig. 6 (contraction angle 2/
= 90�), where all the dimensions are given. D is the singular node
where the taper meets the die. The choice of this simple problem
is due to its use in rheometry, where several rheometrical proper-
ties are measured [52]. The boundary conditions are also shown in
Fig. 6. These involve a fully developed velocity profile at inlet cor-
responding to a mean outflow velocity U = 1, and slip velocities at
the solid walls ABC and FED. At outflow CD the usual practice is to
put zero surface tractions T ¼ 0, since the profile is not known
there. An alternative is to use the free boundary condition (FBC)
[42–44]. The latter option is used in this paper.

Fig. 7 shows the finite element meshes used. The upper grid
consists of 1700 elements, 5461 nodes, and 18,264 unknown de-
grees of freedom (d.o.f.) and was used for preliminary runs to gain
experience, while a 4-times denser grid having 6800 elements was
also used, having been created by subdivision of each element into
4 sub-elements for checking purposes of grid-independent results
(see Fig. 7, lower half). This checking consists of reporting the over-
all pressures in the system from the two meshes and making sure
that the differences are less than 1% between the two results.

Two runs have been made, at a low slip parameter (Bsl = 1) and a
high one (Bsl = 100). For each case we have assumed slip either only
along the die (die slip) or along the entire wall (full slip). The pur-
pose here is to find out the differences when assuming slip only
at the die wall [16]. How this is done with finite elements affects
the results very much. We found that the best way to implement
die slip is for the singular node D to have both boundary conditions,
namely, to belong to the tapered wall with zero velocity for the left
finite element and to belong to the die wall with slip velocity for
the right finite element sharing the singular node D. If D takes only
one boundary condition the results are grossly different in either
case (zero velocity or slip velocity), and wiggles arise in the numer-
ical solution.

The axial velocity profiles for Bsl = 1 are given in Fig. 8a, and
these for Bsl = 100 are given in Fig. 8b. First we observe that be-
cause of slip, the velocity profiles are nowhere equal to 0. For
low slip, the profiles inside the die are different along the wall
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Table 1
Parameters for the HDPE melt obey-
ing the Cross model (Eq. (8)) at
190 �C [28].

Parameter Value

g0 128,180 Pa s
k 2.8 s
n 0.227

Table 2
Values of the various parameters for the HDPE
melt at 190 �C [28].

Parameter Value

bc 0.00095 MPa�1

bp 0.01036 MPa�1

bsl 70,400 cm/(s MPab)
b 5.73
q 0.7624 g/cm3

Cp 2.7212 J/(g K)
k 0.00255 J/(s cm K)
E 28,840 J/mol
Rg 8.3143 J/(mol K)
T0 190 �C (463 K)
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and the centreline (c-line), while for high slip they tend to be vir-
tually the same (massive slip, plug-like profiles in the die). When
we compare the profiles obtained by applying partial slip only
along the die (die slip, dashed lines) with those obtained by apply-
ing everywhere slip (full slip, solid lines), we observe that at low
slip (Bsl = 1) there is not much difference, but at high slip
(Bsl = 100) the differences before entry to the die become more pro-
nounced, especially in the high peaks obtained just before the die
entry.
The situation is more dramatic when considering the corre-
sponding results for the pressures in Fig. 9a and b, respectively.
We observe that for low slip (Bsl = 1), the pressure is overestimated
by 7% (P⁄ = 38 vs. 35.6) when considering only die slip. On the other
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hand, for high slip (Bsl = 100), the pressure is overestimated by 86%
(P⁄ = 6.92 vs. 3.73) when considering only die slip, which is obvi-
ously not at all a good approximation. As the contraction angle
2/ is reduced or the contraction ratio Rres/R is reduced, including
slip in the reservoir and the tapered entry section becomes more
important, as will be shown below. Therefore, it is not warranted
to include slip only at the die walls, but slip should be properly ac-
counted for and applied along all solid walls.
Table 3
Range of the dimensionless parameters in the flow of HDPE melt at 190 �C (die radius R =

Apparent Shear Rate, _cA ðs�1Þ Peclet number, Pe Nahme number, Na Com

64 20.8 0.02 9.8 �
1000 325.4 0.51 1.9 �
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4.3. Flow of a HDPE melt in a tapered die (Test #3)

We turn our attention to a flow of a polymer melt (HDPE with a
polydispersity index 42 [28]) through the same tapered contrac-
tion and die used in rheometry [52]. First we present results with
the viscous Cross model at two apparent shear rates _cA ¼ 64 s�1

and 1000 s�1. The flow is considered creeping (Re � 0), viscous,
non-isothermal, with a pressure-dependence of the viscosity. Due
0.0381 cm) [28].

pressibility parameter, Bc Pressure-shift parameter, Bp Slip parameter, Bsl

10�5 1.1 � 10�3 0.24
10�4 2.1 � 10�3 0.72
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Table 4
Relaxation spectrum and material constants for the HDPE melt obeying the K-BKZ
model (Eq. (11)) at 190 �C ða ¼ 10:15; b ¼ 0:6; h ¼ 0; �k ¼ 11:3 s;g0 ¼ 140; 073 Pa sÞ
[28].

k kk (s) ak (Pa)

1 0.537 � 10�8 0.236 � 109

2 0.782 � 10�5 0.576 � 107

3 0.263 � 10�2 99,508
4 0.10591 92,960
5 0.168 � 10�1 0.104 � 106

6 0.70421 46,958
7 4.2105 12,169
8 30.494 1438.6
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to the weak compressibility, we do not consider it here or in the
following, as the results did not depend in any meaningful manner
on it. The viscosity of the melt obeys the Cross model (Eq. (8)) with
data listed in Table 1. Furthermore, the material slips at the wall
according to a power law (Eq. (15)), and the constants bsl and b
are listed in Table 2 together with other material data [28]. The
walls are kept isothermal at T0 = 190 �C. The dimensionless vari-
ables for these two apparent shear rates are given in Table 3 (note
that in [28] the dimensionless variables are slightly different as
they were obtained by using U ¼ _cA=4 instead of U ¼ _cAR=4 as
was done here). We observe that compressibility and pressure-
dependence of the viscosity (Bc and Bp parameters) are not impor-
tant. Also thermal effects (Pe and Na parameters) are not very
important for _cA ¼ 64 s�1 but they become more important for
_cA ¼ 1000 s�1. Finally, the slip parameter Bsl is 0.24 and 0.72,
respectively, namely of order O(0.1), which shows small slip
effects.

The axial velocity profiles along the centreline (c-line) and the
die walls are shown in Fig. 10a for _cA ¼ 64 s�1 and in Fig. 10b for
_cA ¼ 1000 s�1, respectively. Due to slip at the wall, the profiles in
the die have a non-zero velocity at the die wall, which becomes
higher as the apparent shear rate becomes higher. However, due
to the slip parameter being of O (0.1), the differences between
assuming slip along all the walls (full slip) and only at the die walls
(die slip) is not significant. Thus, the assumption of using slip only
along the die walls for a shear-thinning polymer melt (such as the
HDPE at hand) obeying the Cross model (or a similar model like the
Carreau) is valid for the velocities [16].

The axial pressure profiles along the centreline (c-line) and the
die walls are shown in Fig. 11a for _cA ¼ 64 s�1 and in Fig. 11b for
_cA ¼ 1000 s�1, respectively. What was said above about the slip
parameter being of O(0.1), is even more valid here, where the pres-
sure drop in the system is not greatly affected by assuming slip
either along all the walls (full slip) or only at the die walls (die slip).
Thus, the assumption of using slip only along the die walls for a
shear-thinning polymer melt (such as the HDPE at hand) obeying
the Cross (or Carreau) model is also valid for the pressures as well
[16].

At this point, it is interesting to study the effects of contraction
ratio Rres/R and contraction angle 2/ on the results. We have stud-
ied three contraction ratios [Rres/R = 7.5,12.5,18.75] and three con-
traction angles [2/ = 10�,30�,90�] at the highest apparent shear
rate of _cA ¼ 1000 s�1. The results for the axial pressure distribu-
tions along the wall and the c-line either with die slip or full slip
are given in Figs. 12 and 13, respectively. We observe that a smaller
reduction ratio gives more differences in the two modes of apply-
ing slip, but this parameter is not very crucial for the present HDPE
at _cA ¼ 1000 s�1. Far more crucial is the effect of contraction angle,
which as it becomes smaller gives more discrepancies, with the die
slip overestimating appreciably the pressure drop in the system.

We turn now our attention to the viscoelastic data for the HDPE
polymer melt [28]. The flow is considered creeping (Re � 0), visco-
elastic (governed by the K-BKZ model, Eq. (11)), non-isothermal,
with a pressure-dependence of viscosity (hence of the relaxation
moduli ak), with the viscoelastic spectrum given in Table 4. The
apparent shear rates ranged from 5 to 1000 s�1. Again we present
results for two test runs at the intermediate apparent shear rate of
64 s�1 and at the highest apparent shear rate of 1000 s�1. The
dimensionless numbers of Table 3 are still valid.

The axial velocity profiles along the centreline (c-line) and the
die walls are shown in Fig. 14a for _cA ¼ 64 s�1 and in Fig. 14b for
_cA ¼ 1000 s�1, respectively. Similar results as in the case of the vis-
cous Cross model computations are obtained, although the maxi-
mum after entry to the die is higher. Also, due to memory
phenomena it takes a longer distance for the velocity profiles to le-
vel off. Again, due to the slip parameter being of O(0.1), the differ-
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ences between assuming slip along all the walls (full slip) and only
at the die walls (die slip) is not significant. Thus, the assumption of
using slip only along the die walls for a viscoelastic polymer melt
(such as the HDPE at hand) obeying the K-BKZ model is valid for
the velocities [16].

The axial pressure profiles along the centreline (c-line) and the
die walls are shown in Fig. 15a for _cA ¼ 64 s�1 and in Fig. 15b for
_cA ¼ 1000 s�1, respectively. What was said above about the slip
parameter being of O(0.1) is still valid here, where the pressure
drop in the system are somewhat affected by assuming slip either
along all the walls (full slip) or only at the die walls (die slip). We
observe that for _cA ¼ 64 s�1, the pressure is overestimated by 5%
(P = 7.3 vs. 7.7 MPa) when considering only die slip. Also, for
_cA ¼ 1000 s�1, the pressure is overestimated by 6% (P = 15.3 vs.
16.2 MPa). Thus, the assumption of using slip only along the die
walls for a viscoelastic polymer melt (such as the HDPE at hand)
obeying the K-BKZ model is also valid for the pressures as well
[16].
5. Conclusions

The slip boundary condition (SBC) has been implemented in
cases of viscous and viscoelastic flows obeying an integral consti-
tutive equation of the K-BKZ type. The details of implementation
have been given in the general case of geometries where an arbi-
trary angle is present. It is shown that when the dimensionless slip
parameter Bsl is of order O(1) or less, it is justified to apply the SBC
only in the die, for capillary dies used in rheometry. However,
when Bsl is of order O(10) or more, this assumption is not valid
and leads to gross overestimations of the pressure drop in the sys-
tem. This is more so when the contraction angle or the contraction
ratio are reduced.

A test case of a polymer melt (HDPE) exhibiting slip was stud-
ied, seen either as a viscous (Cross) fluid or a viscoelastic (K-BKZ)
fluid. Due to the slip parameter Bsl being of order O(0.1), it was
found that the assumption of applying only slip at the die is a valid
approximation, as was done before [16]. However, there are situa-
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tions where Bsl is of order O(10) or more (e.g., in wire coating or
with polymers exhibiting linear slip), and then slip must be applied
to all solid walls to obtain reliable results, especially for the pres-
sures in the system, which are important in rheometry. The latter
can also influence slip according to experimental evidence of pres-
sure-dependence slip law [39,40], which can also influence flow
stability [41].
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Appendix A

Our recent work [43] contains detailed derivations of the FEM
formulation based on the ‘‘stiffness’’ matrix and ‘‘load’’ vector ap-
proach advocated by Huebner and Thornton [49]. Here we concen-
trate on the appropriate modifications to incorporate the SBC for
viscoelastic models in the general case of arbitrary geometries.

A.1. Mass and momentum discrete equations

Combining the discrete forms of the conservation equations of
mass and momentum (including compressibility) into one matrix
equation leads (in two-dimensional axisymmetric domains,
r � z � h corresponding to 1–2–3) to the following system of an
element (stiffness) matrix [S], a vector of unknowns {x}, and a
RHS (load) vector {F} for each element:

S11 S12 S13

S21 S22 S23

S31 S32 S33

2
64

3
75 U

V
P

2
64

3
75 ¼ F1

F2

0

2
64

3
75: ðA:1Þ

The entries for each term in the above system are given in detail
in [43]. The bars over U, V, P, F1, F2 denote arrays having the nodal
values of the element.

A.2. Contribution from the SBC

With the SBC, the extra terms along the slip boundary are:

Fr ¼
Z

CSBC

ð�n � �uÞ �uedC|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
no penetration condition

¼
Z

CSBC

ðnrur þ nzuzÞuiedC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
no penetration condition

; i ¼ 1;3; ðA:2Þ

Fz ¼
Z

CSBC

ð�ez � ð�n � ��rÞÞ�udC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
slip boundary condition

¼
Z

CSBC

ðnrrrr þ nzrrzÞuidC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
slip boundary condition

;

i ¼ 1;3; ðA:3Þ

where e is a big number (e = 10+12) employed for a penalty-method
implementation of the no-penetration condition across the slip
boundary. The above terms do not enter as such in the RHS load
vector {F}, but they can be split into contributions to the stiffness
matrix [S] and the load vector {F}. Note that any contribution to
[S] has more power numerically than in {F}, and for a linear slip
law and a Newtonian fluid it requires no iterations.

After the appropriate manipulations, the following matrix sys-
tem is obtained from the slip contribution:

SS11 SS12 SS13

SS21 SS22 SS23

� � U

V

P

2
64

3
75 ¼ FS1

FS2

" #
; ðA:4Þ

where the components of the element (stiffness) matrix [SS] of Eq.
(A.4) are:
SS11 ¼
Z

C
ðnrujÞuiedC; i ¼ 1;3; j ¼ 1;9; ðA:5Þ

SS12 ¼
Z

C
ðnzujÞuiedC; i ¼ 1;3; j ¼ 1;9; ðA:6Þ

SS13 ¼ 0; ðA:7Þ

SS21 ¼
Z

C
Ksl

tr

tz
ujuidC�

Z
C

tr

tz
nr2gref

@uj

@r

� �
uidC

�
Z

C

tr

tz
nzgref

@uj

@z

� �
uidC

þ
Z

C

tr

tz
nr

2gref

3
@uj

@r
þuj

r

� �� �
uidC; i

¼ 1;3; j ¼ 1;9 ð4th term ¼ 0 for incomp: fluidsÞ; ðA:8Þ

SS22 ¼
Z

C
KslujuidC�

Z
C

tr

tz
nzgref

@uj

@r

� �
uidC

þ
Z

C

tr

tz
nr

2gref

3
@uj

@z

� �
uidC; i

¼ 1;3; j ¼ 1;9 ð3rd term ¼ 0 for incomp: fluidsÞ; ðA:9Þ

SS23 ¼ �
Z

C

tr

tz
nrw

juidC; i ¼ 1;3; j ¼ 1;4: ðA:10Þ

In the above, the tangential and normal components of the unit vec-
tor are readily available in FEM from the shape functions and their
derivatives.

The above contributions of [SS] and [FS] must be added to the
corresponding terms of Eq. (A.1) for the elements having the SBC
on one side.

For the integral constitutive equation (Eq. (11)), the SBC enters
the RHS or ‘‘load’’ vector [FS] according to (and in the general case
where the boundary moves with a velocity VB):

FS1 ¼
Z

C
KslVBruidC; i ¼ 1;3 ðA:11Þ

FS2 ¼
Z

C
KslVBzuidCþ

Z
C

tr

tz
ðnzrrz þ nrrrrÞuidC; i ¼ 1;3; ðA:12Þ

where the total stresses rrz and rrr are given by:

rrz ¼ gref
@uz

@r
þ @ur

@z

� �
þ srz;el � gref ð

@uz

@r
þ @ur

@z
Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fz;el

; ðA:13Þ

rrr ¼ 2gref
@ur

@r
þ srr;el � 2gref

@ur

@r|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Fz;el

: ðA:14Þ

In the above, VB,r and VB,z are the velocity components of the moving
boundary (=0 if the boundary is not moving). The case of a moving
boundary has been dealt with before in the process of calendering
[10] and wire coating [11].
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