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The mechanisms driving the surfactant-enhanced spreading of droplets on the surface
of solid substrates, and particularly those underlying the superspreading behaviour
sometimes observed, are investigated theoretically. Lubrication theory for the droplet
motion, together with advection–diffusion equations and chemical kinetic fluxes
for the surfactant transport, leads to coupled evolution equations for the drop
thickness, interfacial concentrations of surfactant monomers and bulk concentrations
of monomers and micellar, or other, aggregates. The surfactant can be adsorbed
on the substrate either directly from the bulk monomer concentrations or from the
liquid–air interface through the contact line. An important feature of the spreading
model developed here is the surfactant behaviour at the contact line; this is modelled
using a constitutive relation, which is dependent on the local surfactant concentration.
The evolution equations are solved numerically, using the finite-element method, and
we present a thorough parametric analysis for cases of both insoluble and soluble
surfactants with concentrations that can, in the latter case, exceed the critical micelle,
or aggregate, concentration. The results show that basal adsorption of the surfactant
plays a crucial role in the spreading process; the continuous removal of the surfactant
that lies upon the liquid–air interface, due to the adsorption at the solid surface, is
capable of inducing high Marangoni stresses, close to the droplet edge, driving very
fast spreading. The droplet radius grows at a rate proportional to ta with a = 1 or
even higher, which is close to the reported experimental values for superspreading.
The spreading rates follow a non-monotonic variation with the initial surfactant
concentration also in accordance with experimental observations. An accompanying
feature is the formation of a rim at the leading edge of the droplet. In some cases,
the drop spreads to form a ‘pancake’ or creates a ‘secondary’ front separated from
the main droplet.
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1. Introduction
The spreading of fluids over liquid and solid substrates has attracted the interest

of many researchers in the past because of its numerous practical applications and
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scientific challenges (see, for example, the reviews by de Gennes 1985 and Bonn et al.
2009 and the references therein). It is well known that the addition of a surface-active
material (a surfactant) can have a dramatic effect on the rate, extent and uniformity of
the spreading process. The ability to control these properties can be very beneficial in
many industrial as well as biomedical applications such as coating processes, spraying
herbicides (Knoche, Tamura & Bukovac 1991) and surfactant replacement therapy
(Grotberg 1994). In order to be able to optimize the use of surfactants in such
applications, however, we have to fully understand their role in the spreading process.

Over many years, researchers have examined the spreading of pure liquid drops
on solid surfaces experimentally as well as theoretically (see, for instance, Dussan &
Davis 1974; Greenspan 1978; Tanner 1979; Cox 1986a; Dussan, Rame & Garoff 1991;
Haley & Miksis 1991; Ehrhard 1993; Carlson, Do-Quang & Amberg 2009). Recently,
renewed interest in the properties of surfactants, and their applications, has led many
researchers to investigate surfactant-enhanced spreading, performing experiments for
a wide variety of surfactants and substrates (Zhu et al. 1994; Stoebe et al. 1996,
1997a,b,c; Nikolov et al. 2002; Rafai et al. 2002; Radulovic, Sefiane & Shanahan
2009). The spreading characteristics of surfactants are broadly categorized as follows:
(a) surfactants are able to dramatically lower the surface tension of the interfaces upon
which they lie, and their mixtures can effectively wet hydrophobic surfaces; (b) the
spreading rate becomes maximum on intermediate energy substrates; (c) a maximum
in the spreading rate is observed as a function of the initial surfactant concentration;
(d ) the final wetted area is proportional to the initial concentration of the surfactant.
A striking and intriguing experimental observation is that a certain class of surfactants
(siloxane-based surfactants) have a unique ability to promote very rapid spreading
on highly hydrophobic surfaces. This surfactant-enhanced spreading phenomenon is
called ‘superspreading’, and the relevant surfactants are called superspreaders (Hill
1998, 2002). Despite the widespread attention received by this phenomenon, the
mechanism underlying superspreading is not yet fully understood.

Surfactant-enhanced spreading has been attributed by several researchers to
the Marangoni effect, which is driven by surface tension gradients, because the
advancement of the flow front in many cases follows a ta power law with a = 1/2.
However, it has been suggested that Marangoni flow cannot provide a sufficient
explanation for the superspreading phenomenon for which spreading rates are often
much higher and a power law exponent of a =1 may be encountered. Some attribute
this increase in the spreading rates simply to a large affinity of the surfactant molecules
for the solid substrate or a higher transport efficiency of the superspreaders to the
same substrate (Rafai et al. 2002). Others claim that there may be direct adsorption
of micelles at the air–liquid and solid–liquid interfaces which provides a much faster
interfacial adsorption of the surfactant in order to counterbalance the dilation of the
interface (Kumar, Couzis & Maldarelli 2003).

To clearly elucidate the spreading process and provide possible explanations for
experimental observations, theoretical studies have been pursued. Modelling the
spreading of pure liquid drops on solid surfaces is challenging, and the physics
governing the motion of the contact line still remains unclear. It is well known
that when the usual no-slip condition is applied at the liquid–solid interface, a non-
integrable stress singularity appears at the moving contact line (Huh & Scriven 1971),
which has a number of ‘remedies’ in the literature (Bonn et al. 2009). One involves
relaxing the usual no-slip condition at the solid surface; another approach postulates
the presence of an ‘inner’ region close to the contact line, where other mechanisms
replace the usual no-slip condition, and an ‘outer’, or macroscopic region, where
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the usual assumptions control the flow. An added complication is the fact that the
position of the contact line is unknown, and therefore an additional relation is required
between the contact angle and the slip velocity (see e.g. Haley & Miksis 1991).

The above-mentioned ideas have also been used for surfactant-laden fluids. Cox
(1986b) conducted a theoretical investigation, near the contact line, for the spreading
liquid with an insoluble surfactant in the special case in which the surfactant does not
transfer onto the solid. Cox recognized that, when surfactants are present, a singularity
appears at the contact line just as in the pure fluid case and suggested that it could be
removed by some suitable inner mechanism such as slip. However, Rame (2001) noted
that when one considers the transfer of the surfactant from the fluid–air interface to
the solid surface directly through the contact line by advection, further complications
arise; the introduction of slip makes the fluid velocity relative to the contact line
equal to zero, and therefore the surfactant cannot transfer by advection alone at the
contact line. Clay & Miksis (2004) also addressed the problem of transport of an
insoluble surfactant at the contact line, albeit with a different mechanism, assuming
a very simple model that permitted the surfactant to be adsorbed and desorbed at
the contact line. Their results suggest that when the liquid–air interface is losing the
surfactant to the substrate, through adsorption at the contact line, the droplet spreads
faster, whereas when it is gaining the surfactant from the substrate the spreading
becomes slower. This is a clear indication that the adsorption of the surfactant
at the substrate plays an important role in the spreading process. More recently,
Chan & Borhan (2005) studied the axisymmetric spreading of a liquid drop with an
insoluble surfactant and no transfer at the contact line. They focused on the effect
of an equilibrium contact angle that either is fixed or depends on the surfactant
concentration at the contact line.

Yet another approach to relieving the contact line singularity involves the use
of a ‘precursor’ layer ahead of the contact line. This method has been used in
several problems, e.g. the study of thin-film flow down an incline (Kondic & Diez
2001), thermally driven coating flows (Kataoka & Troian 1997), the spreading of
a pure liquid on a solid substrate or on another liquid (Schwartz & Eley 1998;
Craster & Matar 2006) and the stability of moving contact lines for Newtonian
and viscoelastic fluids (Spaid & Homsy 1996). This method has also been used in
surfactant-laden flows, e.g. surfactant-induced fingering phenomena and the onset
of ‘autophobing’ in thin-film flows (Edmonstone, Craster & Matar 2006; Craster &
Matar 2007) as well as surfactant-enhanced spreading on a solid surface (Beacham,
Matar & Craster 2009). As we have already seen, however, up until very recently,
the modelling work on surfactant-enhanced spreading on solid surfaces has focused
on the case of insoluble surfactants (although there are a number of studies of the
spreading of soluble surfactants on thin liquid films; Jensen & Grotberg 1993; Warner,
Craster & Matar 2004a; Edmonstone et al. 2006). Beacham et al. (2009) accounted
for a soluble surfactant with a concentration that can be below and above the critical
micelle concentration (CMC), permitting, in the latter case, the formation of micellar
aggregates. Moreover, these authors have taken into consideration the adsorption
and desorption of the surfactant at the substrate. The adsorption of the surfactant at
the substrate has already been recognized as an important factor by experimentalists
and modellers in the spreading process (see e.g. Rafai et al. 2002; Kumar et al. 2003;
Clay & Miksis 2004; Kim, Qin & Fichthorn 2006) as well as in other problems (e.g.
the autophobing effect; see Craster & Matar 2007). Furthermore, since the majority
of the experimental studies, mentioned above, have considered soluble surfactants
with concentrations that can be well above the CMC, the work of Beacham et al.
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Figure 1. Schematic of a surfactant-laden drop spreading on a solid surface. The surfactant is
present in the bulk as monomers or aggregates such as micelles or vesicles and at the fluid–air
interface as monomers. If the substrate is hydrophobic the surfactant can be adsorbed as a
mat or in other configurations.

(2009) represents an important step forward. Their results have been able to predict
some of the experimental observations. Specifically, they were able to predict the non-
monotonicity in the spreading rates with increasing initial surfactant concentration.
They have presented high spreading rates with power laws characterizing the droplet
radius of up to t2/3, and they have also predicted the formation of rims at the leading
edge of the droplet as reported by Rafai et al. (2002) and Nikolov et al. (2002). We
should note here, however, that although their model captures many of the essential
elements of the problem at hand, it still lacks a significant component: a proper model
of the contact line instead of a precursor layer.

The main objective of this paper is to model the surfactant-enhanced spreading
of a drop on solid surfaces, taking into consideration the presence of a contact line
explicitly. We consider both insoluble and soluble surfactants; in the latter case, the
surfactant concentrations may exceed the CMC. Moreover, the surfactant in the bulk
may be adsorbed/desorbed at the substrate, while the surfactant that resides at the
interface can also be adsorbed/desorbed directly through the contact line. We use
lubrication theory and a rapid-vertical-diffusion approximation to derive a coupled
system of evolution equations for the drop profile and the surfactant concentration
of the monomers and the micelles. The monomers exist in the bulk as well as at the
liquid–air, liquid–solid and solid–air interfaces, whereas the micelles only exist in the
bulk. The model accounts for Marangoni stresses, diffusion in the bulk and along
the interfaces, micellar breakup and formation and sorption kinetics. The surface
tensions are related to the surfactant concentrations through a nonlinear equation
of state. The stress singularity at the contact line is alleviated by introducing slip in
our model. Finally, we model the motion of the contact line through a constitutive
relation that depends on the local surfactant concentration.

The rest of the paper is organized as follows. In § 2, we describe the details of the
evolution equations for the drop profile and the surfactant concentrations, while in
§ 3 we present the numerical method used. Results are presented and discussed in § 4,
followed by concluding remarks in § 5.

2. Problem formulation
We consider the dynamics of a drop of an incompressible Newtonian fluid with

density ρ∗ and viscosity µ∗, laden with surfactant, which has been deposited on a
horizontal, rigid and impermeable solid substrate (see figure 1). The surface tensions
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of the liquid–air, liquid–solid and solid–air interfaces are σ ∗
l , σ ∗

ls and σ ∗
s , respectively.

We assume that initially the drop has a maximal thickness H ∗and a half-width L∗. In
the present work, we consider the drop to be very thin, and therefore L∗ is assumed to
greatly exceed H ∗ so that the drop aspect ratio ε =H ∗/L∗ is assumed to be very small.
The latter assumption permits the use of lubrication theory, which will be employed
below to derive a set of evolution equations that govern the spreading process. The
superscript ∗ indicates that the corresponding variable is dimensional.

2.1. Hydrodynamics

We use a Cartesian coordinate system (x∗, z∗) to model the dynamics, and the velocity
field is u∗ =(u∗, w∗), where u∗ and w∗ correspond to the horizontal and vertical
components of the velocity field, respectively. The liquid–air interface is located at
z∗ =h∗(x∗, t∗), whereas the liquid–solid and the solid–air interfaces are located at
z∗ =0.

The spreading dynamics are governed by momentum and mass conservation
equations, respectively given below:

ρ∗(u∗
t∗ + u∗ · ∇ u∗) + ∇ p∗ − µ∗∇2u∗ = 0, (2.1)

∇ · u∗ = 0, (2.2)

where u∗ and p∗ are the velocity vector and the pressure, respectively, while ∇ denotes
the gradient operator; the effect of gravitational force is negligible, and therefore the
corresponding term has been neglected. Unless stated otherwise, the subscripts denote
partial differentiation with respect to x∗, z∗ and t∗, where t∗ denotes time.

Solutions of (2.1) and (2.2) are obtained subject to the following boundary
conditions. Along the free surface, the velocity field should satisfy a local force
balance between surface tension and viscous stresses in the liquid, setting the pressure
in the surrounding gas to zero (datum pressure) without loss of generality. Taking the
tangential and normal to the free surface components of this force balance we obtain

n · T∗ · t = t · ∇ sσ
∗
l , (2.3)

n · T∗ · n = 2κ∗σ ∗
l , (2.4)

where n = (−h∗
x∗, 1)/(1 + h∗

x∗
2)1/2 and t = (1, h∗

x∗)/(1 + h∗
x∗

2)1/2 denote the outward unit
normal and unit tangential vectors on the interface, respectively; ∇ s is the surface
gradient operator and T∗ is the total stress tensor,

T∗ = −p∗I + µ∗( ∇ u∗ + ( ∇ u∗)T ), (2.5)

where I is the identity tensor and 2κ∗ is the mean curvature of the free surface, defined
as

2κ∗ = − ∇ s · n, ∇ s = (I − nn) · ∇ . (2.6)

In addition, along the moving interface we impose the kinematic boundary
condition,

h∗
t∗ + u∗h∗

x∗ = w∗ on z∗ = h∗(x∗, t∗). (2.7)

At the liquid–solid interface, two boundary conditions are imposed. In the vertical
direction, we have the usual no-penetration condition:

w∗ = 0. (2.8)

In the horizontal direction, the usual no-slip condition is replaced by the slip
condition of Navier (1823) to avoid the stress singularity, which would otherwise
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arise at the moving contact line. The slip model has the following form:

u∗ = β∗u∗
z∗, (2.9)

where β∗ is a slip length.

2.2. Surfactant transport and chemical kinetics

We consider the spreading of a drop laden with either an insoluble or a soluble
surfactant; the surfactant can also be adsorbed at the substrate. In the insoluble
case, we assume that the surfactant exists only as a monomer at the liquid–air
interface and at the solid surface, with concentrations c∗

a and c∗
s , respectively. When

we consider the case of a soluble surfactant we must take into consideration that
once the monomer concentration is such that the bulk concentration of monomers is
above the CMC, c∗

cmc, then it is energetically favourable for the monomers to form
micelles. We assume that below c∗

cmc the surfactant exists in the form of monomers
within the bulk with concentration c∗, whereas beyond c∗

cmc, micellar aggregates are
formed with concentration m∗. The various surfactant species interact according to
the following kinetic laws. First, at the liquid–air interface the transfer of surface
monomers, c∗

a , into the bulk phase, c∗, creates space at the interface, or conversely,
monomers from the bulk occupy space at the interface:

Sa + c∗
k∗
1

�
k∗
2

c∗
a. (2.10)

Similarly, we model the adsorption of the surfactant at the substrate:

Ss + c∗
k∗
3

�
k∗
4

c∗
s , (2.11)

where Si (i = a, s) denotes the fraction of the total space created by the desorption of
the monomers with concentration c∗

i (i = a, s). We note here that our model assumes
that there is no direct adsorption of the micelle aggregates at the interfaces: the
micelles must disassociate first into monomers before being adsorbed at the interface.
The micelles and the bulk monomers are related via

Nc∗
k∗
5

�
k∗
6

m∗, (2.12)

which represents the creation of a micelle from N bulk monomers or, conversely, the
breakup of a micelle into N bulk monomers. We have assumed here that there is a
strongly preferred micelle size N, which is indeed often the case (Hunter 1991). The
chemical kinetics are simple enough that modelling can proceed but still contain the
essential physics that allows the model to capture realistic processes. The model can
be adjusted to allow for more complicated behaviour, for, say, multiple micelle sizes,
at the expense of further evolution equations; indeed the model is not restricted to
micelles and could represent any aggregate of N monomers in the bulk

A key detail is the behaviour of the chemical exactly at the contact line; monomers
at the liquid–air interface could be adsorbed directly to the substrate or vice versa;
that is, substrate monomers could be desorbed to the liquid–air interface through the
contact line. This is modelled using the following ‘reaction’:

Sa + c∗
s

k∗
7

�
k∗
8

Ss + c∗
a, (2.13)
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where the adsorption of surface monomers, c∗
a , occupies space at the substrate, Ss ,

creates space, Sa , at the interface and, conversely, as monomers, c∗
s , are desorbed

from the substrate and adsorbed at the liquid–air interface. Note that each ‘reaction’
used for this model is characterized by a rate constant k∗

i , with i =1, 2, . . . , 8. We use
these kinetic laws to generate the following fluxes that determine how the surfactant
transfers between the different phases:

J ∗
ba = −D∗

c [n · ∇ c∗]z∗=h∗ = k∗
1 c∗|z∗=h∗

(
1 − c∗

a

c∗
a∞

)
− k∗

2c
∗
a, (2.14)

J ∗
bs = −D∗

c [n · ∇ c∗]z∗=0 = k∗
3 c∗|z∗=0

(
1 − c∗

s

c∗
s∞

)
− k∗

4c
∗
s , (2.15)

J ∗
bm = k∗

5c
∗N − k∗

6m
∗, (2.16)

J ∗
as =

[
k∗

7c
∗
s

(
1 − c∗

a

c∗
a∞

)
− k∗

8c
∗
a

(
1 − c∗

s

c∗
s∞

)]
x∗=x∗

c

, (2.17)

where x∗
c denotes the position of the contact line at time t∗. Here, c∗

i∞ (i = a, s)
represent the surfactant concentration at the liquid–air interface and at the substrate,
respectively, at maximum packing. The nonlinear terms in (2.14), (2.15) and (2.17)
imply that when c∗

i → c∗
i∞ (i = a, s), that is, when the liquid–air interface or the

substrate becomes fully packed with monomers, no further surfactant is adsorbed.
The nonlinear term comes from taking into consideration the available space Si

(i = a, s) at the substrate or interface, indicating that there is a limitation on the
amount of monomers that can be adsorbed at both surfaces. At equilibrium, this is
the Langmuir adsorption isotherm. This set of laws allows the surfactant to move from
monomer to micelle and from bulk to either surface and also allows the surfactant
to transfer through the contact line.

The behaviour of the various surfactant species is modelled by the following
advection-diffusion equations:

c∗
at

∗ + ∇ s · (u∗
s c

∗
a) + c∗

a( ∇ s · n)(u∗ · n) = D∗
ca ∇ 2

s c
∗
a + J ∗

ba, (2.18)

c∗
t∗ + u∗ · ∇ c∗ = D∗

c ∇2c∗ − NJ ∗
bm, (2.19)

m∗
t∗ + u∗ · ∇ m∗ = D∗

m∇2m∗ + J ∗
bm, (2.20)

c∗
st ∗ = D∗

cs∇2c∗
s + J ∗

bs, (2.21)

where u∗
s is the interfacial velocity defined as u∗

s =(I − nn)u∗ and D∗
i (i = ca, c, m, cs)

denotes the diffusion coefficients of the monomers at the liquid–air interface, of
the monomers in the bulk, of the micelles and of the monomers at the substrate,
respectively.

To complete the description, a constitutive equation that describes the dependence
of the interfacial tensions on the surfactant concentrations is required. To this end,
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we use the Sheludko equation of state (Sheludko 1967; Gaver & Grotberg 1990):

σ ∗
l =

σ ∗
lo(

1 +
c∗
a

c∗
a∞

[(
σ ∗

lo

σ ∗
lm

)1/3

− 1

])3
, (2.22)

σ ∗
i =

σ ∗
io(

1 +
c∗
s

c∗
s∞

[(
σ ∗

io

σ ∗
im

)1/3

− 1

])3
, for i = ls, s, (2.23)

where σ ∗
io and σ ∗

im (i = l, ls, s) are the surface tension of a surfactant-free fluid and
that of maximal surfactant concentration, respectively. This model is nonlinear and
asymptotes to a minimal surface tension σ ∗

im at high concentrations of the adsorbed
surfactant, which makes it appropriate for use at high surfactant concentrations.

The total mass of the surfactant deposited per unit length, M∗, is a conserved
quantity, given by∫ x∗

c

0

∫ h∗

0

(c∗ + Nm∗) dz∗ dx∗ +

∫ x∗
c

0

c∗
a dx∗ +

∫ ∞

0

c∗
s dx∗ = M∗, (2.24)

where we have used the symmetry of the problem to just consider x > 0. Note that in
the present model the surfactant monomers are permitted to diffuse on the substrate
even beyond the contact line, and that is why the upper limit of the integral in the
third term on the left-hand side of (2.24) tends to infinity.

2.3. Scaling

The governing equations and boundary conditions are made dimensionless, using the
following scalings:

(x∗, z∗, h∗) = (L∗x, H ∗z, H ∗h), t∗ =
L∗

U ∗ t, (u∗, w∗) =

(
U ∗u,

U ∗H ∗

L∗ w

)
,

p∗ =
µ∗U ∗L∗

H ∗2
p, (c∗

a, c
∗, m∗, c∗

s ) =

(
c∗
a∞ca, c

∗
cmcc,

c∗
cmc

N
m, c∗

s∞cs

)
,

(J ∗
ba, J

∗
bs, J

∗
bm, J ∗

as) =

(
U ∗c∗

a∞
L∗ Jba,

U ∗c∗
s∞

L∗ Jbs,
U ∗c∗

cmc

L∗ Jbm, U ∗c∗
a∞Jas

)
,

M∗ = H ∗L∗c∗
cmcM, σ ∗

i = σ ∗
im + (σ ∗

io − σ ∗
im)σi (i = l, ls, s),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.25)

where U ∗ = (σ ∗
lo − σ ∗

lm)H ∗/µ∗L∗ is a characteristic Marangoni velocity; σ ∗
io and σ ∗

im are
the surface tension of zero and maximum surfactant concentration, respectively; and
c∗
cmc = (k∗

6/Nk∗
5)

1/(N−1).
Substitution of these scalings into the momentum and mass conservation

governing equations and boundary conditions, using the lubrication approximation
(ε = H ∗/L∗ � 1), yields

px = uzz, pz = 0, (2.26)

ux + wz = 0, (2.27)

p = −ε2hxx

(
σl +

1

Σl

)
, uz = σlx at z = h, (2.28)

ht + uhx = w at z = h, (2.29)

u = βuz, w = 0 at z = 0, (2.30)
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where Σi = (σ ∗
io − σ ∗

im)/σ ∗
im (i = l, s, ls) and β is the dimensionless slip length, defined

as β = β∗/H ∗. It should be noted here that the lubrication approximation assumes
small slopes, and therefore this model does not formally capture droplet spreading
with high contact angles.

From the kinematic boundary condition and continuity ((2.29) and (2.27),
respectively), we obtain

ht + (uh)x = 0, (2.31)

where u = (1/h)
∫ h

0
u dz. By solving (2.26), (2.28) and (2.30), we can derive the following

expressions for the horizontal component of the velocity and pressure, respectively:

u =
px

2
z2 + (σlx − pxh)z + β (σlx − pxh), (2.32)

p = −ε2hxx

(
σl +

1

Σl

)
. (2.33)

Using (2.32), we can also derive an expression for u,

u = −
(

h2

3
+ βh

)
px + σlx

(
β +

h

2

)
, (2.34)

which results in the following evolution equation for h:

ht =

[(
h3

3
+ βh2

)
px − σlx

(
βh +

h2

2

)]
x

. (2.35)

The scaled surfactant transport equations become

cat
+ (usca)x =

1

Peca

caxx
+ Jba, (2.36)

ct + ucx + wcx =
1

Pec

(
cxx +

czz

ε2

)
− Jbm, (2.37)

mt + umx + wmx =
1

Pem

(
mxx +

mzz

ε2

)
+ Jbm, (2.38)

cst =
1

Pecs

csxx
+ Jbs, (2.39)

where us = − (px/2)h2 + σlx h + β(σlx − pxh) is the interfacial velocity (z = h). The
dimensionless groups Pei =U ∗L∗/D∗

i (i = ca, c, m, cs) are Péclet numbers representing
a ratio of convective to diffusive time scales for the monomers at the free surface,
the monomers and the micelles in the bulk and the monomers at the substrate,
respectively. The dimensionless fluxes Ji (i = ba, bs, bm, as) that appear in the above
equations are expressed by

Jba = ka(Ra c|z=h (1 − ca) − ca), (2.40)

Jbs = ks(Rs c|z=0 (1 − cs) − cs), (2.41)

Jbm = kb(c
N − m), (2.42)

Jas = kas [Rascs(1 − ca) − ca(1 − cs)]x=xc, (2.43)

where the dimensionless parameters ki (i = a, s, b, as) and Ri (i = a, s, as) are given
by

ka =
k∗

2L
∗

U ∗ , ks =
k∗

4L
∗

U ∗ , kb =
k∗

6L
∗

U ∗ , kas =
k∗

8

U ∗ , (2.44)

Ra =
k∗

1c
∗
cmc

k∗
2c

∗
a∞

, Rs =
k∗

3c
∗
cmc

k∗
4c

∗
s∞

, Ras =
k∗

7c
∗
s∞

k∗
8c

∗
a∞

. (2.45)
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The kinetic parameters ki (i = a, s, b, as) control the sorption kinetics at the free
surface, the substrate, the breakup and formation rate of micellar aggregates in the
bulk and the sorption kinetics at the contact line, respectively. The parameter Ri

(i = a, s, as) is a measure of the affinity of the surfactant to the liquid–air interface
and substrate. Small values of Ra and Rs signify the tendency of the surfactant to
remain in the bulk in the form of micelles (Edmonstone et al. 2006). Similarly, when
Ras is small the surfactant at the contact line has the tendency to remain at the
liquid–air interface instead of being adsorbed at the substrate.

Finally, the dimensionless forms of the Sheludko equation of state for all the
interfaces are given by

σl =

(
1 + Σl

Σl

)(
1 + ca

[
(1 + Σl)

1/3 − 1
])−3 − 1

Σl

, (2.46)

σi =

(
1 + Σi

Σi

)(
1 + cs

[
(1 + Σi)

1/3 − 1
])−3 − 1

Σi

, for i = ls, s. (2.47)

2.4. Rapid vertical diffusion

We assume vertical diffusion to be rapid and use an approach previously followed in
the literature (Jensen & Grotberg 1993). The rapid-diffusion assumption is equivalent
to making the substitutions

c(x, z, t) = c0(x, t) + ε2Pecc1(x, z, t), (2.48)

m(x, z, t) = m0(x, t) + ε2Pemm1(x, z, t) (2.49)

in (2.36)–(2.39) and then averaging in the vertical direction the monomer and micelle

equations in the bulk, under the assumption that (c1, m1) = (1/h)
∫ h

0
(c1, m1) dz = 0,

taking the limit ε2Pei → 0 (i = c, m). In addition, we employ the boundary conditions

Jba = − 1

βa

(
− hx

Pec

c0x
+ c1z

)
z=h

, (2.50)

Jbs =
1

βs

c1z
|
z=h

(2.51)

in the z-direction for the monomers; these conditions are the dimensionless form of
(2.14) and (2.15), as well as the ones for the micelles,

m1z
|
z=h

= m1z
|
z=0 = 0, (2.52)

since, as was mentioned above, we assume that there is no direct adsorption of
micelles at the liquid–air interface or the substrate. The dimensionless parameters βa

and βs provide a measure of surfactant solubility in the bulk fluid and are given by

βa =
c∗
a∞

H ∗c∗
cmc

, βs =
c∗
s∞

H ∗c∗
cmc

. (2.53)

After dropping the subscript 0, we obtain the following equations:

cat
+ (usca)x =

caxx

Peca

+ Jba, (2.54)

ct + ucx =
(hcx)x
hPec

− βa

h
Jba − βs

h
Jbs − Jbm, (2.55)
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mt + umx =
(hmx)x
hPem

+ Jbm, (2.56)

cst =
csxx

Pecs

+ Jbs. (2.57)

Finally, the total dimensionless mass of surfactant is given by∫ xc

0

h(c + m) dx + βa

∫ xc

0

ca dx + βs

∫ ∞

0

cs dx = M. (2.58)

When we consider the case of an insoluble surfactant, the bulk concentrations of the
monomers, c, and the micelles, m, as well as all the related fluxes are equal to zero.
Thus, in this case the total mass of the surfactant is given by∫ xc

0

ca dx + βas

∫ ∞

0

cs dx = M ′, (2.59)

where βas = c∗
s∞/c∗

a∞ and M ′ =M∗/(L∗c∗
a∞).

2.5. Contact line motion

The contact line is a moving boundary, and therefore additional information is
needed in order to determine its spatio-temporal evolution. Since the detailed physics
very close to the contact line is not clear yet, we have decided to use an empirical
constitutive equation which relates the fluid velocity at the contact line with the
contact angle (Tanner 1979). In its dimensionless form, this relation is given by

dxc

dt
= k(θ − θa)

n, (2.60)

where θ is the dynamic contact angle; θa is the equilibrium advancing contact angle;
and k = εnk∗/U ∗. The model has two empirical constants, the so-called mobility
exponent k∗ and n which usually takes values in the range 1 � n � 3. This functional
dependence has been used by several researchers in the past to model contact line
motion (Haley & Miksis 1991; Benintendi & Smith 1999; Chan & Borhan 2005).
The power-law dependence has been verified experimentally for the spreading of
uncontaminated fluids (e.g. see Ehrhard 1993).

It is expected that the presence of surfactants, apart from affecting the interfacial
forces, will also have a significant effect on the forces at the contact line. We assume,
however, that the same power-law dependence is valid in the presence of surfactants.
It is also reasonable to assume that the variation of the surfactant concentration
during the spreading process will have an effect on the equilibrium contact angle.
At equilibrium, and in the general case in which surfactants are present, the balance
between the horizontal interfacial forces at the contact point in dimensional form
gives

σ ∗
s = σ ∗

l cos θ∗
a + σ ∗

ls . (2.61)

Similarly, for a clean fluid we get

σ ∗
so = σ ∗

lo cos θ∗
ac + σ ∗

lso, (2.62)

where θ∗
ac is the corresponding equilibrium contact angle. We set θ∗

i = εθi (i = a, ac)
and σ ∗

i = σ ∗
im + (σ ∗

io − σ ∗
im)σi (i = l, ls, s) and substitute (2.62) in (2.61) to get

cos(εθa) =
(1 + Σl)σs cos(εθac) + (δs − δls)(1 − σs) + Σlsδls(σs − σls)

(1 + Σlσl)
, (2.63)
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where δi = σ ∗
im/σ ∗

lm (i = ls, s). Using the fact that cos(εθ) = 1 − ε2θ2/2, since ε � 1 in
the lubrication limit, we can then derive the following relation:

θ2
a =

(1 + Σl)σsε
2θ2

ac + 2 [(1 − δs + δls)(1 − σs) + Σl(σl − σs) + Σlsδls(σls − σs)]

ε2(1 + Σlσl)
.

(2.64)

This expression for θa is used in (2.60) to model the local influence of surfactants
on the contact line velocity. Moreover, when the right-hand side of (2.64) becomes
negative, we simply assume that θa = 0.

3. Numerical method
3.1. Finite-element method

The discretization of the governing equations is performed using a finite-
element/Galerkin method, and we approximate all the variables through the use
of quadratic Lagrangian basis functions φi . Applying the divergence theorem, the
weak form of the equations for the position of the liquid–air interface, h, and the
surfactant monomers at the free surface become∫ xc

0

(
htφi − uhφix

)
dx + [uhφi]

xc

0 = 0, (3.1)

∫ xc

0

[
(cat

− Jba)φi −
(

usca − cax

Peca

)
φix

]
dx +

[
usca − cax

Peca

]xc

0

= 0. (3.2)

The presence of h in the denominator of several terms in (2.55) and (2.56) will cause
significant numerical difficulties close to the contact line, since in that region h → 0.
To overcome this problem, we multiply through by h, and thus the corresponding
weak forms, after applying the divergence theorem, become∫ xc

0

[(hct + hucx + βaJba + βsJbs + hJbm) φi + hcxφix ] dx −
[

hcx

Pec

]xc

0

= 0, (3.3)

∫ xc

0

[(hmt + humx − hJbm) φi + hmxφix ] dx −
[
hmx

Pem

]xc

0

= 0. (3.4)

The weak form of the equation for the surfactant that is adsorbed at the substrate,
cs , is as follows:∫ x−

c

0

[
(cst − Jbs)φi +

csx

Pecs

φix

]
dx −

[
csx

Pecs

]x−
c

0

+

∫ ∞

x+
c

[
(cst − Jbs)φi +

csx

Pecs

φix

]
dx −

[
csx

Pecs

]∞

x+
c

= 0. (3.5)

Note that the integral is split into two parts, one inside the drop and one outside
it, for reasons that will be made clear below.

3.2. Boundary conditions

To solve the above set of equations we need to impose appropriate boundary equations
in the x-direction which are applied by substituting the boundary terms in (3.1)–(3.5).
At the plane of symmetry we apply symmetry conditions

hx = hxxx = 0, cax
= cx = mx = csx = 0 at x = 0. (3.6)
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We expect that the concentration of the surfactant, which is adsorbed at the
substrate, should not be affected by the presence of the drop very far from it; thus
we impose

csx = 0 at x → ∞. (3.7)

Although the boundary condition for h is obvious at the contact line,

h = 0 at x = xc, (3.8)

this is certainly not the case for c and m. We have to keep in mind that both c and m

are volume concentrations, while the volume of the fluid at x = xc reduces to a line,
making them both singular. Fortunately, there is no need to find such a boundary
condition for these variables, since the corresponding terms in (3.3) and (3.4) are
multiplied by h which is zero-valued at x = xc according to (3.8).

As mentioned earlier our model permits the transfer of surfactant monomers from
the free surface to the substrate and, conversely, directly through the contact line.
The associated flux for a soluble surfactant is given by

csx

Pecs

∣∣∣∣
x=x+

c

− csx

Pecs

∣∣∣∣
x=x−

c

=
βa

βs

Jas, (3.9)

which, in the case of an insoluble surfactant, becomes

csx

Pecs

∣∣∣∣
x=x+

c

− csx

Pecs

∣∣∣∣
x=x−

c

=
1

βas

Jas. (3.10)

This relation is used as a boundary condition for cs; the application of this boundary
condition is the reason for splitting the integral in (3.5) into two parts.

To derive the appropriate boundary condition for ca at x = xc, we use conservation
of surfactant mass. Differentiating (2.58) with respect to t yields

d

dt

∫ xc

0

h(c + m) dx + βa

d

dt

∫ xc

0

ca dx + βs

d

dt

∫ ∞

0

cs dx = 0, (3.11)

since we know that dM/ dt = 0. We proceed to calculate every term of this equation.
We start by integrating (2.54) which, after using Leibniz’s rule, becomes

d

dt

∫ xc

0

ca dx =
dxc

dt
ca|x=xc

−
[
usca − cax

Peca

]
x=xc

+

∫ xc

0

Jba dx. (3.12)

Multiplying (2.55) and (2.56) with h and integrating in x we get

d

dt

∫ xc

0

hc dx = −
∫ xc

0

(βaJba + βsJbs + hJbm) dx, (3.13)

d

dt

∫ xc

0

hm dx =

∫ xc

0

hJbm dx. (3.14)

Next, we integrate (2.58) and split the integral into two parts, one inside the fluid
drop and one outside it, as in (3.5). After applying (3.6) and (3.7) the equation
becomes

d

dt

∫ ∞

0

cs dx =
csx

Pecs

∣∣∣∣
x=x−

c

− csx

Pecs

∣∣∣∣
x=x+

c

+

∫ xc

0

Jbs dx. (3.15)
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Finally, we substitute (3.12)–(3.15) and (3.9) in (3.11), and we end up with the
following boundary condition for ca:[

usca − cax

Peca

]
x=xc

=
dxc

dt
ca|x=xc

− Jas. (3.16)

This boundary condition has been derived here for soluble surfactants, but it can
be readily shown that it holds also for the case of insoluble ones. We should note that
at the contact line (x = xc) the interfacial velocity us which appears on the left-hand
side of (3.16) is equal to the contact line velocity dxc/ dt .

3.3. Initial conditions

The initial condition used for the film thickness, the position of the contact line and
the surfactant concentrations are given by

h(x, t = 0) = 1 − x2, (3.17)

xc(t = 0) = 1, (3.18)

(ca, c, m, cs)(x, t = 0) = (cao, co, mo, 0). (3.19)

We assume that at t = 0 the surfactant concentrations are in local equilibrium, and
hence the fluxes Jba = Jbs = 0. Thus, we have

co = m1/N
o , cao =

Ram
1/N
o

1 + Ram
1/N
o

. (3.20)

Substitution of (3.20) into (2.58) yields

2

3

(
m1/N

o + mo

)
+

βaRam
1/N
o

1 + Ram
1/N
o

= M, (3.21)

which is solved numerically for a prescribed value of M .
If M < 1, then the surfactant concentration is below the CMC, and consequently

no micelles are present. In that case, we set mo =0, and the rest of the concentrations
are found solving

2

3
co +

βaRaco

1 + Raco

= M, cao =
Raco

1 + Raco

. (3.22)

Finally, in the case of an insoluble surfactant there are no surfactant monomers in
the bulk; therefore co = 0 and the initial condition for cao is given by

cao = M ′. (3.23)

3.4. Mapping

The physical domain consists of two parts, one inside the fluid drop, which is finite,
and one outside it, which is infinite. During the spreading process the contact line
moves, and therefore the physical domain changes with time. In order to map the
transient physical domain, (x, t), onto a computational domain fixed in time, (η, τ ),
we use the following set of algebraic equations:

η =

⎧⎨
⎩

x

xc

, 0 � x � xc,

2 − xc

x
, x � xc,

and τ = t. (3.24)
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The interior of the drop is mapped to 0 � η � 1, while the infinite physical domain
outside the drop is mapped onto a finite computational one, 1 � η � 2. The derivatives
that arise in the evolution equations also have to be rewritten in terms of the new
variables

∂t = ∂τ − η

xc

dxc

dt
∂η, ∂x =

1

xc

∂η for 0 � η � 1, (3.25)

∂t = ∂τ − 2 − η

xc

dxc

dt
∂η, ∂x =

(2 − η)2

xc

∂η for 1 � η � 2 (3.26)

and are used to replace the corresponding terms in the weak form of the governing
equations presented above as well as in the corresponding boundary conditions. Both
computational domains are discretized using 300 elements in all the computations
presented in this paper; numerical checks showed that increasing the number of
elements further led to negligible changes. In all the simulations presented below,
the fluid and the surfactant mass conservation are satisfied within 1 % and 0.01 %,
respectively.

The resulting set of discrete equations is integrated in time with the implicit
Euler method. An automatically adjusted time step is used for that purpose, which
ensures convergence and optimizes code performance. The initial time step for all the
simulations was t = 10−7. The final set of algebraic equations is nonlinear, and they
are solved in each time step, using the Newton–Raphson method. The iterations of
the Newton–Raphson method are terminated using 10−9 as tolerance for the absolute
error of the residual vector. The code was written in Fortran 90 and was run on a
personal computer with Intel Core2 Duo E8400 at 3 GHz. Each run typically required
3–6 h to complete.

4. Results and discussion
The spreading of a surfactant-laden liquid drop is a parametrically rich problem.

We begin our study by examining the case of an insoluble surfactant in § 4.1, while in
§ 4.2 we present simulations for a soluble surfactant the concentration of which may
exceed the CMC. Numerical solutions were obtained over a wide range of parameter
values. The ‘base’ case, however, has broadly typical values of ε2 = 0.005, Σs =0.2,
Σl = Σls =2, δs = 5, δls =1, β = 10−5, k =0.01, n= 3, θac =1. This set of parameters
corresponds to the spreading of slender drops in the presence of an insoluble or a
soluble surfactant.

4.1. Insoluble surfactant

4.1.1. No adsorption at the contact line

To set the stage we begin with the simplest configuration, i.e. the spreading of
a drop with an insoluble surfactant and no adsorption at the contact line. The
typical drop evolution and the associated surfactant monolayer concentration at the
interface are presented in figure 2. As the initial condition we use (3.17), so the drop
has a parabolic profile with contact angle higher than its equilibrium value; the drop
naturally spreads, and as a result, the contact line moves along the solid surface, while
the maximum height of the drop decreases with time. The contact angle decreases as
the drop spreads, tending to its equilibrium value, and consequently, the spreading
rate decelerates; spreading stops when the equilibrium contact angle is reached. The
concentration of surfactant monolayer decreases significantly with time, as there is
considerable dilation of the interface.
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Figure 2. Time evolution of (a) the drop profile and (b) the surfactant concentration for an
insoluble surfactant with (M, kas,Peca) = (0.5, 0, 104). (c) h(0, t) and ca(0, t).

The concentration is almost spatially uniform along the interface, although the
Péclet number is large, and therefore advection of the surfactant is the dominant
mechanism for its transport. This concentration profile arises because the dilation
of the interface near the contact line compensates for the additional surfactant that
is transferred there by advection. Nevertheless, there are small variations in the
concentration profile, which are shown in more detail in the inset of figure 2(b). We
can see that there is a monotonic increase of the surfactant concentration towards the
contact point as the surfactant accumulates in the region around the contact line. The
accumulation of the surfactant induces negative surface tension gradients, which result
in a Marangoni flow that opposes spreading. Close to the contact line there is also
smaller resistance to the deformations of the interface because of the lower surface
tension. Thus, the Marangoni flow, which drives fluid from the contact line towards
the centre of the drop, affects the shape of the interface by changing its curvature close
to the contact line, forcing it to turn from convex to concave, decreasing drastically
the contact angle tending to its equilibrium value. This is shown clearly in figure 2(a)
in which we have plotted the derivative of h; the position of its minimum value
corresponds to the stationary point. This behaviour was also observed by Chan &
Borhan (2005). Figure 2(c) presents the evolution of the drop thickness and surfactant
concentration at the plane of symmetry. We can see that at late times both h(0, t)
and ca(0, t) scale with t−1/7, and the leading edge xc scales as t1/7. These scalings
are the same as those for a surfactant-free droplet spreading with the same contact
line model (Ehrhard & Davis 1991); the scaling for the surfactant follows from
surfactant mass conservation. It is worth a brief comparison with the spreading of
a surfactant-laden droplet over a pre-wetted substrate (Warner, Craster & Matar
2004b; Edmonstone et al. 2006; Jensen & Naire 2006) for which the droplet spreads
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Figure 3. Time evolution of (a) the drop profile, the surfactant concentrations at the (b)
liquid–air and (c) liquid–solid interfaces and (d ) the Marangoni stresses at the liquid–air
interface for an insoluble surfactant with (M,βas, kas,Peca,Pecs) = (0.5, 2, 1, 104, 104). The
arrows in (c) indicate the position of the contact line.

with the same scalings; the concentration remains broadly spatially constant in the
droplet, but it decreases there as t−2/7, as there is a flux of surfactant out through the
narrow gap at the droplet edge onto the pre-wetted film, driving the evolution of an
outer rim; this feature is absent here.

4.1.2. Adsorption/desorption at the substrate through the contact line

Next, we discuss the situation in which an insoluble surfactant can be both adsorbed
and desorbed at the substrate. Figure 3 shows the evolution of the drop profiles as
well as surfactant concentration profiles at the liquid–air and liquid–solid interfaces.
As the surfactant is insoluble it can only be adsorbed and desorbed at the substrate
directly through the contact line at which the substrate and the liquid–air interface
meet. Once the surfactant is adsorbed at the solid surface it can diffuse in both
directions, i.e. towards the centre of the drop as well as ahead of the contact line.
Initially the substrate is considered to be clean, and therefore the concentration of
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the surfactant monolayer there is zero. As soon as the drop comes into contact with
the substrate, the surfactant which is present at the liquid–air interface is adsorbed
at the solid surface through the contact line. Consequently, as shown in figure 3(c),
at very early times the surfactant concentration on the substrate is zero everywhere
except for the contact line and a small region around it, because of surface diffusion,
which, for Pecs = 104, is rather weak. The adsorption of the surfactant at the solid
wall results in an abrupt decrease of the surfactant concentration at the liquid–air
interface very close to the contact line (see figure 3b). This decrease becomes less
prominent with increasing time, since less surfactant is adsorbed at the substrate.
This happens mainly for two reasons. The first is that the surfactant concentration ca

decreases considerably with time because of the dilation of the interface. The second
is that at large times, enough surfactant has already diffused ahead of the contact
line, and consequently the rate of adsorption decreases significantly.

The rapid decrease of ca near the contact line leads to locally large positive surface
tension gradients and consequently to a Marangoni flow that promotes spreading.
Figure 3(d ) shows the evolution of the Marangoni stresses which increase strongly as
we approach the contact line. This is in contrast to the case of no adsorption, where the
accumulation of surfactant close to the contact point actually induces a Marangoni
flow that opposes spreading. Indeed, comparing figures 2(a) and 3(a), spreading is
much faster when the surfactant is allowed to be adsorbed at the substrate. This
is slightly counter-intuitive, as one naturally feels that adsorption will remove the
surfactant and thereby reduce any driving effect created by it; however, the important
point is that it is not the surfactant concentration that drives flow but its gradient. As
noted by Kim et al. (2006), who performed molecular dynamics simulations on the
spreading of nano-droplets laden with an insoluble surfactant, when the adsorption
of the surfactant at the liquid–solid interface becomes significant, the concentration
of the surfactant monomers at the liquid–air interface in the vicinity of the contact
line decreases significantly, which results in enhanced spreading due to the induced
Marangoni stresses; this is in agreement with our findings. The effect of surfactant
adsorption is also significant on the drop shape near the contact line at which the
local Marangoni stresses, and the flow that they drive, create a small ridge (see the
inset of figure 3a). In addition, the high surface tension near the contact line provides
a larger resistance to the deformation of the interface. As a result, the shape of the
interface very close to the contact line remains convex and does not become concave,
in contrast with the zero-adsorption case (see figure 2a and the relevant discussion).
The convex shape leads to values of the contact angle that remain large for longer
times (see also figure 4c,d ), and therefore the drop spreads faster; this is a direct
consequence of the empirical constitutive equation (2.60) used to model the motion
of the contact line.

4.1.3. Effect of initial surfactant concentration and sorption kinetics

To explore the effect of different surfactants on the spreading rates we choose
various values of M (the initial mass of surfactant emplaced) and kas (the parameter
controlling the kinetics of adsorption at the contact line) while keeping βas (a solubility
parameter, βas = c∗

s∞/c∗
a∞, measuring the affinity of surfactant for the substrate versus

that of the interface) fixed with βas =2, as presented in figure 4(a). First, we examine
the effect of varying the kinetic parameter kas , keeping the initial surfactant mass
constant with M =0.5. When there is no adsorption of the surfactant at the substrate
(kas =0) the spreading is relatively slow (and we return to the situation shown in
figures 2 and 4f with the edge growing as t1/7). For non-zero values of kas the
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spreading becomes dramatically faster, and the front in this case advances over
several decades with almost a power of t . The key difference between these two cases
is that in the first case the surfactant accumulates at the contact line, since it cannot
go anywhere once it is there, whereas in the second case the surfactant is removed
from the liquid–air interface as it is adsorbed at the substrate though the contact line,
creating a local Marangoni stress. In order to get rapid spreading rates it is essential
to prevent accumulation of the surfactant at the contact line, and this is achieved by
adsorption of the surfactant at the solid surface, reducing surfactant concentrations to
induce a Marangoni flow that promotes spreading. Another interesting observation is
that increasing the value of kas tenfold, from kas = 0.1 to kas = 1, has surprisingly little
effect on the spreading rate. Even low values of the kinetic parameter kas are capable
of preventing surfactant accumulation. We observe, though, that at early stages the
spreading rate is faster for kas = 1, since the removal of the interfacial surfactant
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is faster, and therefore the surface tension gradients in the liquid–air interface are
higher, leading, in turn, to greater Marangoni stresses. However, this rapid adsorption
depletes the interfacial surfactant, and thereafter the spreading rate becomes lower
than for kas = 0.1. Moreover, in this figure we can also see that the effect of the
initial surfactant concentration is not very significant. The effect of βas as presented
in figure 4(b) is more important; the parameter βas provides a dimensionless measure
of the surfactant’s ability to be adsorbed at the solid substrate (βas � 1 signifies a
very strong preference of the surfactant to be adsorbed at the solid substrate, and
for βas � 1 it is virtually trapped upon the liquid–air interface). It is clear from the
figure that the spreading rate increases as we increase the ability of the surfactant to
be adsorbed at the substrate, which is in line with the thesis that it is adsorption that
drives the higher spreading rates.

The droplet radius shown in figure 4(a,b) can, over some regimes, grow with a
power-law exponent of order t (spreading rate of order unity) rather than simply t1/7.
In figure 4(a,b) we show the droplet leading edge xc versus time by using xc − 1 ∼ tα ,
where tα is the power law that characterizes the leading-edge position with time,
relative to its initial position. This is convenient, as, provided xc � 1 for large time,
this characterizes the long-time behaviour as xc ∼ tα . This also allows us to capture
both short- and long-time scalings on a single graph: if the droplet grows very slowly,
as in the insoluble, no-basal-adsorption case, then xc = O(1) over the time scale of the
simulations, and figure 4(a) does not capture the long-time behaviour clearly; the t1/7

scaling for the leading edge is therefore illustrated in figure 4(f ) by using just xc. A
more transparent alternative is to plot the spreading rate explicitly as in figure 4(e),
which clearly shows that the velocity of the droplet radius is approximately constant
over the decades in time where xc − 1 ∼ O(t). It is remarkable how much higher the
spreading rate for the cases with adsorption is versus that for cases without it (see
figure 4e).

4.1.4. Effect of surfactant diffusion along the liquid–air interface (Peca)

Naturally interfacial diffusion of the surfactant could also play a role through
damping the gradients of surface tension; the diffusion is measured by the Péclet
number, and the effect of its variation is shown in figure 5(a,b) in which we present the
drop profiles for t = 100 and spreading rates for various values of the Péclet number
Peca respectively. The rest of the parameters, M = 0.5, kas = 1, βas = 2 and Pecs =104,
allow comparison with figure 4. For low values of Peca diffusion smooths the surfactant
concentration gradients close to the contact line, reducing the Marangoni stresses
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and therefore decreasing the spreading rate; the lowest spreading rate is found for
Peca = 102. Increasing the Péclet number to Peca = 103 means that more surfactant
is convected in the vicinity of the contact line. If adsorption at the contact line is
rapid, then the surfactant concentration gradient becomes steeper, resulting in higher
Marangoni stresses and, consequently, higher spreading rates. There is an interplay
of physics here, as further increase of the Péclet number (Peca = 104) decreases the
spreading rate because the rate of adsorption is not fast enough to remove the
surfactant convected to the contact line.

4.2. Soluble surfactant

We now examine the spreading of a soluble surfactant at concentrations below, as well
as beyond, the CMC. The base case is now complemented by additional parameters,
which were not required in the insoluble case, with typical values M = 5, βa = 1,
βs = 2, ka = ks = kb = kas = 1, Ra = Rs = 10, Ras = 1, N = 10, Peca = Pecs = 104. This set
of parameters refers to a soluble surfactant with a concentration well above the CMC,
which can exist as a monomer at the liquid–air, liquid–solid and solid–air interfaces
as well as micellar aggregates in the bulk.

4.2.1. Base case

The evolutions of the drop and surfactant concentration profiles with time for
the base case are shown in figure 6. The surfactant concentration at the liquid–air
interface, shown in figure 6(b), remains almost constant along the interface except
for a region very close to the contact line where it decreases owing to the adsorption
of the surfactant to the substrate at the contact line, which induces a Marangoni
flow that promotes spreading. At early times, the Marangoni stresses tend to deform
the free surface. The high surface tension very close to the contact line, however,
provides large resistance to the deformation of the interface, and as a result, the
contact angle retains relatively high values; this leads to the formation of a small
raised rim that grows as the drop spreads out. The formation of such rims has
also been observed experimentally (Rafai et al. 2002). We should note here that
similar rims were also found in the spreading of surfactant-laden drops above the
CMC over thin liquid substrates, where the rims we observe here are the counterpart
of the secondary fronts observed in Edmonstone et al. (2006). Unlike the insoluble
case in which the surfactant is adsorbed only at the solid substrate through the
contact line, soluble surfactant monomers can also be adsorbed directly from the
bulk, resulting in very different profiles of cs , shown in figure 6(c). The surfactant
concentration at the solid substrate, cs , is maximal at the plane of symmetry and
decreases as we approach the contact line, as the contact line continuously moves to
surfactant-free regions. Of course, we should note here that, although some surfactant
present at the contact line diffuses ahead of it, the diffusion is very weak, since the
Péclet number is large, Pecs = 104, thus resulting in an abrupt decrease of cs ahead
of the contact line (see figure 6c). The dilation of the liquid–air and liquid–solid
interfaces, due to the fast spreading of the drop, causes the continuous decrease of the
corresponding surfactant concentrations. As time passes, more and more surfactant
monomers present in the bulk are adsorbed at the interfaces, and as a result the
corresponding bulk concentration c also decreases with time. This, in turn, leads the
micelles to disassociate into monomers, and the micelle concentration decreases very
rapidly. Note that the corresponding figure (see figure 6e) is presented only for early
times (t � 50), since after that point the concentration of micelles is very small; the
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micelles act as a large reservoir releasing surfactant monomers and maintaining rapid
spreading.

Very recently, Beacham et al. (2009) also presented a numerical study of a
surfactant-laden drop spreading on a solid surface which also predicts the formation
of a rim. A major difference with the present study is that they did not account for
the explicit presence of a contact line and instead used a precursor model. Therefore,
a key difference is that their model does not allow for the direct adsorption of the
surfactant through the contact line, as is the case in our simulations shown in figure 6.
However, the presence of the precursor film can play a role similar to adsorption at
the contact line, since the surfactant at the liquid–air interface in the region of the
contact line can dissolve in the fluid that lies in the precursor film and, in turn, diffuse
along it or be adsorbed at the substrate. Consequently, even in the model of Beacham
et al. (2009) there is a mechanism for surfactant removal from the effective contact
line, leading to the Marangoni stresses which are essential for very rapid spreading.
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4.2.2. Initial surfactant concentration

Figure 7(a) presents the dependence of the drop profile at a given time instant
(t = 3000) on the initial surfactant concentration M , and we see that the Marangoni
stresses near the contact line have a significant effect on the drop profile even when
M is below the CMC (M = 0.5) and create a large rim. For M = 0.5 the position
of the contact line shows that the spreading rate is relatively slow, as there is not
sufficient surfactant mass to maintain a significant Marangoni stress over a long time.
As shown in figure 7(a), the extent of spreading at a given time instant, as well as
the size of the rim, has a dependence on M that is non-monotonic. Increasing M

up to M = 2.5 results in increasing spreading rates as well as increasing size of the
rim. However, further increase of M results in the formation of smaller rims (e.g. for
M = 5) or even in a significant retardation of the spreading process for M =7.5.

The spreading rates can be seen more clearly in figure 7(b). In some of the cases
presented here the front advances with a power almost equal to t , a rate in excess
of t2/3 predicted by the numerical modelling in Beacham et al. (2009). Interestingly,
these spreading rates are very close to those reported by several experimentalists who
have studied the effect of superspreading (e.g. see Nikolov et al. 2002; Rafai et al.
2002). It is noteworthy that even when there are no micelles present (M = 0.5) the
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spreading rate remains high for a significant amount of time. The issue of whether
the presence of micelles is necessary for superspreading was studied by Nikolov et al.
(2002), and their experiments have shown that fast spreading is possible even in
the absence of micelles, in agreement with our findings. The presence of the rim at
the leading edge plays an important role in obtaining high spreading rates, since its
convex shape results in high contact angles, which are maintained for a long period.
This can be seen very clearly in figure 7(c) where we present the evolution of the
contact angles with time for various values of M . The dependence of the contact
angle on time is rather complex, but we can observe that the spreading rate is high
as long as the contact angles remains high. As noted earlier, the dependence of the
spreading rates on the initial surfactant concentration M is non-monotonic, which
is also true for h(0, t). It is interesting that the spreading associated with M = 7.5,
which is initially fast, after some point in time becomes rather slow and accelerates
again at later times. The long-time t1/3 scaling for droplet spreading follows from a
Marangoni-dominated regime, such as that found for constant effectively insoluble
surfactant mass transport on a monolayer as in Jensen & Grotberg (1993), and
suggests that once the micellar and bulk surfactant reservoir has become depleted,
the droplet spreads purely under the action of surface tension gradients across the
whole droplet rather than those localized at the edge. The non-monotonic variation
of the spreading rates is shown clearly in figure 7(d ) and has also been reported in
numerous experimental works (e.g. see Zhu et al. 1994; Stoebe et al. 1996; Nikolov
et al. 2002) as well as the numerical study by Beacham et al. (2009). A possible
explanation for this non-monotonic behaviour is given herein. In our model, the
Marangoni stresses, which cause the fast spreading of the drop, are maintained by the
continuous removal of the surfactant from the liquid–air interface by adsorption at
the solid substrate. On the other hand, we know that the surfactant tends to increase
locally at the contact line, as it is transferred there by diffusion and advection along
the free surface, by adsorption of the monomers in the bulk at the liquid–air interface
or even by desorption directly from the substrate at the contact line. Of course,
increasing the initial surfactant concentration M would make this transport even
more significant. If the rate of adsorption at the contact line is sufficiently rapid,
then increasing M leads to higher gradients of ca and thus to higher Marangoni
stresses. However, after some point, the rate of adsorption is simply not fast enough,
and this results in lower Marangoni stresses, leading, in turn, to smaller spreading
rates. This is seen clearly in figure 8 in which we present the effect of M on the
surfactant concentrations at the contact line. For M � 3.5 the rate of adsorption is
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enough to result in a continuous decrease of the interfacial surfactant concentration
at the contact line. However, for larger values of M the surfactant accumulates at the
contact point, resulting in the decrease of the spreading rate. It is characteristic that
for M = 7.5 the surfactant concentration remains large for a large amount of time,
resulting in small spreading rates. The increase in the spreading rate at later times
could be attributed to the fact that during the phase of slow spreading there is enough
time for the surfactant to diffuse ahead of the contact line, which eventually results
in the decrease of the surfactant concentration at the contact line, again inducing
strong Marangoni stresses that re-initiate the fast spreading process. Therefore, it
becomes evident that the non-monotonic behaviour is due to the interplay of the
rate of transport towards the contact line of surfactant monomers at the liquid–air
interface and the rate of their removal.

4.2.3. Effect of basal adsorption of surfactant

From our results so far basal adsorption of the surfactant is seen to play a crucial
role in the spreading process. In order to investigate its effect further we consider
the effect of the parameter βs which controls the amount of the surfactant that
can be adsorbed at the solid substrate; as shown in figure 9(d ), its variation affects
considerably the spreading rates of the drop. More specifically, increasing the value
of βs , which means that more surfactant can be adsorbed at the substrate, results in
a significant increase of the spreading rate. At moderate times and for the highest
value of βs (βs = 5) the spreading rate is extremely fast, and the front advances with
a power even higher than t . However, the fast spreading of the drop soon leads to the
depletion of the surfactant that lies upon the liquid–air interface (see figure 9e), and
after that point the spreading rate starts to decrease. On the other hand, the spreading
rate for βs = 2 does not change significantly with time, and the front advances with a
power almost equal to t throughout the simulation. Even though the spreading rate
for βs = 5 initially is higher than for βs = 2 the long-time extent of spreading for the
latter is larger because there is more surfactant available to be adsorbed at the liquid–
air interface, and therefore the spreading rate remains almost constant for a longer
period. For the lowest value of βs shown, βs =0.5, the droplet leading edge advances
as xc −1 ∼ O(t1/2), and the 1/2 scaling is consistent with a droplet advancing because
of the presence of a surfactant reservoir, as in Edmonstone et al. (2006), suggesting
that the adsorption is not rapid enough to create the local Marangoni gradients at
the edge necessary for rapid spreading.

The drop profiles for the same values and at t =3000 are also presented in figure 9(a)
for different values of βs . At that time instant, the extent of spreading for the low
values of βs is quite small because of the decreased spreading rates, whereas for
βs � 2 the drop has wetted a much larger area. The spreading in the latter case is
accompanied by the formation of a rim at the advancing front, the size of which
increases significantly with βs . It is characteristic that for βs = 5, the largest value of βs

investigated, the rim contains almost the entire volume of the drop. The increase of βs

signifies that more surfactant can be adsorbed at the solid substrate before it becomes
saturated. This can be seen very clearly in figure 9(c) in which we present for t = 1 the
dependence of cs on βs . Note that at this time instant there is no formation of a rim,
and the extent of spreading is similar in all cases (the arrows in the figure indicate the
position of the contact line). For the lowest value of βs (βs = 0.5) the concentration at
the substrate, inside the drop, is almost constant and very close to its saturation value,
except for a region very close to the contact line. The latter is due to the fact that the
drop continuously spreads into uncontaminated areas of the substrate. Increasing βs ,
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however, results in the considerable decrease of cs , and consequently more surfactant
monomers in the bulk can be adsorbed at the substrate at later times. The decrease
of the amount of monomers in the bulk which are available to be adsorbed at the
liquid–air interface will result in the decrease of the rate of adsorption along the
liquid–air interface and thus in the decrease of ca . This is shown, clearly, in figure
9(b). Moreover, we observe that the increase of βs gives rise to higher concentration
gradients, and these gradients act over a larger area along the liquid–air interface.
We noted earlier that the rims are formed because of Marangoni stresses and that
the high surface tension close to the contact line provides large resistance to the
deformation of the interface. As is shown in figure 9(b) the increase of βs leads, at
early times, to larger areas of high surface tension (low surfactant concentration)
close to the contact line, and this will result eventually in the formation of a larger
rim; these observations are also in qualitative agreement with the results presented
in Beacham et al. (2009). Those authors also noted that decreasing the value of Ra is
qualitatively similar to increasing βs , since low values of Ra signify the preference of
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the surfactant to remain in the bulk than to be adsorbed at the liquid–air interface,
and therefore the amount of the surfactant that is available to be adsorbed to the
substrate increases. Similar behaviour is also found in our simulations but is not
presented here for the sake of brevity.

Apart from the amount of the surfactant that can be adsorbed at the solid substrate,
it is also important to examine the effect of the sorption kinetics. In this study, we have
adopted a model which assumes that the surfactant is adsorbed at the solid surface
with two different mechanisms. The first mechanism considers that the surfactant
monomers in the bulk can be adsorbed/desorbed at the solid substrate, according
to the kinetic law shown in (2.11). The second mechanism concerns the surfactant
monomers that lie upon the liquid–air interface, which can be adsorbed/desorbed at
the substrate directly through the contact line, according to the ‘reaction’ shown in
(2.13). To start with, we present in figure 10 the effect of the sorption kinetics for
the monomers in the bulk. This figure depicts the drop profiles at t = 3000 as well
as the spreading rates for various values of the kinetic parameter ks . As shown in
figure 10(a), for all but the lowest value of ks , the drop has wetted a large area of the
solid wall, and a rim has been formed at the leading edge. Decreasing the parameter
ks results in the decrease of the rim size as well as in reduced spreading rates. When
the sorption kinetics are very slow (ks = 0.1) the monomers in the bulk prefer to be
adsorbed at the liquid–air interface, resulting in lower surface tension gradients and
therefore in smaller spreading rates.

4.2.4. Adsorption/desorption at the substrate through the contact line

Here, we examine the effect of the adsorption of monomers that lie upon the liquid–
air interface at the contact line. Figure 11 presents the evolution of the drop profiles
for three different values of the kinetic parameter kas . The effect of this parameter
is also examined in figure 12 in which we present the spreading rates as well as the
evolution of the drop thickness at the plane of symmetry (x = 0) with time. Clearly,
from figure 11 we deduce that the sorption kinetics have a significant effect on the
extent of spreading as well as the resulting shapes of the drops. More specifically,
for kas =0 (no adsorption at the contact line) the spreading of the drop is relatively
slow, and its shape at the end of the simulation (t = 2.5 × 105) resembles a thick
‘pancake’. Since in this case there is no adsorption at the contact line, the only way
for a monomer that lies at the liquid–air interface to be adsorbed at the substrate
would be to dissolve first in the bulk fluid and then to be adsorbed at the solid wall,
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as described above. In this case, the removal of surface monomers from the region
close to the contact line becomes, obviously, more difficult. Eventually, this results
in smaller surface tension gradients at the free surface and thus lower Marangoni
stresses near the leading edge that are not able to promote fast spreading.

For finite kas , the situation becomes somewhat more complicated. When adsorption
at the contact line is fast enough (for kas � 0.8) the surfactant is constantly removed
from the liquid–air interface close to the contact line, leading to strong Marangoni
forces that maintain fast spreading at all times. However, for intermediate values of kas

(0 <kas � 0.7) the spreading can be divided largely into four different regimes. During
the early stages of the spreading process, the spreading rate is high regardless of
the value of kas . After some time, however, the spreading rate decreases significantly.
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This happens because the rate of adsorption at the contact line is not fast enough
to maintain the surface gradients on the liquid–air interface, and as a result, the
Marangoni stresses cannot maintain for long the rapid spreading of the drop. The
slow spreading of the drop is maintained for quite some time, followed by a sudden
collapse of the drop. A possible explanation for this behaviour is that during the
phase of slow spreading there is enough time for the surfactant to diffuse ahead of the
contact line, which eventually results in the decrease of the surfactant concentration
at the contact line, again inducing strong Marangoni stresses that re-initiate the fast
spreading process. When, however, the surfactant is depleted the spreading reverts to
the same limit as for higher values of kas .

4.2.5. Surfactant solubility

The effect of surfactant solubility for varying values of the parameter βa (βa � 1
signifies high solubility, whereas for βa � 1 the surfactant is virtually insoluble and
is trapped upon the free surface) is examined in figure 13. Decreasing the value
of βa , while maintaining a fixed mass of the surfactant, leads to a decrease in the
total mass of the surfactant that can be adsorbed at the liquid–air interface, which
means that more surfactant is adsorbed at the substrate; this is qualitatively similar
to increasing the value of βs . This relation can be seen clearly by comparing figures
9(d ) and 13(b), where the spreading rates are presented for various values of βa and
βs , respectively. We observe that the curve for βa = 0.5 stops at relatively early times.
This is because the simulation for this case ends quite early, and the reason for this
can be seen in figure 13(a) which shows how the drop profile evolves with time.
At early stages, the Marangoni flow deforms the free surface in the vicinity of the
contact line, and a rim is formed. However, later on, the rim splits away from the



34 G. Karapetsas, R. V. Craster and O. K. Matar

main drop to form an isolated front separated from the main droplet. The surface
gradients in the middle of the region that connects the ridge at the leading edge
and the main droplet increase significantly with time (see figure 13c), resulting in
increased Marangoni stresses, which drive the fluid that resides there towards the
contact line. These regions can eventually become so thin that they may appear as
‘dry spots’ when viewed by an experimental observer. In the experiments of Nikolov
et al. (2002), who studied the spreading of a TS8EO solution placed on a polystyrene
surface, the separation of small drops from the leading edge of the main droplet
at the final stages of the spreading process was reported. Moreover, Edmonstone
et al. (2006), who performed numerical simulations on the spreading of a droplet of
soluble surfactant on a pre-existing thin liquid layer, showed a similar formation of
a ‘secondary’ front and exceptionally thin regions.

5. Concluding remarks
We have examined the spreading of surfactant-laden droplets over solid substrates

for both insoluble and soluble surfactants with concentrations below, as well as
beyond, the CMC. Lubrication theory and rapid vertical diffusion of the surfactant
in the bulk have been used to derive a coupled system of evolution equations for the
drop thickness, surfactant monomer interfacial and bulk concentrations and micelle
bulk concentration. The model accounts for Marangoni-driven spreading, interfacial
and bulk diffusion, sorption kinetics, the formation and breakup of micelles in the
bulk and surfactant adsorption at the solid substrate. Moreover, this model takes into
account the moving contact line, using a constitutive relation that depends on the
local surfactant concentration and the possibility of the adsorption of the surfactant
that lies upon the liquid–air interface at the solid surface directly through the contact
line. This model has been numerically solved using the finite-element method, and an
extensive parametric analysis has been presented.

The key issue in terms of superspreading and surfactant-enhanced spreading is the
identification of a mechanism by which high spreading rates can be achieved. The
model derived above is sufficiently complex to allow most of the relevant physics and
chemistry to be incorporated while simple enough to allow for interpretation. Our
numerical investigation has shown that basal adsorption (from the bulk fluid and
at the contact line) as well as sorption kinetics play a crucial role in the spreading
process. This physics can provide an effective description of the molecular-scale picture
of the adsorption of the superspreading trisiloxane surfactants. When the trisiloxanes
are dissolved in an aqueous phase, their structure allows them to be adsorbed onto
a hydrophobic surface because they can pack tightly as a hydrophobic mat on the
non-polar surface (see figure 1) – with the polar groups exposed to the aqueous
phase. In this tight packing, the hydrophobic interior of the mat is not exposed to
water. Further, at the contact line, it appears that monolayers at the air–liquid and
solid–liquid interfaces come together and assemble to form a bilayer, and hence the
assumption of the direct adsorption from the air/liquid surface to the contact line
is sensible. To get efficient spreading it is essential to have a balance of surfactant
replenishment at the liquid–air interface and its removal close to the contact line so
that there are locally high surface tension gradients and therefore high Marangoni
stresses to generate fast spreading. The incorporation of these two adsorption routes
provides such a mechanism. This forms the link to understanding superspreading;
other surfactants are not adsorbed significantly from the aqueous solution onto a
hydrophobic surface and do not assemble into bilayers at the contact line.
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Our numerical results have shown that the velocity of the droplet leading edge is
constant with the extent of the leading edge being characterized by power laws of
ta with a = 1 or even higher, which are close to the reported experimental values for
superspreading. There is, however, significant dependence of the calculated spreading
rates on the values of the various kinetic parameters. In addition, the non-monotonic
dependence of the spreading rate on the initial surfactant concentration, often reported
in experiments, has been predicted (see figure 7). The spreading is accompanied in
several cases with the generic formation of a rim, which under certain conditions
may contain almost the entire volume of the drop (see figure 9). The parametric
study has revealed that this is not always the case. For example, when adsorption
of the surfactant at the contact line is not allowed the resulting shape of the drop
resembles a thick pancake (see figure 11). Finally, when the solubility of the surfactant
is relatively high a secondary front separated from the main droplet may appear (see
figure 13). The region in between can become so thin that it may appear as ‘dry spots’
when viewed by an experimental observer.

The insightful comments of one anonymous referee, regarding the physicochemical
phenomena that underlie superspreading, are gratefully acknowledged. The authors
also acknowledge the support of the Engineering and Physical Science Research
Council through grant number EP/E056466.

REFERENCES

Beacham, D. R., Matar, O. K. & Craster, R. V. 2009 Surfactant-enhanced rapid spreading of
drops on solid surfaces. Langmuir 25, 14174–14181.

Benintendi, S. W. & Smith, M. K. 1999 The spreading of a non-isothermal liquid droplet. Phys.
Fluids 11, 982–989.

Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev.
Mod. Phys. 81, 739–805.

Carlson, A., Do-Quang, M. & Amberg, G. 2009 Modelling of dynamic wetting far from
equilibrium. Phys. Fluids 21, 121701–121704.

Chan, K. Y. & Borhan, A. 2005 Surfactant-assisted spreading of a liquid drop on a smooth solid
surface. J. Colloid Interface Sci. 287, 233–248.

Clay, M. A. & Miksis, M. J. 2004 Effects of surfactant on droplet spreading. Phys. Fluids. 16,
3070–3078.

Cox, R. G. 1986a The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow.
J. Fluid Mech. 168, 169–194.

Cox, R. G. 1986b The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants.
J. Fluid Mech. 168, 195–220.

Craster, R. V. & Matar, O. K. 2006 On the dynamics of liquid lenses. J. Colloid Interface Sci. 303,
503–516.

Craster, R. V. & Matar, O. K. 2007 On autophobing in surfactant-driven thin films. Langmuir 23,
2588–2601.

Dussan, V. & Davis, S. H. 1974 On the motion of a fluid–fluid interface along a solid surface.
J. Fluid Mech. 65, 71–95.

Dussan, V., Rame, E. & Garoff, S. 1991 On identifying the appropriate boundary conditions at a
moving contact line: an experimental investigation. J. Fluid Mech. 230, 97–116.

Edmonstone, B. D., Craster, R. V. & Matar, O. K. 2006 Surfactant-induced fingering phenomena
beyond the critical micelle concentration. J. Fluid Mech. 564, 105–138.

Edmonstone, B. D., Matar, O. K. & Craster, R. V. 2005 Surfactant-induced fingering phenomena
in thin film flow down an inclined plane. Physica D 209, 62–79.

Ehrhard, P. 1993 Experiments on isothermal and non-isothermal spreading. J. Fluid Mech. 257,
463–483.



36 G. Karapetsas, R. V. Craster and O. K. Matar

Ehrhard, P. & Davis, S. H. 1991 Non-isothermal spreading of liquid drops on horizontal plates.
J. Fluid Mech. 229, 365–388

Gaver, D. P. III & Grotberg, J. B. 1990 The dynamics of a localized surfactant on a thin film.
J. Fluid Mech. 213, 127–148.

de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863.

Greenspan, H. P. 1978 On the motion of a small viscous droplet that wets a surface. J. Fluid Mech.
84 125–143.

Grotberg, J. B. 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26, 529–571.

Haley, P. J. & Miksis, M. J. 1991 The effect of the contact line on droplet spreading. J. Fluid Mech.
223, 57–81.

Hill, R. M. 1998 Superspreading. Curr. Opin. Colloid Interface Sci. 3, 247–254.

Hill, R. M. 2002 Silicone surfactants-new developments. Curr. Opin. Colloid Interface Sci. 7, 255–
261.

Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid
contact line. J. Colloid Interface Sci. 35, 85–101.

Hunter, R. J. 1991 Foundations of Colloid Science. Oxford University Press.

Jensen, O. E. & Grotberg, J. B. 1993 The spreading of heat or soluble surfactant along a thin
film. Phys. Fluids A 5, 58–68.

Jensen, O. E. & Naire, S. 2006 The spreading and stability of a surfactant-laden drop on a
prewetted substrate. J. Fluid Mech. 554, 5–24.

Kataoka, D. E. & Troian, S. M. 1997 A theoretical study of instabilities at the advancing front of
thermally driven coating films. J. Colloid Interface Sci. 192, 350–362.

Kim, H.-Y., Qin, Y. & Fichthorn, K. A. 2006 Molecular dynamics simulation of nanodroplet
spreading enhanced by linear surfactants. J. Chem. Phys. 125, 174708.

Knoche, M., Tamura, H. & Bukovac, J. 1991 Performance and stability of the organosilicone
surfactant L-77: effect of pH, concentration, and temperature. J. Agric. Food Chem. 39,
202–206.

Kondic, L. & Diez, J. 2001 Pattern formation in the flow of thin films down an incline: constant
flux configuration. Phys. Fluids 13, 3168–3184.

Kumar, N., Couzis, A. & Maldarelli, C. 2003 Measurement of the kinetic rate constants for
the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance
of these measurements to the mechanism of superspreading. J. Colloid Interface Sci. 267,
272–285.
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