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The Free (or Open) Boundary Condition (FBC, OBC) was proposed by Papanastasiou et al. (A new outflow
boundary condition, Int. J. Numer. Meth. Fluids 14 (1992) 587–608) to handle truncated domains with
synthetic boundaries where the outflow conditions are unknown. In the present work, implementation
of the FBC has been tested also at inflow boundaries in several test problems of viscous or viscoelastic flow.
The Finite Element Method (FEM) is used to provide numerical results for both cases of planar and
axisymmetric domains under laminar, isothermal or non-isothermal, steady-state conditions for Newto-
nian and non-Newtonian fluids. The present results extend previous ones regarding the applicability of
the FBC, since they convincingly show that the FBC can be used equally well at inflow boundaries, with-
out having to resort to artificially set inlet profiles for a given flow rate.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Free (Open) Boundary Condition (FBC, OBC) was proposed
by Papanastasiou et al. [1] to handle truncated domains with syn-
thetic boundaries where the outflow conditions are unknown.
Since then, a number of works have used the FBC in a variety of
flow problems [2–12]. A recent paper [13] has revisited the FBC
and showed its proper use in some viscous flow problems includ-
ing free surfaces. The work was extended to viscoelastic flow sim-
ulations with differential [14] or integral models [15] with equally
good results.

It has been argued that the FBC works well because in essence it is
a projection or an extrapolation of the flow field equations to the
outflow boundary [1,8]. In that sense, it must also work at the
inflow boundary, where usually arbitrary and/or simple boundary
conditions are imposed. In most cases, a fully developed velocity
profile is imposed far upstream that corresponds to the fluid model
at hand. If there is no analytical solution, usually a one-dimensional
(1D) numerical solution is imposed [16,17]. In other cases and in
several commercial codes, the simplest way to handle inflow
boundary conditions is to impose a plug profile corresponding to a
given flow rate, and then let the solution develop and take the cor-
rect profile some distance away from the inflow. In all these cases,
the flow field near the inflow boundary is not well behaved when
ll rights reserved.
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there are nonlinear phenomena, and something else is needed to
take care of the uncertainty at the inflow.

Issues regarding inflow boundary conditions arise when the
inflow is not fixed, due to the fact that there is no clear entrance
of the flow. Applications of this situation appear in biomedical
flows where the focus of observation is in a part of a body where
the flow of blood is continuous and the entrance is the synthetic
inlet that is created from the window of observation. The subject
matter is an active research topic as evidenced by some very recent
publications on the subject [18,19]. Other applications include
polymer flows, where the non-Newtonian viscoelastic character
of the fluids flowing inside complicated polymer processing equip-
ment may make the inlet not clearly defined [20,21].

The idea to use the FBC at the inflow as well was first proposed
and used by Dimakopoulos et al. [22] to handle blood flow in an
aorta at very high Reynolds numbers and using a nonlinear viscous
model (the Carreau–Yasuda model). It was shown that the imposi-
tion of FBC at the inflow as well as the outflow gave very good
numerical results without any oscillations or unrealistic velocity
and pressure profiles. It became then obvious that this idea of
imposing the FBC at the inlet is worth studying in more detail
and applying it to some standard or simple test problems to ob-
serve its behavior.

It is therefore the purpose of the present work to impose the
FBC at inflow and test it in several problems of Fluid Mechanics
with a variety of rheological models, namely viscous, pseudoplas-
tic, viscoplastic, and viscoelastic non-Newtonian models. Apart
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Fig. 1. Implementation of the FBC at the inlet boundary. The jth corner node of the
ith element has the u-degree of freedom replaced by Eq. (40). For the rest of the
inlet boundary nodes, the FBC is applied. Note that for viscoelastic flows each
quadrilateral element is split into two triangular elements.
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from the work by Dimakopoulos et al. [22], it appears that no other
attempt has been made so far in the literature, and this is an effort
to examine the implementation and usefulness of FBC as an inflow
boundary condition in several problems. The Finite Element Meth-
od (FEM) is used to provide and compare numerical results with
either analytical solutions or numerical solutions obtained from
long domains. Particular emphasis has been placed on truncated
domains with flows coming in at an angle.
2. Mathematical modelling

2.1. Governing equations

Many flowing materials are non-Newtonian, exhibiting either
pseudoplastic (shear-thinning or -thickening) or viscoplastic (pres-
ence of a yield stress) behavior or viscoelastic behavior [23].

For viscous, compressible or incompressible, steady-state flows,
the conservation equations are written as:
uz=ur=0 
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Fig. 2. Poiseuille flow in a tube. Boundary conditions and finite element grid (5 � 5).
quadrilateral element is split into two triangular elements.
� Mass conservation (including density changes for compressible
fluids).
r FBC

=0 or f

uz=f(r)
ur=0 

FBC sta
r � ðq�uÞ ¼ 0: ð1Þ
� Momentum conservation (including effects of inertia, pressure,
viscous and gravity forces).
q�u � r�u ¼ �rpþr � ��sþ q�g: ð2Þ
� Energy conservation (including effects of convection, conduc-
tion or diffusion and viscous dissipation).
qcp�u � rT ¼ kr2T þ ��s : r�u: ð3Þ
In the above, the field variables are the velocity vector �u, the scalar
pressure p, the extra stress tensor ��s, and the scalar temperature T.
The material properties are the density q, the heat capacity cp,
and the thermal conductivity k. The acceleration of gravity is �g.

For compressible fluids, we have:

��s ¼ l r�uþr�uT
� �

� 2
3
lðr � �uÞI: ð4Þ

In the above, l is a constant viscosity and I is the unit tensor. Here
we have assumed that we deal with dense fluids, which have a zero
dilatational (bulk) viscosity [23].

Also for compressible fluids, density and pressure are related
via a simple thermodynamic equation of state [23]. Its linear form
is given by:

q ¼ 1þ bcp; ð5Þ

where bc is the isothermal compressibility coefficient.
Similarly, the viscosity l can be a function of pressure [23]. Its

exponential form is given by:

l ¼ expðbppÞ; ð6Þ

where bp is the pressure-shift coefficient.
Along the wall, a slip boundary condition may be occurring [23].

Its linear form is given by:

�t � �u ¼ bslð�t�n : ��sÞ; ð7Þ

where bsl is the slip coefficient and �n and �t are the normal and tan-
gential unit vectors to the wall.

In 2-D flow problems, it is customary to also use a posteriori the
Poisson equation for the stream function, the solution of which
gives contours of the stream function (streamlines) to help visual-
ize the flow field [23]. The governing equation for the stream
function w is:
ree

nds for the free boundary condition. Note that for viscoelastic flows each



Table 1
Finite element mesh characteristics used in the two test axisymmetric problems.

Mesh No. of elements (quadrilaterals) No. of nodes No. of dof No: of r�u dofa No: of ��sel dofb

Test #1 (Newt.) 25 121 602 – –
Test #1 (PTT) 200 861 4032 1155 924
Test #2 (PTT) 400 1701 7912 2255 1804
Test #2 (Cross) 1440 5973 19103 – –

a The velocity gradient tensor has five components r�u ¼ @uz
@z ;

@uz
@r ;

@ur
@z ;

@ur
@r ;

ur
r

� �
.

b The stress tensor has four components ��s ¼ ðszz; srr ; srz; shhÞ.

ψ 

τzz τrr

τrz

Fig. 3. Contours of field variables in Poiseuille flow of a Maxwell fluid (Phan–Thien/Tanner model with e = 0, b = 0, n = 0.5) at Ws = 0.1: (a) axial velocity uz, (b) isobars P, (c)
axial stress szz, (d) radial stress srr, (e) shear stress srz, (f) streamlines. Results by applying the FBC at inflow and outflow boundaries.
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r2w ¼ �x; ð8Þ
where x ¼ @ux

@y �
@uy

@x is the vorticity in a 2-D planar domain or
x ¼ @uz

@r �
@ur
@z in an axisymmetric domain.

2.2. Rheological models

The relation between stresses and velocity gradients is called
the constitutive equation or rheological equation of state. Different
fluids obey different constitutive laws.

Purely viscous fluids obey the generalized Newtonian fluid model
according to:
��s ¼ gð _cÞ��_c; ð9Þ

where ��_c ¼ r�uþr�uT is the rate-of-strain tensor and gð _cÞ is the
apparent viscosity, which is a function of the magnitude _c of the
rate-of-strain tensor given by

_c ¼
ffiffiffiffiffiffiffiffiffi
1
2

II _c

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

_c : _cð Þ
r

ð10Þ
where II _c is the second invariant of the rate-of-strain tensor.
The apparent viscosity is given in its simplest form by the

power-law model [23,24]

gð _cÞ ¼ K _cn�1 ð11Þ

where K is the consistency index and n is the power-law index (usu-
ally 0 < n < 1, representing a degree of shear-thinning). Another
popular model for viscosity computations–among others–is the
Cross model [23,24] given by

g ¼ g0

1þ ðkC _cÞ1�n : ð12Þ

In the above, g0 is the zero-shear-rate viscosity, kC is a characteristic
time, and n is again the power-law index. Similar to the Cross model
is the Carreau–Yasuda model used in [22].

The effect of temperature on the viscosity is of primordial
importance in polymer processing, where tight control of temper-
atures is required for a successful operation. The viscosity as a
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Fig. 4. Radial distributions of a Maxwell fluid (Phan–Thien/Tanner model with e = 0, b = 0, n = 0.5) at Ws = 0.1: (a) axial velocity uz, (b) axial stress szz, (c) radial stress srr, (d)
shear stress srz. Results by applying the FBC at inflow and outflow boundaries. Solid lines are analytical results and symbols are numerical results.
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function of temperature is given by an exponential Arrhenius rela-
tionship, according to [23,24]

gT ¼ g0aT ¼ g0 exp
Ea

Rg

1
T
� 1

T0

� �� �
; ð13Þ

where g0 is the viscosity at a reference temperature, T0, aT is a tem-
perature-shift factor, Rg is the ideal-gas constant, Ea is the activation
energy, T is the absolute temperature in K, and T0 is the absolute ref-
erence temperature in K.

Viscoplastic models have the addition of a yield stress, below
which the material behaves like a solid. The popular viscoplastic
models are the Bingham and the Herschel–Bulkley models. A mod-
ification of the latter due to Papanastasiou [25] is written as

��s ¼ g��_c ¼ K _cn�1 þ sy

_c
½1� expð�m _cÞ�

� �
��_c; for all _c; ð14Þ

where sy is the yield stress and m is a stress growth exponent that
makes the model continuous for all strain rates.

Viscoelastic models take into account the elasticity of some fluids
(e.g., polymer solutions and melts) and are very complicated
functions of the stress and rate-of-strain tensors [23,24]. From a
plethora of viscoelastic models, the more widely used in simula-
tions are the upper-convected Maxwell (UCM) model, the Old-
royd-B model, and the Phan–Thien/Tanner (PTT) model. In the
latter, there is a splitting of the stress tensor into a purely viscous
and a viscoelastic part according to:

��s ¼ b��_cþ ��sp; ð15Þ

where ��sp is the polymeric viscoelastic stress tensor written as
follows:

Yð��spÞ��sp þ k��s
�

p ¼ ð1� bÞ��_c; ð16Þ

where the symbol h over the viscoelastic stress tensor denotes the
Gordon–Schowalter derivative defined as

X
�

¼ DX
Dt
� r�u� n��_c
n oT

� X � X � fr�u� n��_cg; ð17Þ

in which X is any second-order tensor. In the above the function
Yð��spÞ may take the linear form

Yð��spÞ ¼ 1þ e
1� b

ktrð��spÞ; ð18Þ
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Fig. 5. Axial pressure distribution of a Maxwell fluid (Phan–Thien/Tanner model with e = 0, b = 0) at Ws = 0.1: (a) n = 0, (b) n = 0.5.
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where b, e, and n are material parameters and k is the relaxation time.
When e = 0 and n = 0, the PTT model reduces to the Oldroyd-B model.
Furthermore, when b = 0, the PTT reduces to the UCM model.

2.3. Dimensionless numbers

The relevant dimensionless numbers of the Navier–Stokes
equations need a characteristic length and a characteristic velocity.
In the present case, these are the tube radius, R, and the average
velocity, U, at the outflow boundary, respectively. All lengths are
made dimensionless by R, all velocities by U.

The pressures and stresses are scaled with lU/R. The density is
scaled with a reference density q0 and the viscosity with a reference
viscosity l0. Henceforth �u; p; ��_c; ��s; ��sp will denote dimensionless
variables. The following dimensionless numbers are then defined as:

(1) The Reynolds number, Re, is a measure of inertia over vis-
cous forces:
Re ¼ qUR
l

: ð19Þ
For creeping flows, such as those examined in the present work,
Re � 0. However, the case of high Re numbers with the FBC has
been investigated in [13] for outflow problems and in [22] with in-
flow problems.

(2) The Stokes number, St, is a measure of gravity over viscous
forces:
St ¼ qgR2

lU
: ð20Þ
In our previous work [13] we have shown that for some gravity
flows (e.g. extrudate swell flows), the FBC is not valid. In the exam-
ples examined in the present work, St = 0.

(3) The compressibility coefficient, Bc, is a measure of fluid
compressibility:
Bc ¼
bclU

R
: ð21Þ



Fig. 7. Pressure-driven flow of a Newtonian fluid with an outflow average velocity uz,m = 1 through a tapered annular die: (a) uz-contours, (b) ur-contours, (c) isobars P. Results
by applying the FBC at inflow and outflow boundaries.
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For most non-Newtonian fluids, compressibility is very weak
and thus neglected, Bc = 0. In the present work, an example with
weak compressibility has been included.

(4) The pressure-shift coefficient, Bp, is a measure of pressure-
dependence of the fluid viscosity:
Bp ¼
bplU

R
: ð22Þ
For most non-Newtonian fluids, a pressure-dependence of vis-
cosity is very weak and can be safely neglected, Bp = 0. In the pres-
ent work, an example with a nonzero Bp has been included.

(5) The slip coefficient, Bsl, is a measure of fluid slip at the wall:
Bsl ¼
bsll

R
: ð23Þ
For some non-Newtonian fluids, slip can be strong and should
be included. In the present work, an example with strong slip
has been included.

(6) The Peclet number, Pe, is a measure of fluid thermal convec-
tion over diffusion:
Pe ¼ qcpUR
k

: ð24Þ
In some non-Newtonian fluids processing, thermal convection
can be very strong with a Peclet number in the thousands. In the
present work, an example with Pe = O(10+3) has been included.

(7) The Nahme–Griffith number, Na, is a measure of fluid vis-
cous dissipation over diffusion:
Na ¼
�gEaU2

kRgT2
0

; ð25Þ
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Fig. 8. Radial profiles of a Newtonian fluid with an outflow average velocity U = 1
through a tapered annular die: (a) uz-velocity, (b) ur-velocity, (c) pressure. Results
shown at z = 25 by applying the FBC at inflow either for the full domain (long) or the
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where �g ¼ f ðU=RÞ is a nominal viscosity given by the
constitutive model (Eq. (9)) at a nominal shear rate of U/R. In some

truncated domain starting at z = 25 (short).
non-Newtonian fluids processing, viscous dissipation can be strong
with a Nahme number greater than 1. In the present work, an
example with Na = O(10) has been included.

(8) The Weissenberg number, Ws, is a measure of fluid visco-
elasticity defined by:
Ws ¼ k _cA ¼ k
U
R
; ð26Þ
where k is the relaxation time of the fluid, _cA is the apparent shear
rate (=U/R). For the Newtonian or purely viscous fluids, Ws = 0. For
non-Newtonian viscoelastic fluids, Ws > 0, and such examples are
included in the present work.
3. Method of solution

The numerical solution is obtained with the Finite Element
Method (FEM), using two different programs. The first (called
uvpth) employs as primary variables the two velocities, pressure,
temperature and free surface location ( u–v–p–T–h formulation)
and uses a Picard (P) or direct substitution iterative scheme [26].
The second program is a viscoelastic code which employs as pri-
mary variables, apart from the velocities and the pressure, the
stresses and the velocity gradients, and uses the Newton–Raphson
(N–R) iterative scheme [12,27]. The uvpth code has been developed
and used mainly for non-Newtonian (pseudoplastic and viscoplas-
tic) problems, for which it has been found more suitable. In the
present work, both programs were modified to account for imple-
menting the FBC at the inlet.

The major features of the uvpth code are as follows. The physical
domain is discretized using quadrilateral elements. The velocity
vector, the temperature, and the stream function are approximated
with 9-node Lagrangian basis functions, /i, and the pressure is
approximated with 4-node Lagrangian basis functions, wi.

For the governing conservation Eqs. (1)–(3) and the stream
function (Eq. (8)), the finite element/Galerkin method is employed,
which after applying the divergence theorem results in the follow-
ing weak forms:

Z
X
r � �uwidX ¼ 0; ð27Þ
Z
X
½ðRe�u � r�uÞ/i þ ð�pI þ ��sÞ � r/i�dX ¼

Z
C

�n � ð�pI þ ��sÞ/idC; ð28Þ
Z
X
½ðPe�u � rTÞ/i þrT � r/i � ð��s : r�uÞ/i�dX

¼
Z

C
ð�n � rTÞ/idC; ð29Þ
Z
X
ð�rwr/i þx/iÞdX ¼

Z
C
ð�n � rwÞ/idC: ð30Þ

where dX and dC are the differential volume and surface area,
respectively. In the above, the right-hand side (RHS) of Eqs. (28)–
(30) constitute the free (open) boundary conditions to be applied
at the outflow as well as the inflow boundaries. These terms are
not necessarily zero there and must be evaluated at each iteration.
All necessary information about the discrete formulation imple-
mented in the uvpth program has been given in detail before
[13,28,29] and will not be repeated here.



Fig. 9. Pressure-driven flow of a Phan–Thien/Tanner fluid (e = 0.05, b = 0, n = 0.1) at Ws=0.1 through a tapered annular die: (a) uz-contours and streamlines, (b) ur-contours, (c)
isobars P, (d) velocity vectors. Results near the inlet of the truncated domain (short) at z = 25 by applying the FBC at inflow and outflow boundaries.
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3.1. Finite element formulation for differential viscoelastic models

Regarding the second program for viscoelastic flows governed
by differential models of the PTT type [12,27], its major features
are as follows. The physical domain is discretized using triangular
elements, which may be produced by subdivision of a 9-node
quadrilateral element into two triangular ones. The velocity vector
is approximated with 6-node Lagrangian basis functions, /i, and
the pressure, the elastic stresses as well as the velocity gradients
with 3-node Lagrangian basis functions, wi.

For the mass balance, Eq. (27) remains the same. For the momen-
tum balance, the finite element/Galerkin method, after applying the
divergence theorem, results in the following weak form:Z

X
½Re�u � r�u/i � pr/i þr/i � ��sel þr/i � ��_c�dX

¼
Z

C
½�n � ð�pI þ ��sÞ�/idC: ð31Þ

The surface integral that appears in the momentum equation is split
into several parts, each one corresponding to a boundary of the
physical domain, and the relevant boundary condition is applied
therein.

In order to solve accurately and efficiently the viscoelastic PTT
model, the Elastic-Viscous Split Stress (EVSS) formulation is em-
ployed [30]. This method consists of splitting the polymeric part
of the extra stress tensor into a purely elastic and a viscous part

��sp ¼ ��sel þ ð1� bÞ��_c: ð32Þ

The success of this scheme resides in the fact that the elliptic nature
of the momentum equations is ensured even for b = 0. Brown et al.
[31] proposed a modification of this model (EVSS-G) according to
which an independent interpolation of the components of the veloc-
ity gradient tensor is introduced in order to satisfy the compatibility
in the approximation between elastic stress and velocity gradients in
the constitutive equation. The corresponding equation that must be
solved isZ

X
ðG�r�uÞwidX ¼ 0: ð33Þ

Finally, the constitutive equation for the PTT model, due to its
hyperbolic character, is discretized using the SUPG method pro-
posed by Brooks and Hughes [32]

Z
X

Yð��spÞ��sel þWs��s
�

el þWsð1� bÞ G
�

þ G
�

T0
@

1
A

2
4

�ð1� bÞð1� Yð��spÞÞ G
�

þ G
�

T0
@

1
A
3
5widX ¼ 0: ð34Þ

The new weighting function wi is formed from the finite element
basis function for the elastic stress components as

wi ¼ wi þ h
jumj

�u � rwi; ð35Þ

where jumj is the magnitude of the mean velocity and h is a charac-
teristic length at the particular element. The mean velocity jumj in
an element is defined as jumj ¼ 1

3

P3
n¼1jujn, with jujn denoting the

magnitude of the velocity at the vertices of the corresponding trian-
gular element. As a characteristic length, h, we used the square root
of the area of each triangular element.

3.2. Boundary conditions

Along the walls and in cases where there is no slip, we impose
the usual no-slip, no-penetration conditions

ur ¼ 0; uz ¼ 0: ð36aÞ
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Fig. 10. Radial profiles of a Phan–Thien/Tanner fluid (e = 0.05, b = 0, n = 0.1) at
Ws = 0.1 through a tapered annular die: (a) uz-velocity, (b) ur-velocity, (c) pressure.
Results shown at z = 25 by applying the FBC at inflow either for the full domain
(long) or the truncated domain starting at z = 25 (short).
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In the case of slip at the wall, these become:

�n � �u ¼ 0; �t � �u ¼ Bslð�t�n : ��sÞ: ð36bÞ

Also the stream function is set to 0 at one wall and equal to the flow
rate at the other wall.

At the outflow boundary we apply the FBC [1] by evaluating the
relevant term of the RHS of Eq. (27) as follows (for axisymmetric
geometries)Z

C
ð�n � ð�pI þ ��sÞÞuidC ¼

Z
CFBC

nrð�pþ srrÞ þ nzsrz

nrsrz þ nzð�pþ szzÞ

� �
uidC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

free boundary condition

;
ð37Þ

Z
C
ð�n � rTÞ/idC ¼

Z
CFBC

nr
@T
@r
þ nz

@T
@z

� �
uidC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

free boundary condition

; ð38Þ

Z
C
ð�n � rwÞ/idC ¼

Z
CFBC

nr
@w
@r
þ nz

@w
@z

� �
uidC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

free boundary condition

: ð39Þ

So far, this is a standard procedure, and similar schemes have been
widely used in the literature [1–12] mainly for the momentum Eq.
(37).

The novelty introduced in this paper is how we treat the bound-
ary conditions at the inflow boundary. In most cases found in the
literature, a fully developed velocity profile is assumed far up-
stream that corresponds to the fluid model at hand, and an analyt-
ical model is derived or a 1D numerical solution is imposed. Such
an assumption, however, is not always possible or there may be
situations that a numerical solution is difficult to implement. This
kind of situation makes the idea of the FBC at the inflow boundary
very appealing.

At the inflow boundary (see Fig. 1), the relevant terms of the
RHS of Eqs. (28)–(30) are evaluated in the same way as at the out-
flow boundary, i.e., using Eqs. (37)–(39). No further information is
needed and no other boundary condition has to be explicitly im-
posed! The problem is closed by demanding that the dimension-
less mean velocity at the outflow boundary, uz,m, is equal to
unity, since the mean velocity at the outflow boundary, U, is used
as a characteristic velocity for non-dimensionalizing the governing
equations. Therefore the additional equation that arises is

uz;m ¼
R ro

ri
uzrdrR ro

ri
rdr

¼ 1; ð40Þ

where ro is the outer radius and ri is the inner radius. In its discrete
form this is written as:

2
r2

o � r2
i

XE

i¼1

XG

j¼1

XN

k¼1

uk
i rk

i /
k

 !" #
wj

" #
¼ 1; ð41Þ

where Eis the number of elements along the inflow, G the number of
Gaussian points for each element along the inflow side (=3), N is the
number of nodes for each element belonging to the inflow side (=3),
uk

i are the nodal values of the velocity, and wj are the Gaussian
weights.

The reason why Eq. (40) is necessary can be easily understood
by considering the classical problem of 1D Poiseuille flow. In this
simple problem one imposes the boundary conditions at both ends,
and in addition we have to set some flow rate (or equivalently the
mean velocity) in order to evaluate the pressure drop or the max-
imum velocity.

Dimakopoulos et al. [22] replaced the continuity at one end of
the inflow boundary (e.g. the upper wall) with Eq. (40) and then
used this equation, instead of the continuity, to compute the
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Fig. 11. Radial stress profiles of a Phan–Thien/Tanner fluid (e = 0.05, b = 0, n = 0.1) at Ws = 0.1 through a tapered annular die: (a) axial szz-stress, (b) radial srr-stress, (c) shear
srz-stress, (d) azimuthal shh-stress. Results shown at z = 25 by applying the FBC at inflow either for the full domain (long) or the truncated domain starting at z = 25 (short).

Table 2
Values of the various material data for the FEP melt
at 371�C [35].

Parameter Value

bc 0.00095 MPa�1

bp 0.03 MPa�1

m 1.39 � 10�4 Panp�1

np 0.54
bsl 400 cm/(s MPab)
b 2.0
q 1.492 g/cm3

cp 0.96 J/(g K)
k 0.00255 J/(s cm K)
Ea 50,000 J/mol
Rg 8.3143 J/(mol K)
T0 371 �C (644 K)

Table 3
Parameters for the FEP melt obeying the Cross model
(Eq. (11)) at 371 �C [35].

Parameter Value

g0 1542.3 Pa s
kC 0.0049 s
n 0.316
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pressure at that node. It was shown that the proposed scheme gave
very good numerical results without any oscillations or unrealistic
velocity and pressure profiles. Although this scheme worked quite
well for horizontal pipes with a centerline, we found during trials
that this is definitely not the case for more general cases, e.g., an
inclined annular pipe. We found that this scheme could result in
violating the continuity equation near the wall leading to unphys-
ical solutions. This should come as no surprise since the continuity
at the wall node has been removed from our system of equations.

The current approach is somewhat different. Eq. (40) is used to
compute the velocity at one point of the inflow boundary, ideally at
the position that the maximum velocity is expected to arise or
close to it. The reason for choosing a node as close as possible to
the position of the maximum velocity is the fact that the value of
the velocity in that region will have the biggest impact on the



Fig. 12. Pressure-driven flow of a FEP melt through a tapered annular die at _cA ¼ 5600 s�1 ðRe ¼ 1:89� 10�3; Bc ¼ 3:57� 10�4; Bp ¼ 1:13� 10�2;Bsl ¼ 0:821;
Pe ¼ 2859; Na ¼ 10:89Þ: (a) uz-contours, (b) ur-contours, (c) isobars P, (d) isotherms T. Results near the inlet by applying as inflow boundary conditions a plug velocity
profile and a constant temperature profile. The results are not smooth.
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mean velocity. Choosing a node close to the wall would not be wise
since we expect that the velocity there will be very small and thus
its effect on the mean velocity will be minimal. This suggested
scheme is in direct analogy with the 1D Poiseuille flow, where
we use the imposition of the mean velocity (Eq. (40)) to evaluate
the maximum velocity. As it will be shown below, this scheme
works very well in a great variety of problems.

There are more than one ways to implement Eq. (41) in a FEM
program. When using the Newton–Raphson iterative scheme, we
replace the momentum in the principal (axial) direction of the flow
with the residual of Eq. (40) or its discrete form, Eq. (41). The Jaco-
bian entries are evaluated and replace the corresponding line in the
Jacobian matrix for that degree of freedom. We also have to set a
datum pressure and as such we impose a zero value to the pressure
at a node of the outflow boundary.

When using the Picard iterative scheme one usually has to solve
the following algebraic system of equations

S � x ¼ F; ð42Þ

where S is the stiffness matrix, x is the vector of the unknown veloc-
ities and pressure, and F is the load vector. There are two equivalent
ways of how to handle Eq. (40). One way is to simply set the resid-
ual Fi for the dof at hand (ith), which corresponds to the value of the
velocity in the principal direction of the flow, equal to

Fi ¼ uz;m � 1� ðS � xÞi: ð43Þ
This way, without making any changes to the stiffness matrix S, we
are able to impose uz,m = 1 and fix the average velocity. This is the
method of choice with integral viscoelastic models, where the elas-
tic stresses all enter the RHS [15]. The other way (much more pow-
erful) is to have contributions in the LHS ‘‘stiffness’’ matrix from
the basis functions /k according to Eq. (41) corresponding to the
dof at hand, while the RHS ‘‘load’’ vector simply has the set mean
velocity equal to 1. The former approach is simpler but it requires
many more iterations than the latter approach which converges
fast (for linear problems in one iteration). In the second approach
the only information needed is the basis (shape) functions of all
the inlet finite elements, which are readily available and calculated
only once. Also with the Picard scheme we have found that it is
important not to set a datum pressure anywhere equal to zero,
but after the solution is obtained, to subtract all pressure values
from a datum pressure, usually taken as the pressure value of
the exit node at the wall.

The criteria for termination of the iterative process were for
N–R a norm-of-the-residuals kek < 10�8 and for P both the norm-
of-the-error and the norm-of-the-residuals <10�4. This difference
in the stopping criteria reflects the superiority of the quadratic
N–R scheme compared with the linear P scheme.

Another feature is the loss of convergence in viscoelastic flows
for some high value of the Weissenberg number (also called the
HWNP) [33] when using the FBC at inlet. In all cases tested it
was found that this does not influence the HWNP limit.



Fig. 13. Pressure-driven non-isothermal flow with slip at the wall of a FEP melt through a tapered annular die at _cA ¼ 5600 s�1 ðRe ¼ 1:89� 10�3; Bc ¼ 3:57� 10�4;

Bp ¼ 1:13� 10�2; Bsl ¼ 0:821; Pe ¼ 2859; Na ¼ 10:89Þ: (a) uz-contours, (b) ur-contours, (c) isobars P, (d) isotherms T. Results near the inlet by applying as inflow boundary
condition the FBC. The results are now smooth.
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4. Results and discussion

4.1. Poiseuille flow of a Maxwell fluid (Test #1)

The very first test was done for simple pressure-driven (Poiseu-
ille) flow in a tube or between flat plates for a Newtonian fluid with
both codes. Fig. 2 shows the solution domain and boundary condi-
tions, together with a 5 � 5 finite element grid in the understand-
ing that if the method is correct it should work even with the
sparsest of grids. By assuming both at inlet and outlet the FBC
and setting the mean velocity equal to 1 at one inlet node (the cen-
terline uz dof), the results gave the perfect parabolic velocity profile
everywhere and the linear pressure drop according to the well-
known analytical solution.

We then tested the implementation of the FBC with the visco-
elastic PTT fluid (e = 0, b = 0, n = 0.5) in Poiseuille flow in a tube
for further code validation. The choice of parameters is such so that
it corresponds to the Maxwell fluid but with a non-zero second
normal-stress difference (n = 0.5). This means that it uses a combi-
nation of upper convected (UCM) and lower convected (LCM)
derivatives. The value of n = 0.5 corresponds to a ratio N2/
N1 = �n/2 = �0.25. Again the boundary conditions were as shown
in Fig. 2. We have used in these calculations a denser grid with
mesh characteristics given in Table 1. These include the number
of elements (quadrilateral), nodes, degrees of freedom (dof), i.e.,
u–v–p–r�u—��s for the viscoelastic case. Because of axisymmetry
only one half of the flow domain is considered. Then there are five
velocity-gradient componentsr�u ¼ @uz

@z ;
@uz
@r ;

@ur
@z ;

@ur
@r ;

ur
r

� �
and 4 stress

components ��s ¼ ðszz; srr ; srz; shhÞ.
The boundary conditions in this type of problem are:

(i) along the inlet DA we either impose a fully-developed veloc-
ity profile or the FBC is prescribed for a given flow rate or
average velocity uz,m = 1;

(ii) along the symmetry line AB, srz = 0, ur = 0;
(iii) along the die wall no slip conditions are imposed, uz = ur = 0;
(iv) along the outlet BC either a fully-developed profile is given

(and this is a necessity for viscoelastic fluids due to the pres-
ence of non-zero normal stresses), or the FBC is prescribed.
The pressure P is set to 0 at point C or is left free when using
the FBC [13].

The Maxwell fluid with a non-zero second normal-stress differ-
ence (n – 0) is obtained from the PTT model by setting e = 0 and
b = 0. For this case, Alves et al. [34] presented an analytical solu-
tion. In cylindrical coordinates the solution is:
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Fig. 14. Radial profiles of a FEP melt through a tapered annular die at _cA ¼ 5600 s�1 ðRe ¼ 1:89� 10�3; Bc ¼ 3:57� 10�4; Bp ¼ 1:13� 10�2; Bsl ¼ 0:821; Pe ¼ 2859; Na ¼
10:89Þ: (a) uz-velocity, (b) ur-velocity, (c) pressure, (d) temperature. Results shown at inlet by applying either the FBC at inflow or a plug velocity profile and constant
temperature profile.
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where the parameter a is given by
4Ws
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Setting e = 0, n = 0.5 and Ws = 0.1, we solve numerically Eq. (45) and
get a = 0.6405. Using this value for a we find: srz(1) = �3.698,

srr(1) = �0.773 and szz (1) = 2.320 and jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð��s : ��sÞ

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 s2

zz þ s2
rr þ s2

hh þ 2s2
rz

� �q
¼ 16:664. The pressure gradient is con-

stant along the r-direction dP
dz ¼ � a

Ws
ffiffiffiffiffiffiffiffiffiffi
nð2�nÞ
p ¼ �7:395.

The FBC at the inflow involves calculation of the integral accord-
ing to Eq. (40). Our tests showed that in this simple problem our
scheme works equally well with the scheme proposed by Dimako-
poulos et al. [22]. The results for Ws = 0.1 and n = 0.5 are given in
Fig. 3 for the contours of various flow variables, which are the
stream function w, the axial velocity uz, the pressure P, the normal
stresses szz and srr, and the shear stress, srz. The contours here and
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in the following are given as 11 equidistant lines between the min-
imum and maximum values (not shown). Thus, for the stream
function w the minimum value is 0 and the maximum value is 1,
while the contour interval is Dw = 1/10 = 0.1. We observe that all
contours (except the pressure) are perfectly parallel to the flow,
as they should, since this is a fully-developed shear flow. The pres-
sure contours (isobars) show the distinct curvature associated with
a non-zero N2. When N2 = 0, the isobars are perfectly vertical.

Fig. 4 shows the corresponding radial distributions (axial veloc-
ity and the three stresses) for Ws = 0.1 and n = 0.5. The results are
shown at the inlet but they are identical for any cut along the do-
main. Also the numerical solution faithfully reproduces the analyt-
ical solutions of Eq. (44).

Fig. 5 shows the axial pressure distributions for Ws = 0.1 and
n = 0 or n = 0.5. In both cases, the axial pressure distribution is lin-
ear. However, when n = 0, the axial pressure distribution along the
wall and the centerline coincide. When n – 0, there is a radial dis-
tribution of pressure, which is quadratic in r, and the results be-
tween the wall and the centerline are different. In both cases, the
numerical results agree exactly with the analytical solutions of
Eq. (44) either by using the fully-developed profiles at entry and/
or exit or the FBC.

It is interesting to note that the upper limits for convergence
were different for n = 0 and n – 0. In the former case, no upper limit
was found even for Ws = 10+5. In the latter case, an upper limit was
found for Ws = 0.175 with n = 0.5. These limits are not related to
the imposition of the FBC, since they are also found when imposing
a fully developed velocity profile at the inlet.
4.2. Flow in an annular die (Test #2)

The next numerical test is made for a viscous or viscoelastic
fluid flowing under pressure through an annular (axisymmetric)
tapered die used in industrial operations [35]. The details of the
die design are given in Fig. 6. The dimensions have been scaled
with the outer radius R0 = 0.15 cm at exit. The straight annular
channel has a channel gap ro � ri = H = 0.5, where ro is the outer ra-
dius and ri is the inner radius. The problem has been solved before
without the FBC, by applying as inlet boundary conditions a fully-
developed velocity profile corresponding to a given apparent shear
rate of _cA, i.e., uz = f(r) and ur = 0, and a constant temperature pro-
file T = T0; at the outlet the boundary conditions were: surface trac-
tion T ¼ 0 and heat flux �q ¼ 0. Along the solid walls ABC and FED
either zero velocities are imposed or a slip law (see below). When
using the N–R scheme we have to set a datum pressure and so we
have decided to set the pressure equal to zero at one node (D). On
the other hand, for the P scheme no datum pressure should be im-
posed and this was found to be essential when applying the FBC
[13]. The problem is solved again here by applying at inlet and out-
let the FBC as shown in Fig. 6.

The FBC at the inflow involves calculation of the integral accord-
ing to Eq. (40). Our tests showed that the best results (in terms of
smoothness of the profiles) are obtained when choosing a node as
close as possible to the position of the maximum velocity in the
principal direction of the flow. In some cases one knows that posi-
tion a priori (e.g., the axis of symmetry for the Poiseuille flow in a
cylindrical pipe). Sometimes, however, things are not so simple
and there are cases where it is quite difficult, if not impossible,
to predict beforehand the exact position of the maximum velocity.
This is also the case for flow inside an annular die. Our tests have
revealed that it is adequate to simply impose Eq. (40) at a node
fairly close to the position that one would expect the maximum
velocity to arise. For the purposes of our test we have decided to
select the middle element at inlet and impose the flow rate at
the upper node along its side (see also Fig. 1).
Details about the mesh characteristics (number of elements,
nodes, dof) that we have used are given in Table 1. First we present
results for a Newtonian fluid with a mean outlet velocity uz,m = 1
for ease of calculations and for easy checking by others. The results
employing the FBC are shown in Fig. 7 as contours of the two veloc-
ity components uz and ur (Fig. 7a and b) and isobars P (Fig. 7c). The
results show a nice smooth parallel flow to the channel walls all
the way from the inlet to the outlet, while the isobars are normal
to the flow.

Another test to examine the behavior of the FBC is to compare
the solution from the full domain (long) with a truncated domain
(short) starting at z = 25 and applying at the inlet the FBC. The ra-
dial profiles of uz, ur, p for both cases are shown in Fig. 8. In both
cases, the FBC is used at the domain inflow. The velocity and pres-
sure profiles of Fig. 8 aptly show that the results from the short do-
main match very well those from the long one. Only the pressure
profile is shifted by a constant corresponding to the reduced length
z = 25. Similar behavior was obtained at any cut downstream.
There is some discrepancy in the element where the flow rate con-
dition was imposed (Eq. (40)). This is the element in the middle of
the channel, where the maximum velocity occurs. Our testing
showed that this behavior grows worse as we choose elements
near the walls and improves as we get closer to the position of
the maximum velocity in the z-direction. To get optimum results
we could always apply a trial-and-error algorithm in order to eval-
uate the position of the maximum velocity and apply Eq. (40) at
that node.

Similar results were obtained when using the viscoelastic PTT
model of Eqs. (15)–(18). Corresponding results are shown for
Ws = 0.1 with a non-zero second normal-stress difference assumed
(n = 0.1). The contours for the two velocities and the isobars as well
as the velocity vectors are shown in Fig. 9 near the inlet at the short
domain set at z = 25. The corresponding velocity and pressure ra-
dial profiles (short) are shown in Fig. 10 and compared with those
obtained from the full domain (long) at the same axial position.
The results are again smooth and they match closely those ob-
tained from the long domain. Only the pressure profile is shifted
by a constant corresponding to the reduced length z = 25. The pres-
sure contours and profiles show curvature reflecting the fact that a
non-zero second normal-stress difference has been assumed
(n = 0.1). Furthermore, the same good behavior is also obtained
for the four viscoelastic stresses, as shown in Fig. 11. Namely, the
axial normal stress szz (Fig. 11a), the radial normal stress srr

(Fig. 11b), the shear stress srz (Fig. 11c), and the azimuthal normal
stress shh (Fig. 11d). Therefore, this example is another good man-
ifestation of the efficiency of FBC applied in a flow domain cut at
some arbitrary distance upstream.

It should be noted that when we post-process the results of our
simulation and solve Eq. (30) to get the streamlines, it is also
important to apply the FBC to the Poisson equation for the stream
function, since the integral of Eq. (39) is not zero due to the in-
clined flow.

We turn now our attention to real data of the process for a flu-
oro-ethylene polymer melt (FEP), which is used in annular dies for
coating purposes [35]. The flow process is now considered creeping
(Re � 0), viscous, non-isothermal, weakly compressible, with mate-
rial data listed in Table 2. The viscosity of the melt obeys the Cross
model (Eq. (11)) with data listed in Table 3. Furthermore, the mate-
rial slips at the wall according to a power law:

aT usl ¼ �bslrb
w; ð46Þ

where aT is given by Eq. (13), usl is the slip velocity, rw is the shear
stress at the wall, and the constants bsl and b are listed in Table 2.
The walls are kept isothermal at T0 = 371�C. The apparent shear rate
was calculated by using the formula [35]:
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_cA ¼
6Q

0:25ðD� dÞ20:5pðDþ dÞ
; ð47Þ

where Q is the volumetric flow rate, d and D are the tip (inner) and die
(outer) diameters (d = 0.15 cm and D = 0.3 cm), respectively. The
apparent shear rates ranged from 80 to 5600 s�1. Here we present re-
sults for a test run at the highest apparent shear rate of 5600 s�1. In
this case, the dimensionless numbers are: Re = 1.89 � 10�3, Bc =
3.57 � 10�4, Bp = 1.13 � 10�2, Bsl = 0.821, Pe = 2859, Na = 10.89. They
indicate a creeping flow with weak compressibility, weak pressure-
dependence of viscosity, strong slip, strong thermal convection, and
moderate viscous dissipation, respectively.

Fig. 12 shows the results by applying as inflow boundary condi-
tions a plug velocity profile and a constant temperature profile. The
results are not smooth and show some disturbances, which of
course are smoothed out further downstream (for this case within
one to two gaps because the flow is very slow at inlet). However, in
other cases of strong convective flows or viscoelastic flows, this
smoothing out may take much longer to develop.

Fig. 13 shows the corresponding results when applying the FBC
at the inflow. The inlet element chosen for the imposition of the
flow rate (Eq. (40)) was two elements below the middle one, due
to the appearance of the maximum velocity at this node, taking
into account that severe slip is also present at both walls. Now
all results are smooth and coincide with results obtained from a
much longer domain upstream. Thus, even for the case of non-
isothermal, weakly compressible flows with slip at the wall, the
FBC works well and gives nice and smooth profiles at the inflow
as well as the outflow.

A more detailed view of the differences between the arbitrary
1-D profiles and the ones obtained by applying the FBC is shown
in Fig. 14 for the radial inlet profiles of the primary variables, veloc-
ities-pressure–temperature. The 1-D velocity profile imposed is a
plug velocity profile for uz, whereas the FBC gives a nice smooth
curved profile with different slip velocities at the two annular walls
(Fig. 14a). The profile for ur from FBC is like the uz-profile but with
negative values, while the 1-D profile for ur is zero (Fig. 14b). The
pressure profile obtained from FBC is a straight line, while the
1-D solution gives a curved one (Fig. 14c). However, the differences
in absolute numbers are not big (being about 17 MPa). The same is
true for the inlet temperature profiles (Fig. 14d), where a constant
temperature is assumed at 371 �C for the 1-D solution, while the
FBC provides the characteristic profile with the two hills close to
the walls and one valley in the middle, due to a viscous flow with
important viscous dissipation effects (Na > 1). Again, due to the big
channel at the inlet and the slow flow there, the temperature dif-
ferences are in the order of 0.02 �C, which of course are negligible.
This in essence justifies the imposition of a constant temperature
profile that has been used in the past in the non-isothermal simu-
lations of polymer processing [35]. However, there may be cases
where such an approximation is not appropriate, and the applica-
tion of the FBC at the inlet may prove extremely valuable.

Lastly, we would like to add that the above run has also been
done with the K-BKZ integral viscoelastic model [15,35] but that
due to the nature of this FEP melt, viscoelasticity is not important
due to severe slip effects, and the results are not too much affected.
Thus, we do not show these results here (see details in [35] with-
out the FBC at inlet).

5. Conclusions

The Free (Open) Boundary Condition (FBC, OBC) has been applied
at inflow boundaries with the purpose of testing its applicability in
various flow problems and with programs employing either the
Newton–Raphson (N–R) iterative scheme or a direct substitution
scheme (Picard iteration). The extra equation needed is the
imposition of a known flow rate given as the integral of the unknown
a priori velocity profile. It is remarkable that the only information
needed for this is the basis (shape) functions of the inlet finite ele-
ments, which are used in the calculation of the flow rate.

Three test cases have been examined for Newtonian/General-
ized Newtonian and non-Newtonian viscoelastic fluids obeying
the Phan–Thien/Tanner model. The test cases include the simple
Poiseuille flow in a tube, while the other two cases refer to axisym-
metric annular flows in tapered dies, where the inflow boundary
condition is not trivial. Effects studied include non-isothermal
flows, with slip at the wall, weak compressibility, and tempera-
ture-, pressure- and strain-rate dependence of the viscosity. In all
cases, the FBC gives an inlet profile, which is an extrapolation of
the full flow field to the boundary, and thus it matches profiles ob-
tained from an artificial long entrance where usually only the flow
rate is imposed and the flow field is left to develop itself. Further-
more, the FBC at inlet does not affect the upper limits of conver-
gence for viscoelastic flows (the HWNP) and is also valid for high
Re number flows as shown in [22].

The present results are offered as reference solutions for
researchers working with the numerical simulation of fluid flows.
The current implementation of the FBC is then a very attractive
alternative for imposing inflow boundary conditions in all cases
of fluid flow, and in particular when there is uncertainly of what
is happening at an artificial inflow boundary. Furthermore, its
3-D implementation is straight-forward and certainly very helpful
in reducing the computing effort and computational cost by using
shorter domains artificially cut at inlet and outlet.
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