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The dynamics of a gas bubble in a square channel with a linearly increasing
temperature at the walls in the vertical direction is investigated via three-dimensional
numerical simulations. The channel contains a so-called ‘self-rewetting’ fluid whose
surface tension exhibits a parabolic dependence on temperature with a well-defined
minimum. The main objectives of the present study are to investigate the effect of
Marangoni stresses on bubble rise in a self-rewetting fluid using a consistent model
fully accounting for the tangential surface tension forces, and to highlight the effects
of three-dimensionality on the bubble rise dynamics. In the case of isothermal and
non-isothermal systems filled with a ‘linear’ fluid, the bubble moves in the upward
direction in an almost vertical path. In contrast, strikingly different behaviours are
observed when the channel is filled with a self-rewetting fluid. In this case, as
the bubble crosses the location of minimum surface tension, the buoyancy-induced
upward motion of the bubble is retarded by a thermocapillary-driven flow acting in
the opposite direction, which in some situations, when thermocapillarity outweighs
buoyancy, results in the migration of the bubble in the downward direction. In
the later stages of this downward motion, as the bubble reaches the position of
arrest, its vertical motion decelerates and the bubble encounters regions of horizontal
temperature gradients, which ultimately lead to the bubble migration towards one of
the channel walls. These phenomena are observed at sufficiently small Bond numbers
(high surface tension). For stronger self-rewetting behaviour, the bubble undergoes
spiralling motion. The mechanisms underlying these three-dimensional effects are
elucidated by considering how the surface tension dependence on temperature affects
the thermocapillary stresses in the flow. The effects of other dimensionless numbers,
such as Reynolds and Froude numbers, are also investigated.
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1. Introduction
Marangoni stresses due to the variation in surface tension at the interface separating

two immiscible fluids play a vital role in many technological applications. The surface
tension gradient at the interface can occur due to the variation in either temperature
or concentration of surfactants. A characteristic problem of this nature is the
thermocapillary migration of a drop/bubble. Extensive reviews on this subject can be
found in Subramanian (1992) and Subramanian, Balasubramaniam & Wozniak (2002).
In the present work, we numerically investigate the thermocapillary migration of a
bubble inside a three-dimensional channel filled with a so-called ‘self-rewetting’ fluid
that exhibits a non-monotonic dependence of the surface tension on temperature. This
behaviour is in contrast with that of common fluids (hereafter termed ‘linear’ fluids),
such as water and various oils, whose interfacial tension with air typically decreases
almost linearly with increasing temperature. A typical example of self-rewetting
fluids are non-azeotropic, high-carbon alcohol solutions, which have quasi-parabolic
surface tension–temperature curves with well-defined minima; increasing alcohol
concentration increases the parabolicity of these curves (Vochten & Petre 1973; Petre
& Azouni 1984; Limbourgfontaine, Petre & Legros 1986; Villers & Platten 1988;
Savino, Cecere & Paola 2009; Savino et al. 2013). This unusual surface tension
dependence on temperature was first observed by Vochten & Petre (1973), and such
fluids were later termed self-rewetting by Abe, Iwasaki & Tanaka (2004). It has been
shown that the properties of these fluids can be exploited to accomplish substantially
higher critical heat fluxes in heat pipes compared to water (McGillis & Carey 1996;
Ahmed & Carey 1999; Suzuki, Nakano & Itoh 2005) or may even give rise to some
very interesting phenomena, such as thermally induced ‘superspreading’ behaviour of
a droplet on a surface (Karapetsas et al. 2014).

The thermal migration of bubbles in a linear viscous fluid heated from below
was first reported in the pioneering work of Young, Goldstein & Block (1959), who
experimentally demonstrated that, due to the Marangoni stresses induced by the
temperature gradient, small bubbles move in the downward direction, whereas larger
bubbles move in the upward direction. In the latter case, the buoyancy overcomes
the effect of thermocapillarity. Assuming a spherical-shaped bubble and creeping
flow conditions, they also derived an analytical expression for the terminal velocity
of the bubble. Later, in the context of microgravity applications, Balasubramaniam
& Chai (1987) neglected buoyancy and extended the analytical solution to bubbles
with small deformation from a spherical shape. By conducting an asymptotic analysis
in the limit of large Reynolds and Marangoni numbers, Balasubramaniam (1998)
reported that the steady migration velocity is a linear combination of the velocity for
purely thermocapillary motion and the buoyancy-driven rising velocity. Later, Zhang,
Subramanian & Balasubramaniam (2001) performed a theoretical analysis and showed
that for small Marangoni numbers the inclusion of inertia is crucial in the development
of an asymptotic solution for the temperature field. Recently, by conducting numerical
simulations of a droplet inside a rectangular box, Brady, Herrmann & Lopez (2011)
showed that for low Marangoni numbers a drop rapidly reached a quasi-steady state,
but for high Marangoni numbers the initial conditions affect the behaviour of the
droplet significantly. The thermocapillary migration of a bubble for high Marangoni
numbers was also investigated by Liu, Zhang & Valocchi (2012). They showed that
the terminal velocity of the bubble decreases with increasing Marangoni number.

Merritt, Morton & Subramanian (1993) studied the migration of bubbles in the
presence of buoyancy and thermocapillarity via direct numerical simulations. Since
then, several kinds of numerical methods – ranging from boundary-fitted grids
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Bubble rise in a self-rewetting fluid 691

(Chen & Lee 1992; Welch 1998), to the level-set method (Haj-Hariri, Shi & Borhan
1997; Zhao et al. 2010), the volume-of-fluid (VoF) method (Ma & Bothe 2011;
Tripathi et al. 2015b), diffuse-interface methods (Borcia & Bestehorn 2007) and
hybrid schemes of the lattice Boltzmann and the finite difference method (Liu et al.
2013) – have been proposed in order to obtain the surface deformation accurately.
Some of the main findings from these studies are highlighted below. Chen & Lee
(1992) and Haj-Hariri et al. (1997) showed that the deformation considerably reduces
the terminal velocity of both gas bubbles and liquid drops. Welch (1998) demonstrated
that for higher capillary numbers bubble deformation becomes important and the
bubble continues to deform at later times, failing to reach a steady state. Herrmann
et al. (2008a) and Wu & Hu (2012, 2013) also reached the same conclusion for the
case of large Marangoni numbers. Keh, Chen & Chen (2002) numerically studied
the motion of a spherical drop between two parallel plane walls and found that
the droplet migration speed can be controlled by varying the thermal conductivity
of the droplet and changing the imposed boundary conditions at the wall. Chen,
Dagan & Maldarelli (1991) found that inside an insulated tube with an imposed axial
temperature gradient, which in turn develops the hydrodynamic retarding forces, the
thermocapillary migration velocity of a spherical drop is always less than that in an
infinite medium. This work was extended by Mahesri, Haj-Hariri & Borhan (2014)
to take into account the effect of interfacial deformation. All these studies considered
the migration of bubbles and drops in linear fluids.

Tripathi et al. (2015c) conducted axisymmetric simulations by considering a
quadratic dependence of surface tension on temperature, and investigated the
buoyancy-driven rise of a bubble inside a tube imposing a constant temperature
gradient along the wall using the VoF method. They found that for self-rewetting
fluids, the bubble motion becomes complex as the bubble crosses the position of
minimum surface tension. It has been shown that, for sufficiently small Bond and
large Galileo numbers, the bubble motion could be reversed and eventually arrested
near the position of minimum surface tension. Even though, in their numerical
simulations, Tripathi et al. (2015c) have neglected the contribution of the surface
tension gradient term (∇sσ) in the interfacial stress balance, the predicted position
of bubble entrapment was found to be in very good agreement with an analytical
expression that has been derived in the Stokes flow limit by these authors, fully
accounting for this term. Here, ∇s represents the surface gradient operator and σ the
surface tension. Nevertheless, the missing Marangoni term from the numerical model
is actually quite significant for the correct representation of the physics of the present
problem since it is expected to have a significant impact in the nonlinear dynamics
of the bubble motion. It should be noted that the calculation of this term in the VoF
formulation is very challenging. An efficient way to accurately calculate the surface
tension gradient has been proposed by Seric, Afkhami & Kondic (2018) very recently.
Using a similar approach, Tripathi & Sahu (2018) developed a robust numerical
solver to handle Marangoni stresses for linear fluids, and implemented the module to
calculate the Marangoni term in an open-source code, Basilisk, developed by Popinet
and co-workers (Popinet 2003, 2009, 2018). Extensive validation exercises were
performed by comparing with the previous experimental, theoretical and computational
studies (see Tripathi & Sahu 2018). This solver has been used in the present study.

The objectives of the present study are twofold: (i) To investigate the effect of
Marangoni stresses on bubble rise in a self-rewetting fluid using a consistent model
fully accounting for the tangential surface tension forces. It is to be noted that
there are only a few previous studies (e.g. Ma & Bothe 2011; Seric et al. 2018)
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involving Marangoni stresses in the VoF framework. (ii) To study the effects of
three-dimensionality, which has been shown to be very important even in isothermal
systems (Tripathi, Sahu & Govindarajan 2015a). To the best of our knowledge,
three-dimensional dynamics of an air bubble rising in a self-rewetting fluid has
not been investigated so far. To this end, we examine the motion of a gas bubble
in a square channel with linearly increasing temperature in the vertical direction
via three-dimensional numerical simulations. Our results indicate that, in the case
of self-rewetting fluids, as the bubble crosses the location of minimum surface
tension, the buoyancy-induced upward motion of the bubble is retarded by a
thermocapillary-driven flow acting in the opposite direction, which may even result
in the migration of the bubble in the downward direction when thermocapillarity
outweighs buoyancy. In the later stages of this downward motion, as the bubble
reaches the position of arrest, its vertical motion decelerates and the bubble encounters
a region of horizontal temperature gradients, appearing due to instability, which makes
the Marangoni convection along the interface asymmetrical. This ultimately leads to
the bubble migration towards one of the channel walls. These phenomena are observed
at sufficiently small Bond numbers and have no analogue for linear fluids. The
mechanisms underlying these three-dimensional effects are elucidated by considering
how the surface tension dependence on temperature affects the thermocapillary stresses
in the flow.

The rest of the paper is organised as follows. The problem is formulated in § 2
and the equations governing the flow dynamics are discussed. The present numerical
method and the validation of the solver are presented in § 3. The numerical results and
the underlying physics are discussed in § 4. Finally, concluding remarks are given in
§ 5.

2. Formulation
2.1. Set-up

We investigate the motion of a gas bubble (fluid B) of initial radius R inside a
cubic channel (with H = 20R, as shown in figure 1a) filled with an incompressible,
Newtonian liquid A via three-dimensional numerical simulations. The dynamics is
due to the simultaneous action of buoyancy and surface tension variation resulting
due to an imposed temperature gradient via the viscous force. The surrounding fluid
A is a self-rewetting fluid whose surface tension exhibits a parabolic dependence
on temperature with a well-defined minimum at zm (see figure 1b). A Cartesian
coordinate system (x, y, z) is used to describe the bubble dynamics. Initially, the
bubble is located at z= zi. The rigid and impermeable walls are located at x=±H/2
and y = ±H/2. The acceleration due to gravity, g, acts in the negative z direction,
as shown in figure 1(a). A linear temperature variation with a constant gradient, γ ,
is imposed at the walls in the vertical direction, given by T = Tm + γ (z − zm), such
that Tm is the temperature at the location where the surface tension is minimum,
i.e. z= zm.

In order to determine the flow characteristics, we solve the equations of conservation
of mass, momentum and energy, which are given by

∇ · u= 0, (2.1)

ρ

[
∂u
∂t
+ u · ∇u

]
=−∇p+∇ · [µ(∇u+∇uT)] + F, (2.2)
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FIGURE 1. (Colour online) (a) Schematic diagram showing the initial configuration of a
gas bubble (fluid B) rising inside a liquid medium (fluid A). Initially, the bubble is placed
at z= zi inside the cubic computational domain. The acceleration due to gravity, g, acts
in the negative z direction. A linear temperature variation is imposed at the walls in the
vertical direction with a constant gradient, γ . (b) Typical variations of surface tension, σ ,
of a self-rewetting fluid along the vertical direction for different values of M1 and M2.

∂T
∂t
+ u · ∇T =∇ · (α∇T). (2.3)

Here ρ, µ and α denote the density, viscosity and thermal diffusivity, respectively; u,
p and T denote the velocity, pressure and temperature fields of the fluid, respectively;
and t represents time. The continuum surface force formulation (Brackbill, Kothe
& Zemach 1992) is used to include the surface tension force in the Navier–Stokes
equations. Force F is the combination of gravitational force per unit volume (−ρgez)
and surface tension force per unit volume (δ(x − xf )σκn + δ(x − xf )∇sσ). Here,
δ(x − xf ) is a delta distribution (denoted by δ hereafter) that is zero everywhere
except at the interface, where x= xf is the position vector of a point at the interface;
κ = ∇ · n is the curvature, where n is the unit normal to the interface pointing
towards fluid A; ez represents the unit vector in the vertically upward direction;
∇s (≡ ∇ − (∇ · n)n) represents the surface gradient operator; and σ represents the
interfacial tension coefficient of the liquid–gas interface. The following functional
dependence of the surface tension on temperature is used to model the behaviour of
a self-rewetting fluid:

σ = σ0 − β1(T − T1)+ β2(T − T1)
2. (2.4)

Here β1≡−dσ/dT
∣∣

T1
and β2≡ (d2σ/dT2)/2

∣∣
T1

; T1=Tm− γ zm denotes the temperature
at the bottom of the physical domain (z = 0); and σ0 denotes the surface tension at
that temperature. This parabolic dependence of the surface tension on temperature is
expected to alter the type of Marangoni flow observed in the case of simple linear
fluids that exhibit a linear variation of σ with T .

The following advection equation of the volume fraction of the liquid phase, c,
which takes on values between 0 and 1 for the gas and liquid phases, respectively,
is solved using a VoF framework in order to track the interface separating the liquid
and gaseous phases:

∂c
∂t
+∇ · (uc)= 0. (2.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IN

D
IA

N
 IN

ST
IT

U
TE

 O
F 

TE
CH

N
O

LO
G

Y 
,H

YD
ER

AB
AD

, o
n 

09
 N

ov
 2

01
8 

at
 0

3:
49

:4
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.774
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


694 M. Balla, M. K. Tripathi, K. C. Sahu, G. Karapetsas and O. K. Matar

As shown by Popinet (2009), this equation is equivalent to the advection equation for
the density. The viscosity dependence on the temperature and the volume fraction of
the liquid phase is given by (Nahme 1940; Tripathi et al. 2015c):

µ= cµAe−(T−T1)/(Tm−T1) + (1− c)µB

{
1+

(
T − T1

Tm − T1

)3/2
}
, (2.6)

where µA and µB are the viscosity of the liquid and gaseous phases at the reference
temperature, T1.

The density and thermal diffusivity are assumed to be constants for each phase, and
are given by

ρ = ρAc+ ρB(1− c), (2.7)
α = αAc+ αB(1− c), (2.8)

respectively. Here, ρA and ρB denote the density, and αA and αB represent the thermal
diffusivity of the liquid and gaseous phases, respectively.

2.2. Scaling
We employ the following scaling in order to render the governing equations
dimensionless:

(x, y, z, zi, zm)= R(x̃, ỹ, z̃, z̃i, z̃m), t= ts̃t, u= Vũ, p= ρAV2p̃,

µ=µAµ̃, ρ = ρAρ̃, α = αAα̃, T = T̃(Tm − T1)+ T1,

σ = σ0σ̃ , β1 =
σ0

Tm − T1
M1, β2 =

σ0

(Tm − T1)2
M2, γ =

Γ (Tm − T1)

R
,

 (2.9)

where tildes designate dimensionless quantities. The velocity scale, V , is β1γR/µA and
the time scale, ts, is µA/β1γ . Here, M1, M2 and Γ represent the dimensionless β1, β2

and imposed temperature gradient at the sidewalls in the z direction (γ ), respectively.
We now drop the tilde notation from all the dimensionless quantities given in (2.9).
Therefore, the variables presented hereafter in the paper are all dimensionless.

The governing dimensionless equations are given by

∇ · u= 0, (2.10)

ρ

[
∂u
∂t
+ u · ∇u

]
=−∇p+

1
Re
∇ · [µ(∇u+∇uT)] +

1
Fr

F, (2.11)

∂T
∂t
+ u · ∇T =

1
Ma
∇ · (α∇T), (2.12)

where Re≡ρAVR/µA denotes the Reynolds number, Fr≡V2/gR is the Froude number,
Ma≡ VR/αA (≡ RePr) is the Marangoni number and Pr (≡ µA/ρAαA) is the Prandtl
number.

The dimensionless force F in (2.11) is given by

F=
δ

Bo
[σκn+∇sσ ] − ρez, (2.13)
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Bubble rise in a self-rewetting fluid 695

where σ = 1−M1T +M2T2 and Bo= ρAgR2/σ0 (≡ ReCa/Fr); Ca≡ VµA/σ0 denotes
the capillary number. The first and second terms on the right-hand side of (2.13)
correspond to the capillary and gravitational contributions, respectively.

The dimensionless viscosity, µ, is given by

µ= ce−T
+ (1− c)µr(1+ T3/2), (2.14)

where µr ≡ µB/µA is the viscosity ratio. The dimensionless density (ρ) and thermal
diffusivity (α) are given by (Haj-Hariri et al. 1997):

ρ = c+ ρr(1− c), (2.15)
α = c+ αr(1− c), (2.16)

respectively, where ρr ≡ ρB/ρA and αr ≡ αB/αA.

3. Numerical method
For the purposes of the present work, we have used, as a starting point, an

open-source finite-volume VoF-based multiphase flow solver, Basilisk (Popinet 2003,
2009). As already pointed out, identifying the exact values of the surface tension
coefficient and evaluating its gradient along the interface are quite challenging for
interface capturing techniques and were not included in the original Basilisk solver.
Following a similar methodology to Tripathi & Sahu (2018), we have fully taken
into account the tangential gradient of surface tension force (Marangoni force) in
our calculations. The reader is referred to Tripathi & Sahu (2018) for a detailed
description of the numerical method used in the present study.

The VoF advection algorithm employed is non-diffusive and conservative in nature
(Weymouth & Yue 2010). The calculation of surface tension force is balanced by
pressure gradient with a height-function-based interface curvature estimation. An
adaptive refinement of the mesh near the interface and regions with vortical flow is
used in the present study.

The following boundary conditions (in dimensionless form) are used in our
numerical simulations. No-slip and no-penetration boundary conditions are imposed
at all the sidewalls, and Neumann boundary conditions for temperature and for the
velocity components are used at the top and bottom of the computational domain. A
constant temperature (T = 1+Γ (z− zm)) is imposed at all the sidewalls. However, the
boundary conditions used in § 3.1 only are different. They are prescribed in the same
way as considered by the previous studies, which are explicitly discussed below.

3.1. Validations
In order to validate the present solver, first we compare the terminal velocity of a
bubble migrating in a linear fluid (M2 = 0) due to an imposed temperature gradient
in the creeping flow regime and zero Marangoni number with the corresponding
theoretical prediction of Young et al. (1959). This test case is performed in the
zero-gravity condition, as Young et al. (1959) theoretically derived the terminal
velocity of a neutrally buoyant spherical bubble inside another infinitely unbounded
fluid at rest.

The dimensionless theoretical terminal velocity of the bubble is (Young et al. 1959)

wYGB =
2

(2+ αr)+ (2+ 3µr/ρr)
. (3.1)
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FIGURE 2. Drop migration velocity for Re=Ma= 0.72 and Ca= 0.0576 in the absence
of gravitational effects.

Herrmann et al. (2008b) also performed numerical simulations to validate their result
against the theoretical prediction of Young et al. (1959). Based on the configuration
used by Herrmann et al. (2008b), in our simulation a time-invariant linear temperature
field (T = 1+Γ (z− 15)) is imposed, which drives a bubble from the low-temperature
to the high-temperature region, and the case of a linear fluid is also considered.
Initially, the bubble is kept at the centre of a computational domain of size
15 × 15 × 15. The values of the dimensionless parameters are Γ = Ca = Re = 1/15.
The rest of the parameters considered in the numerical simulation are αr = 1, ρr = 1
and µr = 1. For this set of parameters, wYGB ≈ 0.133. In our three-dimensional
numerical simulation, we found that the terminal velocity of the bubble (wrise) is
0.131. Thus, the percentage error, (1−wrise/wYGB)× 100, is less than 1.7 %.

Next, we compare the rise velocity of a neutrally buoyant spherical bubble obtained
from our numerical simulation with that reported by the previous studies in figure 2.
The parameter values considered for this test case are Re=Ma=0.72 and Ca=0.0576.
The ratio of the fluid properties of the ambient fluid with those of the drop is fixed at
2. This test case was originally taken by Nas & Tryggvason (2003) and subsequently
used by other researchers (see e.g. Ma & Bothe 2011; Seric et al. 2018) to validate
their numerical solvers. A square computational domain of size 4 × 4 is considered.
As considered by the previous studies, two-dimensional simulation is performed for
this exercise. No-slip and no-penetration boundary conditions are used at the top and
bottom walls, whereas Neumann boundary conditions for the velocity components and
temperature are used at the side boundaries. A grid convergence test is performed and
the converged solution is obtained using a grid size (dimensionless) ∆=0.0312. It can
be seen in figure 2 that the terminal rise velocity obtained from our simulation agrees
well that of Seric et al. (2018). However, in the accelerating regime (t < 0.4), our
result is closer to those of Nas & Tryggvason (2003) and Ma & Bothe (2011).

We have also performed a validation exercise by comparing the thermocapillary
migration of a bubble obtained from the present simulation with that of Liu et al.
(2012). They conducted simulations based on the lattice Boltzmann method for the
thermocapillary migration of a bubble placed at the centre of a computational domain
of size 15R× 15R× 15R with the top and bottom walls maintained at temperatures 0
and 24 (lattice units), respectively. They used R= 16, ρA = ρB = 1.0, µA = µB = 0.2,
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FIGURE 3. (Colour online) The temporal variations of the normalised velocity of the
bubble, wrise/wYGB, for Ma= 1 and 10. The rest of the parameters are Re= 1, Ca= 0.1 and
Γ ≈ 0.133. The symbols are the results of Liu et al. (2012) and the solid lines represent
our results.

σ0 = 0.025 and Tref = 12; all the variables are in lattice units. This gives Re = 1,
Ca= 0.1 and Γ = 0.13333. The thermal conductivity of the fluids, κA = κB = 0.2 and
0.02, are used to obtain Ma= 1 and 10. We performed numerical simulations for these
sets of dimensionless numbers using ∆= 0.06 (as also used in their study). No-slip
and no-penetration boundary conditions are used at the top and bottom walls, and
periodic boundary conditions for the velocity components and temperature are used
at the side boundaries. The bubble rise velocity normalised with the theoretical result
of Young et al. (1959) versus time for Ma= 1 and 10 is plotted in figure 3. For these
parameters, wYGB = 1.667× 10−4. It can be seen that the agreement is quite good.

To generate the results presented in the following section, a three-dimensional
computation domain of size 20× 20× 20 is used. Initially the gas bubble is placed
at zi = zCG(t = 0) = 9.5. A wavelet-error-based dynamic adaptive grid refinement
feature of Basilisk has been employed to refine the grid at the interface and in the
regions of the domain where the gradients in velocity are large. The refinement level
used in our simulations is 6, which corresponds to 64 computational cells per unit
domain width, and the finest level being 9 near the interface, which amounts to
512 computational cells per unit domain width. An intermediate refinement of 256
cells per unit domain width is used in regions with higher velocity gradients. As
mentioned in Popinet (2018), the balanced force method for the calculation of the
surface tension term in the Navier–Stokes equations may generate parasitic currents
for surface-tension-dominant flows. Thus, in figure 4, we have performed another test
to check whether the capillary pressure balances the pressure jump across the interface
for Re= 10, Bo= 10−3, Fr = 50, Pr = 0.7, µr = 10−2, ρr = 10−3, αr = 0.04, zi = 9.5
and Γ = 0.1 (hereafter, termed the ‘base’ parameters). Here, the temporal variation of
the percentage difference between the integral pressure jump across the interface and
integral value of the capillary pressure over the bubble surface is plotted for M1= 0.4
and M2 = 0.2. This is defined as [(pressure force + force due to normal viscous
stress difference − surface tension force)/(surface tension force)] × 100. Note that
the surface tension force includes its normal and Marangoni contributions. It can be
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FIGURE 4. (Colour online) The temporal variation of the difference (in percentage)
between the pressure force plus force due to normal viscous stress difference and surface
tension force integrated over the entire bubble surface. Here M1 = 0.4 and M2 = 0.2, and
the rest of the parameters are Re= 10, Bo= 10−3, Fr= 50, Pr= 0.7, µr= 10−2, ρr= 10−3,
αr = 0.04, zi = 9.5 and Γ = 0.1 (base parameters).

seen that it is approximately 1.5 %, which reduces to approximately 0.5 % at later
times.

4. Results and discussion
4.1. Axisymmetric bubble

We begin the discussion of our results by examining the case of an axisymmetric gas
bubble. Tripathi et al. (2015c) have shown that, as the bubble crosses the position of
minimum surface tension, the bubble motion could be reversed, for sufficiently small
Bond number and significant inertia, and eventually becomes arrested near the position
of minimum surface tension. It is important to note, though, that in their numerical
simulations the contribution of the surface tension gradient term in the interfacial
stress balance was neglected, and therefore one of the goals of the present study is to
investigate the impact of this missing term on the nonlinear dynamics of the bubble
motion. As mentioned above, our numerical scheme is able to fully account for the
contributions of the Marangoni force.

Figure 5(a,b) presents a comparison between the results obtained from the present
study and those predicted by Tripathi et al. (2015c), respectively. In figure 5(a,b),
we depict the temporal variation of the centre of gravity, zCG, of a bubble rising
in a self-rewetting fluid inside a channel with walls that are heated according to
a linear temperature profile of constant gradient Γ > 0. The evolutions of zCG are
shown for three different values of the parameter M1, while M2 = M1/2; the latter
restriction is imposed to keep the position where the minimum surface tension occurs
constant. (The remaining parameters are the same as the base parameters.) The
comparison between the two sets of simulations reveals that the Marangoni stresses
significantly affects the dynamics of the bubble motion. In figure 5(b), as described
in Tripathi et al. (2015c), the bubble reaches a maximum height (z≈ 10.7) before it
reverses its motion and equilibrates at z≈ 10.24, for all values of M1. On the other
hand, in figure 5(a), where we have included the Marangoni term in the interfacial
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FIGURE 5. (Colour online) Temporal variation of the centre of gravity of the bubble,
zCG, rising in an axisymmetric domain. (a) With Marangoni term (δ∇sσ ), and (b) without
Marangoni term (δ∇sσ ). The parameter values are Re= 10, Bo= 10−3, Fr= 50, Pr= 0.7,
µr = 10−2, ρr = 10−3, αr = 0.04, zi = 9.5 and Γ = 0.1 (base parameters). The positions of
bubble arrest for M1= 0.2, 0.4 and 0.6 obtained from the analytical solution are shown in
panel (a) by the red filled circle, triangle and square, respectively, on the right-hand axis.

stress balance, a significantly different behaviour is observed. For all values of M1
considered, the bubble rises with a constant velocity till t≈6, after a short accelerating
phase initially. At later times (for t> 10, approximately), the bubble attains a terminal
location and becomes stationary. It can be seen in figure 5(a) that increasing the value
of M1 decreases the location of bubble arrest. We also observe that the reversal of
bubble motion takes place only for the highest value of M1 (M1 = 0.6) for which
the effect of Marangoni stresses acting in the downward direction become maximised
and overcome the effect of buoyancy before the bubble reaches its terminal position.

Tripathi et al. (2015c) derived an analytical expression for the position of bubble
entrapment based on the assumption of Stokes flow (see their equation (4.1)) which
in our case gives z=10.09. Besides the fact that the analytical solution takes fully into
account the presence of the Marangoni contribution, the predicted value appears to be
much closer to the predictions of the numerical simulation shown in figure 5(b). This
seemingly puzzling situation can be explained by looking more carefully at the flow
field of the liquid that surrounds the bubble in both cases. According to the Stokes
limit solution, in the case of a motionless bubble there is no flow of the surrounding
liquid (see equation (3.13) in Tripathi et al. (2015c)). In the numerical simulations of
figure 5(b), when the bubble reaches a motionless state, we find (not shown) that the
velocity field is indeed very close to zero, which explains the good agreement with the
Stokes limit solution. However, when the Marangoni term is taken into account and
for finite values of Re, the liquid is never entirely motionless since thermocapillarity
drives a steady recirculation around the bubble. This is shown very clearly in figure 6
where we depict the streamlines associated with the bubble for M1 = 0.6 at t = 20;
similar streamline patterns are observed for other values of M1 as well. The presence
of liquid motion, even at times that the bubble has reached its equilibrium position,
clearly renders the analytical solution invalid.

4.2. Effects of three-dimensional flow
We now turn our attention to the three-dimensional flow, which is the main focus the
present work. In figure 7, we present the temporal variation of the centre of gravity,
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0.95 1.02 1.10

FIGURE 6. (Colour online) Streamlines at t = 20 for M1 = 0.6 fully accounting for the
Marangoni term (δ∇sσ ). The background colour shows the temperature field. The rest of
the parameters are the same as those used to generate figure 5(a).

t
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zCG
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Linear
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FIGURE 7. Temporal variation of the centre of gravity of the bubble for an isothermal
system (M1 = 0 and M2 = 0), a self-rewetting fluid (M1 = 0.4 and M2 = 0.2) and a linear
fluid (M1 = 0.4 and M2 = 0) and zi = 9.5. The remaining parameter values are the same
as the base parameters.

zCG, of a rising bubble inside a rectangular channel for three different cases: the case
of a bubble rising in an isothermal liquid, and the cases where the channel is filled
with either a linear (M1 = 0.4 and M2 = 0) or a self-rewetting fluid (M1 = 0.4 and
M2 = 0.2). The remaining parameters are the same as the base parameters. It can
be seen that the bubble undergoes a relatively short acceleration phase, after which
the bubble attains a constant terminal speed for both the isothermal and the linear
fluid (non-isothermal) cases. For the linear fluid, the terminal speed is higher due to
the presence of Marangoni stresses, which drive liquid towards the cold region of
the channel, i.e. Marangoni stresses act in the same direction as that of buoyancy,
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FIGURE 8. (Colour online) Trajectories of the bubble moving in a channel containing the
(a) linear fluid (M1= 0.4 and M2= 0) and (b) self-rewetting fluid (M1= 0.4 and M2= 0.2).
The remaining parameter values are the same as the base parameters.

thereby enhancing the upward motion of the bubble. For the self-rewetting fluid case,
the surface tension decreases and then increases (see (2.4) and figure 1b) with a
minimum at zm = 10. Thus in region z > zm, the bubble experiences a pull in the
downward direction due to Marangoni stresses, but buoyancy tries to push the bubble
in the upward direction. Owing to this competition between Marangoni stresses and
buoyancy, the bubble moves with a considerably lower speed until, at later times
(t > 8), these forces counterbalance each other and the bubble at t ≈ 18 has become
entrapped at z≈ 10.33 for this set of parameters.

It is well known that, in isothermal systems, the three-dimensionality of the flow
can be expressed through a zig-zag motion of the bubble (Tripathi et al. 2015a).
However, the mechanism of the zig-zagging motion of a bubble in an isothermal
system is different from that in the present case. In the case of an isothermal system,
the three-dimensional motion is associated with a symmetric pair of rotating vortices
in the wake of the bubble (Magnaudet & Mougin 2007). As expected for the specific
parameter values used in figure 7, the bubble in the isothermal liquid rises in a
perfectly straight path (Tripathi et al. 2015a). In figure 8(a), we plot the trajectory of
a bubble rising in a linear fluid (non-isothermal case). Like in the isothermal case, the
bubble in a linear fluid also moves in the upward direction in an almost vertical path.
On the other hand, a striking difference is observed in the case of the self-rewetting
fluid (see figure 8b), where the bubble initially moves vertically, but after its upward
motion decelerates and reaches z ≈ 10.33, the bubble migrates away from the axis
of symmetry. This can be explained as follows. In the returning path (after the
bubble has reached its maximum height) and when the bubble reaches a stationary
position, any perturbation in the position of the bubble will lead to interfacial thermal
gradients. The bubble has a relatively low/high-temperature fluid in its wake due to
the Marangoni convection when the bubble is rising/on the return path. This builds
up a radial gradient of temperature in the vicinity of the bubble. Any perturbation in
the flow may cause the bubble to experience an asymmetrical temperature distribution,
which leads to an unbalanced force in the horizontal direction due to the asymmetrical
Marangoni stresses. The onset of this horizontal migration may be studied in detail
with the help of a linear stability analysis, which is out of the scope of the present
study.
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FIGURE 9. Temporal variations of (a) zCG, (b) xCG, (c) yCG and (d) the distance of the
centre of gravity of the bubble from the axis, d=

√
x2

CG + y2
CG, for different values of M1.

The parameter values are the same as those used in figure 7 while M2 =M1/2.

The lateral migration of the bubble is quantified in figure 9, where we plot the
evolution of the z, x and y components of the position of the bubble centre of
gravity along with its distance from the axis, d =

√
x2

CG + y2
CG, for three different

values of M1 and M2 = M1/2. It can be seen that, at early times, the bubble rises
approximately vertically, i.e. along (x, y)= (0, 0), and continues to do so even after
the bubble has crossed the location where the surface tension is minimum, i.e. z= zm;
in this region the thermocapillary stresses act to decelerate its upward motion
(see figure 9a). Increasing the value of M1, and thus M2 as well, the rise velocity
of the bubble decreases due to the fact that the self-rewetting character of the
fluid becomes more pronounced and the bubble retardation due to the induced
thermocapillary stresses increases. Thus, as shown in figure 9(a), the bubble is
eventually arrested at lower heights. Interestingly, the first signs of bubble migration
away from the axis of the channel appear when its motion in the vertical direction
decelerates. In particular, for M1=0.2 we find that the bubble begins its lateral motion
at t ≈ 11, which coincides with the time that the bubble has reached its maximum
elevation (see figures 9a and 9d). Similarly, for M1 = 0.4 the bubble initiates its
lateral motion at t ≈ 7, although in this case the bubble temporarily revolves around
the axis of the channel, as it moves downwards. Eventually, though, as the bubble
decelerates its vertical motion, it sets off moving in the lateral direction (for t> 12).
Another strikingly different behaviour is observed in the trajectory of the bubble for
M1 = 0.6 (see figure 10a,b) from the cases with lower values of M1. For M1 = 0.6,
the bubble undergoes spiralling motion (albeit of small amplitude), in contrast to the
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FIGURE 10. (Colour online) Trajectory of the bubble. (a) Three-dimensional view, and
(b) top view (projection on the x–y plane) for M1 = 0.6. The remaining parameter values
are the same as the base parameters.

bubble for lower values of M1, which migrates away from the axis of symmetry in
the lateral direction after rising in the vertical path in the early times (see figure 8b).

The lateral migration of buoyant drops and bubbles has also been observed in the
case of isothermal systems (e.g. see Tripathi et al. (2015a) and references therein). In
these systems, it has been established that the migration and non-axisymmetric motion
typically take place due to the combined effect of inertia and interfacial deformation.
In our case, however, interfacial deformation cannot be held responsible since it is
negligible at all times for the parameter values that are examined in the present work
(for instance, see the bubble shapes at different times in figure 11).

In order to rationalise this behaviour and gain further insight into the bubble
dynamics, we analyse the velocity and temperature fields at various stages of the
flow development for the surface-tension-dominated case, characterised by Bo= 10−3.
In figure 11(a–d), we show contour plots of u, v, w and T , respectively, in the x–y
plane corresponding to z= zCG and for t= 3, 7.8, 11 and 20, which span the vertical
rise and lateral migration stages (see figure 9). It can be clearly seen that, during
the early stages of the flow (t = 3), motion in the vertical direction dominates the
dynamics as evidenced by the magnitude of the vertical velocity component, w, which
greatly exceeds that of u and v; the corresponding temperature field also appears to
be axisymmetric. In figure 12, we also depict the flow field in the x–z plane. The
variation of σ on the bubble surface and temperature contours in the x–z plane at zCG

of the bubble are shown in figure 13(a,b), respectively. As shown in figure 13(a), at
t = 3 the bubble has just crossed z= zm with a symmetric profile of surface tension
exhibiting a maximum at the bottom part of the bubble and a minimum in the middle.
With increasing time (at t = 7.8), the value of w has decreased considerably due to
the Marangoni convection in the opposite direction of bubble motion as can be clearly
deduced from figure 12. This is in agreement with the results illustrated in figure 9(c),
which indicate that the onset of bubble departure takes places at t≈ 7.8. Because of
instability, the axisymmetry of the flow field about the z direction breaks down at
later times (see figures 11 and 12). Since the position of the bubble at t= 11 is above
zm, the surface tension increases with temperature and Marangoni stresses drive fluid
surrounding the bubble towards the hotter regions (where surface tension is higher),
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FIGURE 11. (Colour online) Spatio-temporal variation (bottom to top: t= 3, 7.8, 11 and
20) of u, v, w and T contours (a–d) on the x–y plane at zCG for the self-rewetting fluid
for M1 = 0.4. The remaining parameter values are the same as the base parameters.

pushing the bubble towards the opposite direction (see figure 13). This eventually
results in driving the bubble closer to the axis of the channel, which is also reflected
in figure 9; as shown in figure 9, the distance from the axis decreases for t> 10. At
t = 20, as shown in figure 11(d), a markedly non-axisymmetric profile of T arises,
with the largest temperatures being in the top-right quadrant of the bubble projection
on the x–y plane. At this point an asymmetry of the surface tension profile in the
vertical direction becomes evident in figure 13(a). The variation of surface tension
about the z direction on the bubble surface is very small, and therefore cannot be
noticed in figure 13(a) at t = 20. Thus, we plot the variation of (σ − σm)/Bo and
T − Tm versus θ along the equator of the bubble in figure 14(a,b) at t = 20. Here,
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t = 3 t = 7.8

t = 11 t = 20

FIGURE 12. (Colour online) Temporal variations of streamlines in the x–z plane at zCG of
the bubble for M1= 0.4 and M2= 0.2. The bubble shape is shown in red. The remaining
parameter values are the same as the base parameters.

t = 3 t = 7.8

t = 11

0.800 0.803 0.805 0.80 0.95 1.10

t = 20

t = 3 t = 7.8

t = 11 t = 20

(a) (b)

FIGURE 13. (Colour online) (a) The surface tension (σ ) variation on the bubble surface
(the view is in the x–z plane at zCG of the bubble). (b) The temperature (T) contours on
the x–z plane passing through the centre of gravity of the bubble. Here M1= 0.4, M2= 0.2
and the remaining parameter values are the same as the base parameters.

θ is defined in the x–y plane and measured from the positive x axis, and σm is the
minimum surface tension. The asymmetry in variations of σ and T can be clearly
seen in figure 14; however, the onset of departure of the bubble from axisymmetry
can be understood by performing a stability analysis.

Having established the mechanism underlying the lateral migration phenomenon, we
investigate next the effect of the initial location of the bubble. In figure 15, we show
the evolution of the vertical position of the bubble centre of gravity as a parametric
function of zi, with the remaining parameters fixed at their ‘base values’. In cases
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FIGURE 14. Plots of (a) (σ − σm)/Bo versus θ and (b) T −Tm versus θ along the equator
of the bubble at t = 20 for M1 = 0.4 and M2 = 0.2. The remaining parameter values are
the same as the base parameters.
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FIGURE 15. (Colour online) Temporal variation of the centre of gravity of the bubble for
a self-rewetting fluid (M1 = 0.4 and M2 = 0.2) starting from different initial locations, zi;
the location of minimum surface tension (i.e. z = 10) is shown by red dotted line. The
remaining parameter values are the same as the base parameters.

where the initial location of the bubble is lower than that associated with surface
tension minimum, zm, the surface tension gradient reinforces the buoyancy-driven
bubble rise. As soon as the bubble reaches elevations such that z > zm, the surface
tension gradient is reversed and the bubble becomes retarded by the induced
Marangoni flow. However, with increasing distance that the bubble has to cover
before it reaches z = zm, it is allowed to gain momentum and thus may reach
higher elevations before it eventually gets arrested. For sufficiently large values of
zi, i.e. zi > zm, the bubble moves in the negative z direction under the action of
Marangoni stresses whose magnitude exceeds that of the buoyancy force. In all cases,
however, the terminal value of zCG is identical for all zi values. Moreover, even
though it reaches a terminal vertical position, the bubble does not remain motionless
but moves sideways as shown in figure 16.

In figure 17, the temporal variation of zCG and distance from the axis, d, are
depicted for different values of the Bo number. Moreover, in figure 18, the trajectories
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FIGURE 16. (Colour online) Trajectories of the bubbles started from different initial
locations: (a) zi = 7.5, (b) zi = 10 and (c) zi = 11.5. The rest of the parameter values
are the same as those used to generate figure 15.

of the bubble for two limiting values of Bo are depicted in two different projections.
As shown in figures 17 and 18, the three-dimensional effects on the flow become
less pronounced with increasing value of Bo, while the onset of lateral migration
takes place at later times, e.g. see figure 18(c). This is indeed a striking difference
from the case of a bubble rising under isothermal conditions, for which it is believed
that asymmetrical deformation of the bubble is associated with path instability
(Tripathi et al. 2015a; Sharaf et al. 2017). This is clearly not the case for the present
system where the path instability is actually due to the interplay of inertia and
thermocapillarity, and appears to be favoured by bubbles that retain their spherical
shape. The aspect ratio of the bubble (ratio of the diameters of the bubble along any
two axes) for the parameters considered is approximately one all the times, i.e. the
bubbles remain mostly spherical. In addition to the mechanism of the lateral migration
discussed above (see figure 11), a stability analysis similar to those performed by
Magnaudet & Mougin (2007), Yang & Prosperetti (2007), Zenit & Magnaudet (2008)
and Cano-Lozano et al. (2016) for isothermal systems may also provide further
insight into this phenomenon.

The temporal variations of zCG for different values of Reynolds number and
Froude number are plotted in figures 19(a) and 19(b), respectively. It can be seen in
figure 19(a) that, with the increase in the value of Reynolds number and keeping the
Froude number fixed at Fr= 50, the bubble reaches higher maximum elevations due
to the increased effect of inertia. The latter also has an important implication on the
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FIGURE 17. Temporal variation of (a) the centre of gravity of the bubble, and (b) the
distance of the centre of gravity of the bubble from the axis (d = (x2

CG + y2
CG)

1/2)
for different values of Bo. The remaining parameter values are the same as the base
parameters.
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FIGURE 18. (Colour online) Trajectories of the bubble. (a,b) Three-dimensional view, and
(c,d) top view (projection on the x–y plane) for (a,c) Bo= 6× 10−4 and (b,d) Bo= 2×
10−3. The rest of the parameter values are the same as those used to generate figure 17.

level of thermocapillary stresses that the bubble experiences. Owing to our assumption
of quadratic dependence of surface tension on temperature, the induced Marangoni
stresses become stronger as we move further away from the location associated with
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FIGURE 19. Effect of (a) Reynolds number for Fr = 50 and (b) Froude number for
Re= 10 on the temporal variation of the centre of gravity of the bubble. The remaining
parameter values are the same as the base parameters.
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FIGURE 20. (Colour online) Trajectories of the bubble for (a) Re= 5 and (b) Re= 50 for
Fr = 50, and (c) Fr = 20 and (d) Fr = 60 for Re= 10. The rest of the parameter values
are the same as those used to generate figure 19.

surface tension minimum, zm; this can be clearly seen in figure 1(b). According to
the previous discussion, since Marangoni stresses can be held responsible for the
breakdown of symmetry, it is reasonable to expect that if the bubble is allowed to
reach higher elevations then it should be more susceptible to three-dimensional effects.
Our simulations indicate that this is indeed the case, and inspection of figure 20(a,b)
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reveals that increasing Re for a fixed Fr leads to enhanced lateral migration. On
the other hand, increasing Froude number by keeping the Reynolds number fixed
at Re = 10, thereby reducing the effect of buoyancy as compared to Marangoni
stresses, decreases the rise speed of the bubble and brings down the location of the
bubble arrest. For low values of Fr the bubble has not reached a terminal vertical
position even at late times, due to the stronger effect of buoyancy, and exhibits a
low-amplitude zig-zag motion as it rises slowly (see figure 20c). For higher values
of Fr, the corresponding effect of Marangoni stresses becomes more important (the
characteristic velocity is based on Marangoni scaling) and lateral migration of the
bubble is enhanced (see figure 20d).

5. Concluding remarks

The rise dynamics of a gas bubble in a square channel filled with a ‘self-rewetting’
fluid whose surface tension exhibits a parabolic dependence on temperature with a
well-defined minimum is investigated numerically. A linearly increasing temperature
in the vertical direction is imposed at the sidewalls of the channel. A modified open-
source finite-volume VoF-based multiphase flow solver, Basilisk (originally developed
by Popinet and co-workers), wherein we include the tangential gradient of surface
tension force (known as Marangoni or thermocapillary force) has been used in the
present study. It is very challenging to accurately calculate the tangential force term
operating at the interface in the VoF framework. Thus, extensive validation exercises
were performed by comparing the results obtained using the present solver with the
previous experimental, theoretical and computational studies.

The main objectives of the present study are as follows: (i) to investigate the
effect of Marangoni stresses on bubble rise dynamics in a self-rewetting fluid using
a consistent model fully accounting for the tangential surface tension forces; and
(ii) to highlight the effects of three-dimensionality on the bubble rise dynamics. In
the case of isothermal and non-isothermal systems with ‘linear’ fluid (whose surface
tension decreases linearly with increasing temperature), the bubble moves in the
upward direction in an almost vertical path as shown in figure 8(a). On the other
hand, the behaviour observed in the case of the self-rewetting fluid is strikingly
different. Our results indicate that in a self-rewetting fluid, as the bubble crosses the
location of minimum surface tension, the buoyancy-induced upward motion of the
bubble is retarded by a thermocapillary-driven flow acting in the opposite direction,
which in some situations outweighs buoyancy, which in turn leads to the migration
of the bubble in the downward direction. In the later stages of this downward motion,
as the bubble reaches its position of arrest, the vertical motion decelerates. In the
presence of small disturbances, which in our simulations can be simply introduced
due to the presence of small numerical errors, the flow becomes unstable and the
bubble experiences an asymmetrical temperature distribution as it moves away from
the axis of symmetry, which ultimately leads to the bubble migration towards one of
the channel walls as shown in figure 8(b).

These phenomena are observed at sufficiently small Bond numbers. In the case
of stronger self-rewetting behaviour (M1 = 0.6; see figure 10), the bubble undergoes
spiralling motion. The mechanisms underlying these three-dimensional effects are
elucidated by considering how the surface tension dependence on temperature affects
the thermocapillary stresses in the flow. It is shown that the Marangoni stresses
can be held responsible for the breakdown of symmetry, and it is reasonable to
expect that if the bubble is allowed to reach higher elevations then it should be more
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Bubble rise in a self-rewetting fluid 711

susceptible to three-dimensional effects. This is indeed a striking difference with the
case of a bubble rising under an isothermal condition, for which it is known that
bubble deformability is actually a necessary condition for path instability (Tripathi
et al. 2015a). This is clearly not the case for the present system, where the path
instability is actually due to the interplay of inertia and thermocapillarity, and appears
to be favoured by bubbles that retain their spherical shape.

Our study on the effect of the initial location of the bubble rising in a self-rewetting
fluid for low inertia also shows that, irrespective of the different starting vertical
positions (i.e. above or below the location of minimum surface tension), for the
same set of the rest of the dimensionless parameters, the bubble gets arrested at a
particular z location, which almost coincides with the prediction from the theoretical
analysis in the Stokes flow regime. The effects of other dimensionless numbers, such
as Reynolds and Froude numbers, are also investigated. It is observed that increasing
Reynolds number or decreasing Froude number, keeping the other parameters fixed,
has a similar effect.
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